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Abstract. The business processes of an organization are often required to com-
ply with domain-specific regulations. Such regulations can be checked based on
the models of the respective processes. These models’ main focus is on the oper-
ational part of the process. However, also decisions play a major role in the exe-
cution behavior of processes, and they are expressed in separate decision models.
In this paper, we investigate the influence of decision models on business process
compliance checking. To this end, we formalize decision-aware processes as col-
ored Petri nets, extract the state space, and check compliance rules using temporal
logic model checking. The approach improves the quality of existing compliance
checking by reducing the risk of false negatives. We provide a prototype and dis-
cuss advantages and disadvantages.

Keywords: Business Process Management · Business Process Compliance · De-
cisions.

1 Introduction

Business process compliance is the topic of ensuring that an organization’s business
processes comply with internal and external domain-specific regulations. Such regula-
tions often refer to the sequence of certain activities that must or must not occur. Given
that the organization documented its processes in respective models, it is possible to un-
cover potential violations of the regulations at design time already to ensure a compliant
execution of the process.

Compliance checking for business process models has been given a lot of atten-
tion in the literature in recent years [1–3, 18, 19]. These approaches focus on process
models specifying aspects such as control flow and high level data dependencies, which
may be subject to internal and external domain-specific regulations. However, partic-
ular instances of these processes often depend on additional decision logic defining
fine-grained data dependencies, which are not specified in the process model, but in a
separate decision model.

This paper presents a semi-automated approach to design-time compliance check-
ing of decision-aware process models. To this end, we formally capture the execution
semantics of decision-aware processes (i.e., the logic of the process and the decision as
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well as the data dependencies between the two). Subsequently, we show that consider-
ing decisions increases the size of the processes’ state space by adding more informa-
tion to the data objects. However, at the same time, the amount of traces is limited, since
there may be interdependencies between decisions that rule out certain traces. There-
fore, compliance checking with decision-aware processes may actually lead to more
accurate results since in the decision-unaware process rules were violated by traces that
could actually never occur.

The remainder of this paper is structured as follows. Section 2 presents related work.
In Section 3, we provide definitions of the structures used and an example. The paper
presents the decision-aware compliance checking approach in Section 4. We evaluate
the approach using a prototypical implementation in Section 4.4. Finally, Section 5
concludes the paper and discusses future work.

2 Related Work

Business Process Compliance received increasing attention of BPM research from 2000
to 2007 and is still actively researched [15]. Recently, Hashmi, Governatori, and Lam
summarized the developments and gave possible directions for future work in a survey
paper [15]. They distinguish between design-time, run-time, and auditing approaches —
based on their application during the process life cycle. This paper contains a design-
time approach that checks models for potential violations using a model checking ap-
proach [4, 11]. It addresses an open issue [15]: consideration of activities’ effects.

Various approaches for design-time compliance checking have been developed.
Awad et al. introduce BPM-Q (and its visual counterpart BPMN-Q) to formally (and
visually) model queries for process models by reusing BPMN elements and annotat-
ing them with additional information [1]. Later they used it for modeling compliance
rules [2], and they added data support [3]. The compliance rules are formalized using
temporal logic and checked with the model checker NuSMV1. Awad et al. only investi-
gate compliance rules based on control-flow relationships and data; however, data based
rules can only constrain the state of the data object.

In contrast, (Extended) Compliance Rule Graphs (eCRGs) are capable of express-
ing fine grained data conditions and additional perspectives such as time and resources
[19,20,26]. While most eCRG based approaches are used for run-time or auditing com-
pliance approaches, Knuplesch et al. present an approach for checking data-aware rules
on process models [18], which is strongly related to this paper. In contrast to Awad,
fine grained data conditions can be evaluated. Knuplesch et al. infer respective knowl-
edge from arc-conditions and derive abstraction predicates (contraints for possible val-
ues) for all data attributes. They embedded their approach in the SeaFlow compliance
checker, which models rules as Compliance Rule Graphs (CRGs) [23]. However, our
method additionally considers decision models and supports operations on data.

The approach of this work uses a colored Petri net (CPN) based formalism for pro-
cess models. The translational semantics are based on Dijkman’s et al. approach of
mapping processes to Petri nets [13] and Lee’s et al. method for modeling decisions as

1 NuSMV’s web page: http://nusmv.fbk.eu/ (retrieved 4/10/2018)
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Petri nets [22]. Instead of classical Petri nets, we use CPNs [17]. CPNs have been used
for analyzing data aware processes in [27]. In our paper, CPNTools2 is used for imple-
mentation: the formalization, the state space extraction, and the compliance checking
using the ASK-CTL extension [10].

Decisions and decision models receive increasing attention from BPM research. Re-
cently Jansen et al. and Batoulis et al. defined criteria for consistent integration of pro-
cess and decision models [7,16]. Further, Batoulis et al. investigates soundness notions
for decision-aware processes and thereby domain independent correctness criteria [6,8].
Compliance is based on domain specific rules. Therefore, our approach complements
existing correctness criteria for decision-aware processes.

3 Foundations

A decision-aware process model contains imperative and declarative parts of a business
process. The imperative parts are captured by a traditional process model (e.g., a BPMN
model [24]) while the declarative parts are captured by decision models (e.g., a DMN
model [25]). Process models link decision models through decision tasks, which refer
to a decision in a decision model. This section contains a description of decision-aware
processes, an running example, and a brief description of compliance checking.

3.1 Decision-Aware Process Models

A business process consists of a set of tasks that contribute to a common business goal
and are executed in a technical and organizational environment [28]. A process model
describes these tasks and their temporal and causal dependencies. Further, it has one
start event and one end event. The model contains gateways to express exclusiveness
(XOR gateways) and concurrency (AND gateways) of tasks. Additional dependencies
can be expressed by using data objects and data flow: an activity can read data objects
in specific states and write data objects in specific states. Each activity has, therefore,
a set of input sets and a set of output sets. At least one input set must be available to
enable the activity. One output set is chosen and its elements are written by the activity.

Consider the sample process model in Figure 1. It depicts the inquire process of a
car rental company. If an order is received, then the company automatically checks if
discounts apply and grants them. Afterwards, additional fees are determined and cal-
culated. Eventually, the final price is set and the updated order is sent to the customer.
Throughout the process, various data objects are used: Offer comprises the key infor-
mation, Special Offer contains information about potential discounts, Fees contains the
determined fees which are saved in separate objects when calculated (Young Driver Fee
and Last Minute Fee).

A decision model consists of two layers: the decision requirements and the deci-
sion logic. The former comprises high-level information about the necessary inputs the
data and the preceding decisions that are required to execute a certain decision. The
logic level contains a specification of how decisions are made. These can be informal

2 CPNTools’ web page: http://cpntools.org (accessed 4/10/2018)
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Fig. 1: Sample process model (BPMN) of a car rental company

or formal. We assume that all decisions are formally specified by a decision table. A
decision table comprises a set of rules, which consist of conditions for the inputs and
expressions for producing outputs. Although rules can, in general, be overlapping, we
only consider unique decision tables where only one rule matches an input. For unique
tables, the order of rules is irrelevant. It has been shown, that all DMN decision tables
can be transformed into unique ones [9].

The car rental scenario contains two decisions, the logic of which is given by Ta-
ble 1a and Table 1b. A rule is represented horizontally. The first decision (Table 1a)
has the input Offer.Lead Time, which is the time in weeks between booking and pick-
ing the rental up. The output is either rejected (no discount), mileage (increased free
mileage), or discount (monetary discount). The decision in Table 1b considers the lead
time and the driver’s age to determine the fees: a driver younger than 25 must pay a
young driver’s fee. If the booking occurs less than one week in advance, then a last
minute fee is due.

Decisions are linked to processes via decision tasks. Whenever a decision task is
reached, the process provides the required inputs to the decision, the logic is executed,
and the process handles the decision output. We make the following assumption about
the input-output behavior of decision tasks: the inputs of the decision task directly cor-
respond to the inputs of the linked decision table. The decision’s outputs are reflected
in the task’s output sets. If a decision task has multiple output sets, the decision logic
chooses an output set. To do so, the attribute State is set. The sample process model
has two decision tasks linking the respective decisions. Decide Early-Bird Special links
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Table 1: Decision tables for the sample process

(a) Decision logic for Decide Early-Bird
Special

U Offer.Lead Time Special Offer.State
Number {rejected, discount, mileage}

1 < 2 rejected
2 [2..4) mileage
3 ≥ 4 discount

(b) Decision logic for Determine Additional Fees

U Offer Fees
Lead Time Driver Age Young Driver Last Minute

Number [18..99] bool bool

1 < 1 < 25 true true
2 ≥ 1 < 25 true false
3 < 1 ≥ 25 false true
4 ≥ 1 ≥ 25 false false

to Table 1a so that the decision determines the task’s output set. Determine Additional
Fees refers to Table 1b. The decision sets attributes of the only output Fees.

3.2 Compliance Checking

A decision-aware process model is a blueprint for process instances: it describes the
possible behavior. The model structures the process and constrains it (e.g., limits the
order of activities). The process can be implemented, for example by using a process
engine, to support and control instances. However, real world process instances are
subject to laws, guidelines, and regulations, which might or might not be captured in
the process model. Violating these constraints can carry penalties and jurisdictional
consequences. Thus, it is important to assert compliant behavior.

One step towards business process compliance is the verification of process models
with respect to compliance regulations. The compliance regulations are expressed as so
called compliance rules (properties that must not be violated). Table 2 contains rules
for the car rental process. In general, we consider the occurrence and order of activities
(rules c1, c2, c3) and might use data conditions for further restrictions (c4, c5).

Table 2: Compliance rules for the example process
c1 Every received order will eventually be sent back to the customer

c2 The price will only be calculated after additional fees have been determined

c3 If a discount applies, the order must not be subject to a last minute fee

c4 The young driver fee must be calculated if the driver is younger than 25

c5 If an early-bird special applies, calculate price reads the offer in state discounted

4 Decision-Aware Compliance Checking

Compliance checking can take place during different phases of the business process
lifecycle. The decision-aware compliance checking approach of this paper takes place
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during design-time, i.e., models are checked for compliance violations. Although dif-
ferent methods for verifying models (e.g., theorem-proofing and simulation) exist [15],
model checking is the most common one for compliance checking [15]. Therefore, our
approach follows the general model checking paradigm depicted in Figure 2 [21]. The
decision-aware process model describes the system and defines a state space. We use
colored Petri nets (CPNs) to assign formal behavioral semantics to such models. The
compliance rules are properties that must not be violated, and we formalize them as
Computational Tree Logic (CTL) formulas. The formal rules and the formal model are
then consumed by a model checker, which verifies the properties.

System
Model

Property
Model

State
Space

Formal
Specification

Model
Checker

define

formalize

formal property
not satisfied

formal property
satisfied

Fig. 2: Schematic description of the general model checking approach (cf. [21])

4.1 Requirements and Challenges for Formalizing Decision-Aware Process
Models

A formalism for a decision-aware process comprises the behavior of the process as well
as the logic of the decisions, which is why we chose CPNs for this task. CPNs can model
conditions and operations on data. Since we assume decision tables to be unique—i.e.,
its rules are non-overlapping—the set of rules of a table extensionally define a function,
mapping an input to exactly one output. Therefore, decisions are just data operations.
Further, the structure and temporal and casual constraints of process models can be
captured in a (colored) Petri net [13]. Consequently, CPNs are suited for formalizing
decision-aware process models.

To model check a Petri net for compliance rules, one needs to investigate its state
space which in case of Petri nets is called occurrence graph. This graph must be com-
plete in order to find all possible violations of a compliance rule, i.e., every possible
trace has to be represented. However, decisions operate on data attributes, which may
have large domains (such as the integers). Representing every possible instance explic-
itly leads to large state spaces (i.e., 232×|states|, if a single integer is involved). Thus,
model checking can become infeasible and a proper abstraction is required.

Some model checkers, such as NuSMV3, support symbolic abstraction [12]. Instead
of considering each possible instance separately, an attribute is represented by a symbol
(i.e., Offer.Lead Time= N). Whenever the state space extraction reaches a condition or
operation, it is applied to the abstract symbol (i.e., Offer.Lead Time= {n ∈ N|n < 2}

3 NuSMV Home Page — http://nusmv.fbk.eu/ (retrieved 5/8/2018)
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after executing the first rule the decision). If alternative conditions exist, the state space
branches. Each branch considers one alternative [5]. But no symbolic model checker for
CPNs exists. To overcome this, we incorporate the abstraction into our formalization
and implemented required operations and conditions for symbolic execution [12].

4.2 Mapping Decision-Aware Process Models to CPNs for Symbolic Execution

This paper’s mapping of decision-aware process models to CPNs builds upon the map-
ping of process models to Petri nets given by Dijkman et al. in [13]. In this section,
we highlight major differences especially those caused by the data-awareness of CPNs
and the use of symbolic abstraction. For one, a data object is represented by exactly
one colored token on exactly one place. When the state of the object (or an attribute)
is updated, the color of the token changes, but the location remains the same. A formal
mapping is described in [14].
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Fig. 3: Mapping of a sample task and a sample decision task linking a decision table

An activity has a set of input sets and a set of output sets. Consequently, the chosen
output set is reflected in the process state. For this reason, we map an activity to a set of
transitions—one for each output set. The precondition given by the input set is checked
by the transitions’ guards. Figure 3a shows the mapping of the task calculate young
driver fee. It has exactly one input set (Fees in state determined) and one output set
(Young Driver Fee in state calculated) and is therefore mapped to one transition.

The outcome of a decision task depends on the decision logic. At this point, we
assume that the decision logic determines the output set and may also set other at-
tributes. Figure 4 contains the generic mapping: we create a CPN transition for each
row. The transitions can fire if the condition of the rule is fulfilled. Since data objects
are described by symbols, it is enough if only one instance fulfills the condition. How-
ever, we need to update the input’s symbolic abstraction respectively. We denote this by
update(i,cond) where i is an input and cond the corresponding condition. Further, we
update the symbols for the outputs according to output value of the corresponding rules
(expr(i) where i is the input and expr the output expression).
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Fig. 4: Generic mapping of a decision task including the decision logic

Consider the decision task Decide Early-Bird Special and its corresponding decision
table (Table 1a). The formalization is depicted in Figure 3b: for the three rules we
create three transitions. Each transition corresponds to one rule and has a respective
guard. For the first rule, the symbol for Offer.Lead Time must comprise at least one
value that is less than two. If the transition fires, the token o for Offer is updated so that
Offer.Lead Time describes only the values less than two. Further, the output data objects
are updated. For the first rule, the transition sets the state of Special Offer to rejected.

Finally, also XOR splits are treated differently than in [13], namely similar to de-
cision tasks: they are like decisions with no output. Thus, they must read all the data
required for the branching and may update the respective symbols. In contrast to deci-
sion tasks, each transition created for the XOR split has a separate control flow place.

4.3 Compliance Checking for CPN Formalism

Since CPNs have formal semantics, it is possible to extract their state spaces, given that
they are finite. In case of (colored) Petri nets, the state space corresponds to the net’s oc-
currence graph. That is to say, the current state of the net is given by its current marking,
and by firing a transition in the net a state transition in the state space is performed. Our
approach checks the compliance of the decision-aware process by verifying temporal
logic queries against the state space.

Compliance rules can originate in laws, guidelines, or regulations. Table 2 lists some
compliance rules for the sample process, and Table 3 the corresponding CTL formulas.
A rule can restrict the occurrence or order, and a rule can be conditional: its restriction
must only be satisfied given certain data conditions. So, how does decision-awareness
influence the compliance of a process model?

Decisions encode information about the data attributes, which are represented as
abstract symbols in our CPN and accordingly in our state space. In decision-aware com-
pliance checking, we consider these attributes; consequently, the state space grows (it
is larger than the decision-independent one). However, decisions also encode instance-
level dependencies. These dependencies restrict the possible traces of the process fur-
ther to the existing control flow. For this reason, a decision-independent state space can
have more traces than its decision-aware counterpart.
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If compliance rules only constrain the occurrence and order of activities (with or
without data conditions), each trace contributes to the result. If traces are removed, a
rule that previously held will still hold, but a rule that did not hold must be reevalu-
ated because all violations could be part of the removed traces. As an effect, decision-
awareness can reduce the number of false negatives (compliance rules that are violated
in the model, but not in reality).

For example, consider rule c3: if a discount applies, a last minute fee must not
apply. The CTL formula says that in all traces, if Apply Discount is executed, Calculate
Last Minute Fee must not be executed. However, if we ignore decisions it is impossible
to infer whether the two XOR-splits are independent. Hence, we have to consider the
trace in which Special Offer.State=discount and Fees.lmf=true. In that trace, the rule
is violated. If, however, we take decisions into consideration, this would imply that
Offer.Lead Time ≥ 4 and Offer.Lead Time < 1. This is a conflict, and such a trace is
not part of the state space. Hence, the decision-aware process model is compliant to c3.

Furthermore, based on decision-aware processes, we are able to check rules based
on data object attribute values (cf. rule c4). This was previously not possible, because
the process model does not reference this attribute and every knowledge about its val-
uation is based on the decision model. Since our mapping of decision-aware processes
includes decision models, we can now verify rules involving data attribute conditions.
We only need to check if one value contained in the symbolic abstraction satisfies the
data condition. For instance, the sample process is compliant to rule c4.

Table 3: Compliance rules for the sample process expressed as CTL formulas
c1 AF(end)

c2 A(NOT(Calculate Price) U Determine Additional Fees) ∨ AG(NOT(Calculate Price) ∧ NOT(Determine Additional Fees))

c3 AG(Apply Discount =⇒ AG(NOT(Calculate Last Minute Fee)))

c4 AG(Calculate Young Driver Fee =⇒ dataCondition(Offer.Driver Age< 25))

c5 AG((writes(Early Bird-Special,Special Offer, discount) ∨ writes(Early Bird-Special,Special Offer, mileage)) =⇒ AF(reads(Calculate Price,Offer,discounted)))

4.4 Prototype

This paper’s approach is a CPN based method for compliance checking of decision-
aware processes. We applied this approach using CPNTools. Process models were man-
ually translated to CPNs to extract the state space, and formal compliance rules were
specified as ASK-CTL queries to be checked (cf. Figure 5). ASK-CTL is an extension
of CPNTools, that allows to evaluate CTL formulas on the state spaces of CPNs.

CPNTools does not support symbolic execution. Therefore, respective data types,
comparisons, and operations need to be defined. We added the functionality for int,
bool, and real to show the feasibility of the approach. Since large sets (such as int)
cannot be represented explicitly, we use intervals to describe the current abstraction of
a symbol. Examples (including compliance rules) are provided online4.

4 Example CPNs: https://owncloud.hpi.de/index.php/s/negAQyTLYPj45xH

https://owncloud.hpi.de/index.php/s/negAQyTLYPj45xH
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Fig. 5: Screenshot showing partly the colored Petri net and a compliance rule including
the compliance checking result

5 Discussion and Conclusion

In comparison to other design-time compliance checking approaches, decision-aware
compliance checking reduces the number of false alarms. Since decisions encode rela-
tionships that might not directly be visible in the process model, the possible traces are
further restricted. If less traces exist, fewer violations of occurrence-based and order-
based compliance rules can occur.

Although the knowledge about decision logic allows inferring attribute-level infor-
mation on used data objects leading to more states, it is impossible that the decision-
aware process model produces traces that are not part of the decision-independent
model. Since we treat everything that is unknown using the open-world assumption,
additional knowledge can be only equally restrictive or more restrictive. However, there
are some edge-cases in which decision-aware compliance checking is too restrictive:
violations can stay undiscovered if the environment changes the value between to oc-
currences in the process model (e.g., between a decision task and an XOR gateway).

Decision-awareness can also lead to problems in the model checking process. Trans-
lating a process model to a CPN that uses symbolic abstraction allows finding the right
data abstraction during the state space extraction. In general, decision-aware process
models are Turing-complete. As the execution of a Turing-complete program is unde-
cidable, the symbolic execution is also undecidable. Research in symbolic abstraction
presents methods (e.g., loop summarization) to support more models [5].

To summarize, this paper presents a decision-aware compliance checking approach.
At design-time a process model and complementary decision-models are formalized as
a CPN and model checking is applied to verify the model with respect to compliance
rules. Thereby, symbolic abstraction is used to reduce the state space.

Tools, such as CPNTools, can model and analyze (e.g., apply model checking) to
CPNs. However, it uses proprietary formats and requires expert knowledge. The manual
formalization is an error-prone step. Future work should automate formalizing decision-
aware process models and checking compliance, respectively.
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CPNTools model checking extension provides only Boolean feedback. A rule holds
or it is violated, but the cause of the violation is not exposed. Future work can overcome
this by extending the model checking capabilities, using a different model checker, or
integrating other approaches such as anti patterns. The latter finds all violating traces in
a process model, which is a super set of the violations in a decision-aware setting [3].

Altogether, we showed that decision-aware compliance checking can improve the
results compared to traditional design-time compliance checking.
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