Working Group "Probabilistic and Interactive Machine Learning" AAMAS'23: Learning Constraints From Human Stop-Feedback Sebastian Tschiatschek (with S. Poletti and A. Testolin)

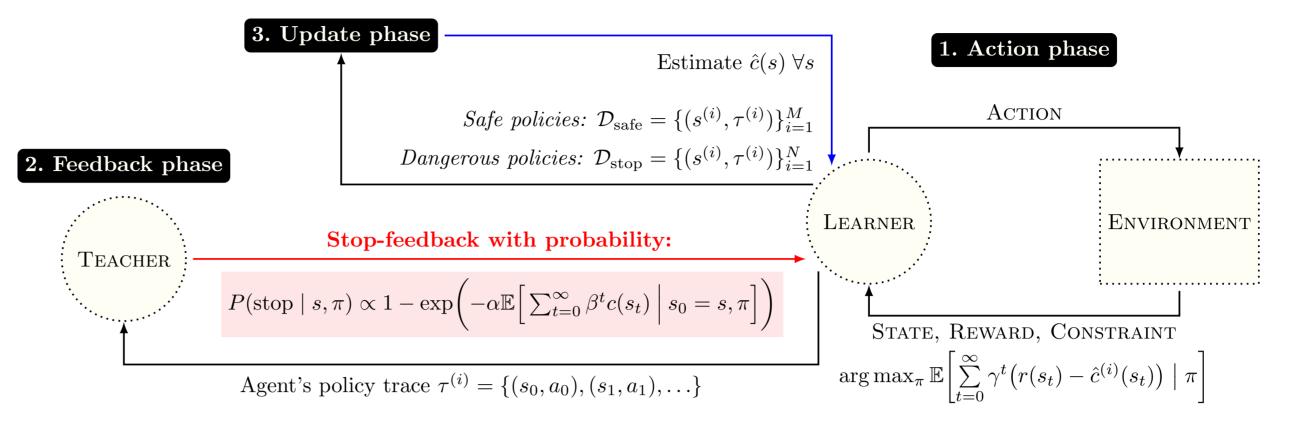
Abstract

- Safety: central for the usage of intelligent agents in many domains
- In this paper: learning about dangerous behavior via stop-feedback in RL
 - Probabilistic feedback model inspired by how humans might provide feedback
 - Bayesian inference for inferring constraints
- Experiments:
- C Learning with our proposed feedback model is efficient
- Human stop-feedback aligns reasonably well with our model

Setting

Markov Decision Processes

Interaction of Agent and Supervisor



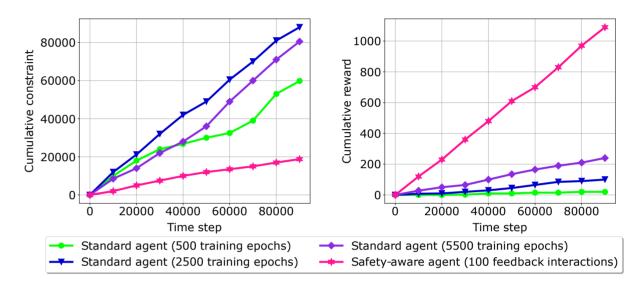
Our Approach

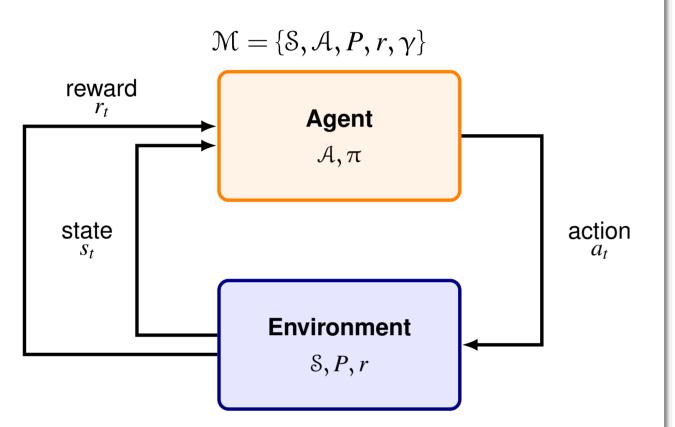
Central Ideas

- Estimate constraints from stop-feedback
- Be Bayesian:
- Encourage exploration
- Incorporate prior knowledge

Experimental Results

Learning from Synthetic Feedback





Classical Goal

• Cumulative rewards:

$$J(\pi) = \mathbb{E} \big[\sum_{t=0}^{\infty} \gamma^t r(s_t) \mid \pi \big],$$

• Find optimal policy:

 $\pi^* = rg \max_{\pi} J(\pi).$

Here: Learning With Constraints

- Rewards $r: S \to \mathbb{R}_+$ known
- Constraints $c \colon \mathbb{S} \to \mathbb{R}_+$ unknown
- Dangerous states $\Leftrightarrow c(s) \gg$
- Agent should avoid dangerous states
- Find optimal policy for

$$J(\pi) = \mathbb{E}\Big[\sum_{t=0}^{\infty} \gamma^t (r(s_t) - c(s_t)) \mid \pi\Big],$$

Featurize environment for scalability:

 $c(s) = \langle \Phi(s), c^* \rangle$

Major Steps

- 1 Action phase
- 2 Feedback phase
- 3 Update phase
 - Compute $\hat{c}^{(i+1)}$ as posterior via MCMC
 - Optimize policy:

$$\pi^{(i)} = \arg\max_{\pi} \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t \left(r(s_t) - \hat{c}^{(i)}(s_t)\right) \big| \pi\right]$$
(2)

Input: maximum number of interactions *K* **Output:** Final learner's policy π^{K+1} /* Initialization */ 1: $\mathcal{D}_{stop} \leftarrow \emptyset, \mathcal{D}_{safe} \leftarrow \emptyset$ **2:** $\hat{c}^{(1)}(s) \leftarrow 0 \quad \forall s \in S$ 3: $\pi^{(1)} \leftarrow$ (approx.) optimal policy for $r, \hat{c}^{(1)}$, cf. Eq. (2) /* Learner-teacher interaction */ 4: for all i = 1, ..., K do /* Action & feedback phase */ 5: $s \leftarrow s_0$ for all $t = 1, \ldots, T$ do 6: $a_t \sim \pi^{(i)}(s), s_{t+1} \sim \mathcal{P}(\cdot \mid s_t, a_t), r_t \sim r_{a_t}(s_t)$ 7: $f \leftarrow$ Teacher's feedback according to Eq. (1) 8: if f =stop then 9: $\mathcal{D}_{\mathsf{stop}} \leftarrow \mathcal{D}_{\mathsf{stop}} \cup \{(s_t, \pi^{(i)})\}$ 10: 11: break 12: else $\mathcal{D}_{safe} \leftarrow \mathcal{D}_{safe} \cup \{(s_t, \pi^{(i)})\}$ 13: /* Update phase */

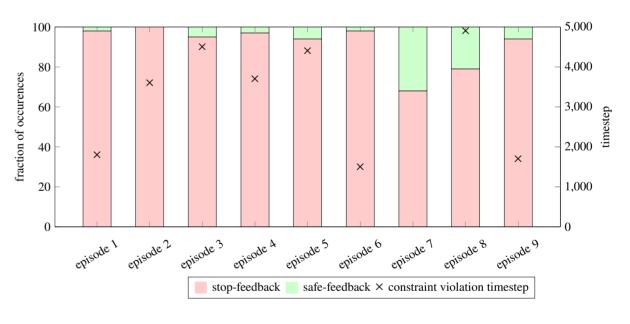
14: Learner updates its estimate of the constraints to $a^{(i+1)}$

- Agents with constraint inference:
 - Achieve higher cumulative rewards
 - Violate fewer constraints

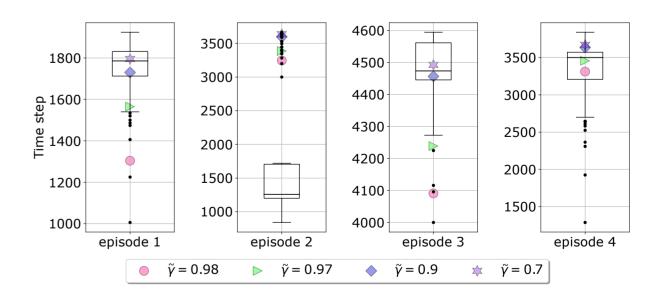
Human Feedback

- Survey with 100 volunteers (online)
- Evaluation of 9 videos:
 - Episodes with 5000 time steps
 - Standard agent colliding with ≤ 1 constraint
- Question:
 - Stop-feedback or not
 - Time step for feedback

Stop-feedback and collision times



Model-generated vs human stop-feedback



Stop-Feedback

- Learn about constraints from stop-feedback (provided by a human supervisor)
- Model how a human supervisor might provide feedback

 $P(\mathsf{stop} \mid s, \pi) \propto$

 $1 - \exp\left(-\alpha \mathbb{E}\left[\sum_{t=0}^{\infty} \beta^{t} c(s_{t}) \mid s_{0} = s, \pi\right]\right) \quad (1)$

- β : Horizon for reasoning into the future
- α : "Worriedness" of supervisor
- Goal: sample-efficient learning from stop-feedback

 $\hat{c}^{(i+1)}$ based on the datasets \mathcal{D}_{stop} , \mathcal{D}_{safe} 15: $\pi^{(i+1)} \leftarrow$ (appr.) optimal policy for $r, \hat{c}^{(i+1)}$, cf. Eq. (2) 16: **return** Final learner's policy π^{K+1}

Experimental Setup

OpenAl Safety Gym

- 1 goal state
- 5 evenly distributed fixed hazards
- Agent can move in the 2d plane (turning & moving forward/backward)
- Environment is reset when reaching hazard
- PPO; 2nd layer of critic for feature extraction

Good alignment of feedback

Further Details

Paper link

Group link

