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Abstract. Complexity impairs the maintainability and understandabil-
ity of conceptual models. Complexity metrics have been used in software
engineering and business process management (BPM) to capture the de-
gree of complexity of conceptual models. A vast array of metrics has been
proposed for processes in BPM. The recent introduction of the Decision
Model and Notation (DMN) standard provides opportunities to shift to-
wards the Separation of Concerns paradigm when it comes to modelling
processes and decisions. However, unlike for processes, no studies exist
that address the representational complexity of DMN decision models.
In this paper, we provide a first set of ten complexity metrics for the
decision requirements level of the DMN standard by gathering insights
from the process modelling and software engineering fields. Additionally,
we offer a discussion on the evolution of those metrics and we provide
directions for future research on DMN compexity.
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1 Introduction

Decision modelling has seen a surge in scientific literature, as illustrated by the
vast body of recent work on DMN [1–7]. DMN consists of two levels. Firstly,
the decision requirement level in the form of a Decision Requirement Diagram
(DRD) is used to portray the requirements of decisions and the dependencies
between the different constructs in the decision model. Secondly, the decision
logic level is used to specify the underlying decision logic, usually in the form
of decision tables. The standard also provides an expression language FEEL
(Friendly Enough Expression Language), as well as boxed expressions and deci-
sion tables for the notation of the decision logic. In DMN rectangles are used to
depict decisions, corner-cut rectangles for business knowledge models, and ovals
to represent data input. The arrows represent information requirements (from
data or decisions). DMN aims at providing a clear and simple representation
of decisions in a declarative form and offers no decision resolution mechanism
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of its own. Rather, the invoking context, e.g. a business process, is responsible
for ensuring a correct invocation and enactment of the decision, as well as en-
suring data processing and the storage and propagation of data and decision
outcomes throughout the process. This makes DMN particularly interesting for
a Service-Oriented Architecture, as DMN is independent of the applications and
the invoking context. That way, DMN is able to capitalise on the benefits that
are inherent to service-orientation in terms of maintainability, scalability, under-
standability, and flexibility both for modelling and mining decisions.

Complexity metrics have been adopted in the BPM field for process model
complexity and applied on for instance the Business Process Model and Notation
(BPMN) standard [8]. Despite the adoption of the DMN standard in the BPM
field, a discussion on DMN model complexity is still lacking in literature. This
paper aims at addressing that research gap and at proposing a set of metrics for
the decision requirements level of the DMN standard.

This paper is structured as follows. In Section 2, relevant works on complexity
are provided, as well as a running example that will be used throughout the
paper. Section 3 provides a first set of ten DRD metrics for DMN models, while
Section 4 outlines a discussion on the evolution of the proposed metrics. Section
5 provides an initial empirical evaluation of the metrics. In Section 6 a research
agenda for DMN model complexity is contributed. Finally, Section 7 provides
the conclusions.

2 Related Work and Running Example

In this section we provide an overview of related work for DMN, complexity
metrics in the BPM field, and complexity assessments to the DMN standard in
particular. Additionally, we provide a running example which will be used to
illustrate the proposed complexity metrics in the subsequent sections.

2.1 Related Work

Recent BPM literature moves towards accommodating decision management into
the paradigms of The Separation of Concerns (SoC) [3, 9, 10] and and Service-
Oriented Architecture (SOA) [6], by externalising decisions and encapsulating
them into separate decision models, hence implementing decisions as externalised
services. Literature proposes several conceptual decision service platforms and
frameworks [6, 11, 12] and industry has adopted this trend, as several decision
service systems have appeared, e.g. SAP Decision Service Management [13]. This
externalisation of decisions from processes provides a plethora of advantages
regarding maintainability and flexibility of both process and decision models
[3, 6, 10,14–17].

A plethora of works on software complexity metrics exists [18–20]. Addi-
tionally, software metrics have been transformed and applied on processes and
workflow nets in a vast array of studies [21–27]. Most of these studies focus on
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the BPMN standard. A systematic literature review of process metrics is pro-
vided in [28], where the authors identify and discuss 65 process metrics found in
BPM literature.

Unlike for processes and BPMN, few works on complexity metrics for DMN
models exist. In [29], the meta model complexity of the DMN modelling method
is assessed according to the theory specified by [30]. Additionally, an explorative
study of the notational aspects of DMN was conducted in [31]. In this study
the authors focus on the cognitive analysis of the DMN notation in the light of
theories on effective visual design. Hence, DMN complexity was assessed on a
meta model level, i.e. the theoretical complexity of the modelling method as a
whole, and on the cognitive visual level. However, no works on the complexity
of DMN decision models are present in literature. In the following sections, we
propose a set of complexity metrics for the DRD level of DMN.

2.2 Running Example

Figure 1 provides a running example of a DRD model that will be used in the
coming section to illustrate the complexity metrics. The DRD represents an
event selection decision based on the preferred location and the food and drinks
that are offered, while taking into consideration the season, the number of guests,
whether children are allowed, the sleeping facilities, and the budget. The value
of every proposed metric will be calculated for this DRD.

Event offer

Drinks Location

Food

Trend

Event managerBudget

Children

Sleeping facilities

Season Number of guests

Contact list

Fig. 1: DRD running example.
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3 DRD Metrics

In this section we provide a set of ten DRD metrics that are capable of represent-
ing graph complexity in analogy with business process or software engineering
literature. For every metric, a brief explanation is provided. Additionally, we
calculate the value of every proposed metric for the running example provided
in Figure 1. An overview of the metrics and the metric values for the running
example is given in Table 1. Later on, we will discuss the evolution of the metrics
and validate them through an exploratory survey.

3.1 Number of Decisions (NOD)

As proposed by [23], BPMN complexity can be measured by counting the num-
ber of activities. They called this metric number of activities (NOA), which is a
summation of all activity elements in the model. A similar metric can be worked
out for DMN, counting the number of decision nodes in the DRD model instead
of counting the activities, thus arriving to the metric of number of decisions
(NOD). Applied to the running example of Figure 1, the NOD is 4. As the mod-
els grow larger, they tend to have more decision elements. Thus, this metric will
go up if a decision element is added to the model, indicating that the model has
become more complex according to this metric. Given that DMN is a standard
for modelling decisions, we assume that the number of decisions that are mod-
elled within one DRD model will be indicative of the complexity of the model.
However, note that the granularity of the DRD will play a crucial role as well, as
one decision node can possibly be decomposed into a number of decision nodes
each containing a portion of the underlying decision logic. Therefore, it will be
of paramount importance to develop complexity metrics for the logic layer of
DMN as well to capture these changes in granularity of the DRD model.

3.2 Number of Elements (NOE)

The number of elements (NOE) is the sum of all building blocks of the DRD.
Hence, NOE takes into account all elements of the DRD rather than only the
decision nodes, as is the case in the NOD metric. More specifically:

NOE = #decisions + #inputs + #knowledgesources
+ #businessknowledgemodels + #informationrequirements
+ #knowledgerequirements + #authorityrequirements

Applied to the running example model in Figure 1, the NOE is 27. The larger
the DRD model, the higher NOE will be. This is self-explanatory, as DRD models
are solely made up out of these elements.

3.3 Number of Basic Elements (NOBE)

The most basic elements of a DRD model are decisions nodes, input nodes, and
information requirements. They form the spine of a DRD model. Therefore, the
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number of basic elements (NOBE) probably is a good metric. NOBE can be
calculated as follows:

NOBE = #decisions + #inputs + #informationrequirements
Applied to the running example in Figure 1, the NOBE is 20. Clearly, the

NOBE metric will be higher as basic elements are added to the DRD model.

3.4 Total Number of Data Objects (TNDO)

As discussed in [28], the total number of data objects (TNDO) represents all data
objects in the BPMN diagram. For a DRD, data objects are represented by all
input data objects present in the model. The running example in Figure 1 has
5 input data elements, hence the TNDO is 5.

Similar to the explanation of NOD and NODIR, bigger models tend to have
more input data elements. By adding a data input element to a model, the
TNDO metric will grow.

3.5 Sequentiality (SEQ)

As pointed out by [28], the sequentiality (SEQ) of BPMN is equal to one minus
the percentage of nodes with no more than one incoming and outgoing arrow.
In other terms: the percentage of nodes that have more than one successor or
predecessor. This metric can be used in the same way for the nodes of a DRD.
Sequentiality is expressed as a number between one and zero. If the DRD looks
more like a sequence rather than a parallell network, the value of the sequentiality
metric will be low. This corresponds with a less complex model, and vice versa.
Applying this to the running example in Figure 1, we get the formula

SEQ = 1 − 4/12 = 0.6667.
Models with a lot of single-path sequences will have a low complexity value.

Also note that sequentiality in DMN will be greatly impacted by leaf elements
since DRD models usually have multiple input data elements, thus increasing
the SEQ metric.

3.6 Longest Path (LP)

Unlike BPMN, a DRD model does not allow loops. Therefore, the longest path
(LP) can be measured unambiguously. Calculating the longest path of a DRD
graph, which in essence is a directed acyclic graph (DAG), is done by topologi-
cally sorting the graph [32]. In the running example of Figure 1, the LP of 4 is
found. This is the length of the path going from Season to Event offer through
Food and Drinks. It is not possible to find a longer path in the model. Typically,
the longest path and the sequentiality metrics of a DRD will oppose in value.
When a model is more sequential, it will have a low complexity according to the
sequentiality metric. However, the model will typically have longer paths and
thus higher complexity according to the longest path metric. This proves the im-
portance of using multiple complexity metrics to assess DRD model complexity
from different perspectives.
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As DRD models are getting bigger and more arcs, i.e. requirements in the
DRD graph, are introduced, the value of LP will indicate a high complexity.

3.7 Average Vertex Degree (AVD)

The average vertex degree (AVD) [33] is calculated as the average of all incoming
and outgoing connections across all nodes of the DRD. This can be applied
directly to DRD graphs. The bigger the AVD, the more complex the model.
Applying this to the running example in Figure 1, we get the following result:

AVD = (1 + 3 + 1 + 5 + 2 + 6 + 2 + 2 + 2 + 3 + 2 + 1)/12 = 2.5
The average vertex degree heavily relies on the number of connections be-

tween DRD model elements. In other terms, the more the decision requirements
diagram resembles a strongly connected network, the more complex it is. Addi-
tionally, it might be interesting to look at the modular behaviour of the DRD
model trough fan-in and fan-out metrics that are heavily dependent on the av-
erage vertex degree.

3.8 Coefficient of Network Complexity (CNC)

The coefficient of network complexity (CNC) was proposed to measure the degree
of complexity of a critical pass network [34]. It was adapted by [23] to measure the
degree of complexity in processes by dividing the number of arcs by the number
of the activities, splits and joins in the BPMN diagrams. It is possible to have
identical values of the coefficient of network complexity for different models but
with different comprehensibility due to a different set of used node types. This
metric can be adopted for the DMN standard by focusing on the nodes and arcs
in the decision requirements diagram. Applying this to the running example in
Figure 1 gives the following result:

CNC = 15/12 = 1.25
Clearly, if an arc is added to the DRD graph, the CNC value will increase

because of the increasing effect on the numerator.

3.9 Knot Count (KC)

In decision models, some components, more specifically requirement associations,
may be forced to cross each other. This is captured in the knot count (KC) metric.
Each occurrence of a crossing is expressed as a knot and each knot occurrence in
a DRD means an increase in the complexity of understanding the model. Unlike
the metrics used by [18] which focused on counting the knots created by the
crossing of only arrows, counting all requirement relation crossings regardless of
their types is suggested for DMN adoption. The higher the knot count value, the
higher the complexity assumed. The running model in Figure 1 does not have
knot occurrences, and hence has a knot count value of 0.

As more arcs and nodes are introduced in the DRD model, the more difficult
it becomes to avoid crossing arcs, i.e. knots. This will thus likely result in a
higher knot count.
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3.10 Cyclomatic Complexity (CC)

In [23] the adaptation of McCabes cyclomatic complexity (CC) metric [35] for
process is proposed. According to [19], this is one of the most widely used com-
plexity metrics. The cyclomatic complexity formula for non-strongly connected
graphs, such as a DRD graph, is the number of edges (E) minus the number of
nodes (N) plus two times the number of connected components. Since a decision
requirements diagram is one connected component, the formula can be reduced
to the following calculation for the running example in Figure 1:

CC = E −N + 2 = 15 − 12 + 2 = 5

Thus, larger models, especially those that contain many arcs, are likely to
have a higher CC value.

Metric Value
Number of decisions (NOD) 4
Number of elements (NOE) 27
Number of basic elements (NOBE) 20
Total number of Data Objects (TNDO) 5
Sequentiality (SEQ) 0.6667
Longest Path (LP) 4
Average Vertrex Degree (AVD) 2.5
Coefficient of Network Complexity (CNC) 1.25
Knot Count (KC) 0
Cyclomatic Complexity (CC) 5

Table 1: DRD metrics as calculated for the running example in Figure 1.

4 Expected Evolution of the Metrics

In this section we concisely discuss the evolution of the metric values when a
certain element is added to the DRD model. We limit our discussion to adding
arc requirements and decision nodes to the DRD model respectively. When a
decision requirements diagram gets larger in terms of number of elements, most
metrics will indicate that the representational complexity of the decision model
has increased. Model size is what most of the proposed metrics rely on. NOD,
NOE, NOBE, and TNDO are simple count metrics that grow larger as relevant
elements are added to the model. The remaining metrics, i.e. SEQ, LP, AVD,
CNC, KC, and CC, are also indirectly dependent on the number of DRD ele-
ments. Here too, adding an element to the DRD model is likely to result in an
increase in complexity metric values. Note that all metrics have a lower value
when indicating simpler models and a higher value when indicating more com-
plex DRD models.

7



4.1 Requirement Arcs

The following metrics all rely on the number of arcs in the model, i.e. informa-
tion requirements, authority requirements, and knowledge requirements. When
a requirement is added to a DRD model:

• NOE increases since it is the summation of all elements.
• NOBE increases if that arc is an information requirement.
• LP is not affected or can increase, depending on whether the added arc

results in a longer or another longest path.
• AVD will definitely increase because the new connection will always posi-

tively impact exactly two model elements, which in turn increases the overall
average vertex degree.

• CNC will increase given the increasing effect on the numerator in the formula.
• KC can never decrease as the new arc can either cross existing arcs or not.
• CC will increase given the increasing effect on the first term in the formula.

4.2 Decision Nodes

The following metrics all rely on the number of decision nodes in the model.
When a decision node is added to a DRD model:

• NOD increases by definition.
• NOE increases since it is the summation of all elements.
• NOBE increases since a decision node is a basic element
• LP is either not affected or it is likely to increase, depending on whether the

added decision node results in a longer or another longest path.
• CC stays unchanged or decreases. While the formula suggests that CC would

increase, this is not the case in reality. When a decision node is added, at
least one edge is added as well to connect the node to the rest of the graph.

5 Empirical Evaluation

An exploratory survey was held during the master’s course of Knowledge Man-
agement and Business Intelligence at KU Leuven. Students were presented with
11 DRD models ranging from simple to complex in an arbitrary order. The
students were asked to indicate on a visual analogue scale how complex they
perceived each of the DRD models to be. In total 22 students with previous
knowledge about DMN took part in the survey.

To detect how well the proposed metrics describe the perceived complexity as
indicated by the survey, the metric values were compared to the survey results.
This was done by calculating the correlation and the sum of squared differences
(SSD) of the metric values for all the DRD models and the survey averages. In
order to calculate a valid sum of squared differences, the metric values were first
scaled to a range from zero to ten, i.e. reflecting the complexity range of the
visual analogue scale of the survey.
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Initial results are presented in Table 2. For all the 11 tested DRD models,
the metric value of all 10 proposed metrics are calculated and included in the
table. Higher (lower) values of the metrics represent a higher (lower) degree of
complexity. The final two rows of the table give the average degree of complexity
as indicated by the students in the survey on the visual analogue scale (on a scale
of 10) and the standard deviation of the complexity as indicated in the survey.
The final two columns in Table 2 depict the correlation and the sum of squared
differences (SSD) of the metric values and the survey results respectively.

By examining the sum of squared differences we can conclude that basic met-
rics such as Number of Elements (NOE), Number of Decisions (NOD), and Total
Number of Data Objects (TNDO) measure the perceived complexity quite well,
indicated by the low values in SSD. Additionally, the Cyclomatic Complexity
(CC) also showcases a low SSD, indicating that the popular CC metric might
be a good measure for DRD model complexity as well.

6 Future Work

In future work, we will expand the set of DRD metrics to include other metrics
from the software engineering and BPM fields. Additionally note that DMN
contains two levels: the DRD and the decision logic level, usually specified in the
form of decision tables. Thus, we plan to constitute a set of complexity metrics
for the decision tables by capitalising on complexity metrics of database tables.
Furthermore, we will look into combining DRD and decision table metrics into
aggregated and holisitc complexity metrics, thus denoting the complexity of the
entire DMN decision model.

Next to this theoretical metric discourse on DMN complexity, we will look
into additional empirical validation for the proposed metrics through additional
surveys. Finally, inquiries into the complexity of integrated process and decision
models will be conducted, by combining and integrating complexity metrics of
DMN decision models and BPMN process models.

7 Conclusion

This paper provides a first discussion on complexity metrics for individual DMN
decision models. Ten complexity metrics for decision requirement graphs were
proposed and illustrated on a running example. Furthermore, metric evolution
was discussed and an agenda for future inquiry into DMN decision model com-
plexity was suggested. The emphasis was put on expanding the body of metrics
to the decision logic level of DMN and later on combining the metrics of both the
logic level and the requirements level into aggregate metrics for the DMN model
as a whole. Finally, a survey was set up to empirically evaluate the proposed
complexity metrics and initial results revealed that the simple metrics were the
most suitable for capturing DRD complexity.
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5. De Smedt, J., Hasić, F., Vanthienen, J.: Towards a holistic discovery of decisions
in process-aware information systems. In: Business Process Management. Lecture
Notes in Business Information Processing, Springer (2017)
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29. Hasić, F., De Smedt, J., Vanthienen, J.: Towards assessing the theoretical com-
plexity of the decision model and notation (dmn). In: Enterprise, Business-Process
and Information Systems Modeling. Springer International Publishing (2017)

30. Rossi, M., Brinkkemper, S.: Complexity metrics for systems development methods
and techniques. Information Systems 21(2) (1996) 209–227

31. Dangarska, Z., Figl, K., Mendling, J.: An explorative analysis of the notational
characteristics of the decision model and notation (dmn). In: Enterprise Dis-
tributed Object Computing Workshop (EDOCW), 2016 IEEE 20th International,
IEEE (2016) 1–9

32. Kahn, A.B.: Topological sorting of large networks. Communications of the ACM
5(11) (1962) 558–562

33. Cardoso, J.: Business process quality metrics: Log-based complexity of workflow
patterns. In: OTM Confederated International Conferences” On the Move to Mean-
ingful Internet Systems”, Springer (2007) 427–434

34. Kaimann, R.A.: Coefficient of network complexity. Management Science 21(2)
(1974) 172–177

35. McCabe, T.J.: A complexity measure. IEEE Transactions on software Engineering
(4) (1976) 308–320

12



This is a pre-print of the paper accepted for presentation at the
6th Workshop on 

Declarative/Decision/Hybrid Mining and Modelling for Business Processes
(DeHMiMoP 2018)

to appear in the
BPM 2018 Workshop Proceedings

Eds. Florian Daniel, Hamid Motahari, Michael Sheng
published by Springer in the book series

Lecture Notes in Business Information Processing (LNBIP)


	Measuring the Complexity of DMN Decision Models

