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Abstract 
The publication of semantic web data, commonly represented in RDF, has experienced outstanding growth over the last 

few years. Data from all fields of knowledge are shared publicly and interconnected in active initiatives such as Linked 

Open Data. However, despite the increasing availability of applications managing large-scale RDF information such as 

RDF stores and reasoning tools, little attention has been given to the structural features emerging in real-world RDF data. 

Our work addresses this issue by proposing specific metrics to characterize RDF data. We specifically focus on revealing 

the redundancy of each dataset, as well as common structural patterns. We evaluate the proposed metrics on several 

datasets, which cover a wide range of designs and models. Our findings provide a basis for more efficient RDF data 

structures, indexes and compressors. 
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1. Introduction 

The Linked Data paradigm [1] converts raw data into first class citizens of the Web. It materializes the Semantic Web 

foundations and enables raw data from diverse fields to be interconnected within data-to-data cloud. The Resource 

Description Framework (RDF) [2] is the increasingly cornerstone of this semantic approach. RDF provides a graph-

based data model to structure and link data that describe things in the world. Its semantic model is extremely simple; a 

description of an entity (also called resource) is represented through triples in the form (subject, predicate, object). 

Thus, a dataset in RDF data can be seen as a graph of knowledge in which subject entities and object values are linked 

via labeled edges.  

The use of RDF to expose semantic data has seen a dramatic increase over the last years, making RDF data 

ubiquitous. As an example, LODStats
1
, a project constantly monitoring the Linked Open Data cloud

2
, reports (in May 

2016) 2,832 live datasets having 150 billion triples. Part of this success of RDF is due to the graph conception and its 

expressive, but flexible, power: conceived as a semi-structured, open-world philosophy, the labeled graph structure 

underlying to the RDF model enables to add new properties and entity descriptions on demand.  

Efficient RDF indexing [3,4], RDF compression [5,6] or distributed RDF management [7,8], to mention but a few, 

are novel areas emerging to cope with the scalability challenges of large-scale RDF processing. While general-purpose 

graph-based tools may be adequate for managing RDF, most approaches focus on providing native solutions tailored to 

RDF, hence they can take advantage of its particularities to boost performance.  
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In this scenario, there is a growing need for characterizing structural properties of real-world RDF data, which, 

however, is not completely covered in the state of the art. In this regard, initial works inspected the presence of power-

law distributions [9,10], or study network-based features, such as clustering coefficient and path lengths [11,12]. Few 

studies move away from this line of research and further inspect low-level RDF particularities. For instance, what is the 

frequency of multivalued pairs (e.g. subject, predicate)? How many subjects act also as objects in other relations? Do 

typed subjects (subject with a defined rdf:type) present different features? To the best of our knowledge, this fine-

grained analysis of individual RDF datasets has not been addressed systematically. 

In this paper we present a theoretical and empirical study on real-world RDF structure and properties, in order to 

determine common features and characterize real-world RDF data. Our purpose is not to serve as a one-size-fits-all set 

of metrics, but to complement state-of-the-art graph-based features and provide a handbook with simple but useful 

metrics when developing efficient RDF data structures, indexes and compression techniques. 

The rest of the paper is organized as follows. Section 2 presents the sparingly number of studies addressing real-

world RDF structural characterization. We present our metrics for RDF graphs in Section 3, providing theoretical 

foundation as well as practical motivation and application for each proposed metric. In Section 4 we provide a fine-

grained analysis our metrics on a real-world corpus of RDF datasets. Finally, we summarize and discuss the results in 

Section 5, pointing out applications and future work.   

2. Related Work 

The study of the RDF structure traditionally leads with two important and correlated aspects, part-whole and schema-

instance dualities. On the one hand, part-whole distinguishes between the study of the structure of a single RDF dataset 

and the consideration of the whole Linked Open Data as a network of networks [13]. On the other hand, schema-

instance considers that the semantics of RDF can be completed with (lightweight) ontologies defining a schema of the 

data (e.g. by means of the built-in vocabulary provided by RDFS [14] and OWL [15]), hence a structural 

characterization can whether study the ontology structure independently or to consider it implicitly in the data. In the 

next sections, we will propose and evaluate a set of metrics focused on a single RDF dataset at the instance level.  

Power Law Distributions/Scale-free Network. RDF data are not random graphs [16] where, at large scale, the 

probability that a vertex has certain degree k follows a Poisson distribution. One of the first conclusions of initial RDF 

studies was that RDF graphs, instead, follow power law distributions in most of their metrics [9]. A power law is a 

function with scale invariance (scale-free), which can be drawn as a line in the log-log scale with a slope equal to a 

scaling exponent. Empirical observations in real networks have found fat-tailed and scale-free structures in several real-

world graphs such as the WWW [17], scientific citation nets [18] and protein-protein interactions [19].  

In RDF graphs, Ding and Finin [9] crawled more than 300 million triples from 1.7 million documents finding power 

law distributions in metrics such as (i) the number of RDF documents per website, (ii) the number of triples per RDF 

document, and (iii) the use of instances of the defined classes and properties, reporting that 97% of classes and 70% of 

properties are defined but never used. They also showed that most resources are described with two to ten triples. 

Bachlechner and Strang [11] collected more than 1.6 million Fiend-Of-a-Friend (FOAF
3
) documents, reaching 

similar conclusions for the in- and out-degree distributions (number of triples related to a subject, and the number of 

triples related to an object, respectively) in each community, as well as the entire network. They reported an average 

degree of 9.56, whereas the maximum was 7,739, reflecting its skewed distribution. 

Ge et al [12] define the notion of Object Link Graph, considering an undirected graph of related resources. An 

empirical study on 110.5M Web crawled resources as well as individual datasets (such as DBpedia
4
 and BIO2RDF

5
) 

revealed that the Object Link Graph also holds a power law distribution.  

Focused on the schema level, Theoharis et al [10] studied 250 Semantic Web schemas (RDFS and OWL), finding 

power law distributions in 58.6% of the schemas, in total-degrees (sum of in- and out- degree), out- and in-degrees. 

Zhang [20], on two biomedical ontologies, and Hu et al [21], on 4,433 ontologies, also confirm this distribution. 

Small-world Phenomenon. A graph is actually a small world when it has short global separations, i.e., the average 

minimum distance between nodes is limited [22]. It is also associated with high local clustering (bigger than a random 

graph). The small-world phenomenon has been popularly accepted within the networks of friends, stating that two 

random citizens are connected by only six degrees (intermediate nodes) of difference [23]. In practice, small-world 

networks have several important characteristics, such as large presence of cliques (subgraphs in which all the possible 

connections are present) and hubs (intermediate nodes with many associations, i.e., high degree). These latter are used to 

navigate through the network in few steps, and are good candidates for feeding them as seeds in the search engine [12]. 
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The consideration of the Semantic Web as a small world is mostly accepted. Bachlechner and Strang [11] evaluated 

FOAF communities, finding high clustering coefficients in all subgraphs. Gil and García [24] computed the 1-

neighborhood clustering coefficient for a directed graph at the schema level, obtaining a slightly smaller clustering 

coefficient than the WWW factor of 0.108, as studied by Adamic [25]. Regarding the path lengths, Guns [26], with a 

small corpus of instances, established the longest shortest path (diameter) in 11 steps whereas the average was only 

4.12. Note that the directed diameter of the Web is at least 28 (for the connected component [27]). Ge et al [12], with a 

bigger corpus, found an effective length of 11.53, almost the double than the 6.83 for the traditional WWW [27] when 

the direction of links is considered. In contrast, Gil and García [24] and Cheng and Qu [28], both at the schema level, 

found average path length of 5.07 and 10.05 respectively, denoting a high influence on the particular ontology design.  

Other Studies. The presented studies mainly focus on analysing network-based metrics in RDF graphs. However, 

little attention has been given to low-level particularities of RDF, such as the repetitions of particular terms as well as 

pairs of elements (subject-predicate, subject-object, predicate-object) or the presence of frequent patterns when 

describing a subject.  In this regard, cardinalities for (subject,predicate) and (predicate,object) pairs have been defined 

[29,30] with the aim of characterizing the data for particular purposes such as improving RDF compression techniques 

[6] or measuring the interlinkage and publication quality of RDF online [31]. Similar efforts are conducted by LOUPE 

[32], a tool to inspect online RDF datasets and show their main characteristics (e.g. types, structures, vocabularies, etc.). 

Our work aims at fulfilling this gap, extending these metrics to serve as a catalogue of low-level metrics tailored for 

RDF graphs. 

3. Proposed Metrics for RDF Graphs 

In the following, we provide specific metrics to characterize RDF data. We follow the standard RDF formalization 

[33,34]. Assume infinite, mutually disjoint sets U (RDF URI references), B (Blank nodes), and L (RDF literals). 

Definition 1 (RDF triple). A tuple (𝑠, 𝑝, 𝑜) ∈ (𝑈 ∪ 𝐵) × 𝑈 × (𝑈 ∪ 𝐵 ∪ 𝐿) is called an RDF triple, in which s is the 

subject, p the predicate and o the object. 

Definition 2 (RDF graph). An RDF graph G is a set of RDF triples. Then, (𝑠, 𝑝, 𝑜) can be represented as a direct 

edge-labeled graph 𝑠
𝑝
→ 𝑜. 

For our purposes, we make no distinction between URIs, Blank nodes and Literals. We also note that the RDF 

interpretation as a graph can be misleading. As shown in Definition 1 and 2, an RDF dataset can be represented as an 

edge-labeled graph. This conception is useful for some purposes such as modelling or visualization. However, it cannot 

be considered as a labeled graph in the standard sense because the predicates can again appear as nodes of other edges 

[35], in order to define a schema over the data. Thus, the well-established methods from graph theory need to be slightly 

adapted to consider the seamless schema-instance integration provided in RDF.  

3.1. Subject and Object Degrees 

As stated, previous studies focused on showing the presence of power-law distributions on subject and object in- and 

out-degrees [9,11]. Although this is a useful indicator that some level of compression can be achieved [36], additional 

low-level details are needed to design more efficient RDF-based data structures (e.g. RDF compressors and indexes). To 

do so, we propose simple metrics on the characterization of such degrees. For the sake of clarity, we first summarize the 

purpose of each category prior to the formal definition: 

out- and in- degrees: to known the cardinality of subjects and objects. A subject with a high out-degree is a so-called 

“star” (a resource described in depth). An object with a high in-degree tends to be a repeated final value or a 

hub to further information.  

partial out- and in- degrees: to describe the presence and cardinality of the multivalued pairs (subject,predicate) 

and (object,predicate). That is to say, they quantify the number of objects related to the same 

(subject,predicate) and the number of subjects for a given (object,predicate). 

labeled out- and in- degrees: to know the number of different predicates related to subjects and objects. It shows if 

subjects are described with many predicates and, respectively, if object values are used with many predicates.  
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direct out- and in- degrees: to count direct relationships between subjects and objects, thus minimizing the effect of 

the labelling. They consider to disregard labels and to count the number of objects related to a subject and, 

respectively, the corresponding number of subjects for each object. 

Let G be an RDF graph, and SG, PG, OG be the sets of subjects, predicates and objects in G. Assume generic s  SG, p 

 PG and o  OG. Let us also denote ZG and XG the set of valid pairs (subject,predicate) and (object,predicate) 

respectively. That is, ZG = {(s,p)  z: (s,p,z)  G}, and XG = {(o,p)   x: (x,p,o)  G }. 

Definition 3 (out-degree). The out-degree of s, denoted 𝑑𝑒𝑔−(𝑠), is the number of triples in G in which s occurs as 

subject. Equation 1 provides its formal definition.  

 𝑑𝑒𝑔−(𝑠) = |{(𝑠, 𝑦, 𝑧)|(𝑠, 𝑦, 𝑧) ∈ 𝐺}|  (1) 

In turn, we define the maximum and mean out-degrees of G, 𝑑𝑒𝑔−(𝐺) and 𝑑𝑒𝑔−̅̅ ̅̅ ̅̅ ̅(𝐺) respectively, as the maximum 

and mean out-degrees of all subjects (SG). 

Definition 4 (partial out-degree) The partial out-degree of s with respect to p, denoted 𝑑𝑒𝑔−−(𝑠, 𝑝), is defined as 

the number of triples of G in which s occurs as subject and p as predicate. Its formal definition is provided in 

Equation 2.  

 𝑑𝑒𝑔−−(𝑠, 𝑝) = |{(𝑠, 𝑝, 𝑧)|(𝑠, 𝑝, 𝑧) ∈ 𝐺}| (2) 

While, we also define the maximum and the mean partial out-degree of G, 𝑑𝑒𝑔−−(𝐺) and 𝑑𝑒𝑔−−̅̅ ̅̅ ̅̅ ̅̅ ̅(𝐺) respectively, 

as the maximum (resp. the mean) partial out-degrees of all pairs of subject-predicates (𝑍𝐺). 

Definition 5 (labeled out-degree) The labeled out-degree of s, 𝑑𝑒𝑔𝐿
−(𝑠), is defined as the number of different 

predicates (labels) of G with which s is related as a subject in a triple of G. Equation 3 provides its formal 

definition.  

 𝑑𝑒𝑔𝐿
−(𝑠) = |{𝑝|∃𝑧 ∈ 𝑂𝐺 , (𝑠, 𝑝, 𝑧) ∈ 𝐺}| (3) 

In turn, we define the maximum and mean labeled out-degree, 𝑑𝑒𝑔𝐿
−(𝐺)  and 𝑑𝑒𝑔𝐿

−̅̅ ̅̅ ̅̅ ̅(𝐺)  respectively, as the 

maximum (resp. the mean) labeled out-degrees of all subjects (SG).  

Definition 6 (direct out-degree) The direct out-degree of s, denoted 𝑑𝑒𝑔𝐷
−(𝑠), is defined as the number of different 

objects of G with which s is related as a subject in a triple of graph G. Its formal definition is provided in 

Equation 4.  

 𝑑𝑒𝑔𝐷
−(𝑠) = |{𝑜|∃𝑦 ∈ 𝑃𝐺 , (𝑠, 𝑦, 𝑜) ∈ 𝐺}| (4) 

We also define the maximum and mean direct out-degrees, 𝑑𝑒𝑔𝐷
−(𝐺) and 𝑑𝑒𝑔𝐷

−̅̅ ̅̅ ̅̅ ̅(𝐺) respectively, as the maximum 

(resp. the mean) direct out-degrees of all subjects of G. It is worth noting that, given the definition, the direct out-degree 

of a subject s can only differ from its out-degree when s is related to, at least, an object o by means of two or more 

different predicates. In other words, if every (subject,object) pair is only related with one predicate, then out-degrees are 

equal to direct out-degrees.  

 

Symmetrically, we define the in-degrees for objects in a formal way (for the sake of simplicity, we omit the 

maximum and mean in-degrees, which can be defined similarly to the in-degrees). 

Definition 7 (in-degree) The in-degree of o, denoted 𝑑𝑒𝑔+(𝑜), is the number of triples in G in which o occurs as 

object.  

 𝑑𝑒𝑔+(𝑜) = |{(𝑥, 𝑦, 𝑜)|(𝑥, 𝑦, 𝑜) ∈ 𝐺}| (5) 
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Definition 8 (partial in-degree) The partial in-degree of o with respect to p, denoted 𝑑𝑒𝑔++(𝑜, 𝑝), is defined as the 

number of triples of G in which o occurs as object and p as a predicate.  

 𝑑𝑒𝑔++(𝑜, 𝑝) = |{(𝑥, 𝑝, 𝑜)|(𝑥, 𝑝, 𝑜) ∈ 𝐺}| (6) 

Definition 9 (labeled in-degree) The labeled in-degree of o, denoted 𝑑𝑒𝑔𝐿
+(𝑜), is defined as the number of different 

predicates (labels) of G with which o is related as object in a triple of G.  

 𝑑𝑒𝑔𝐿
+(𝑜) = |{𝑝|∃𝑥 ∈ 𝑆𝐺 , (𝑥, 𝑝, 𝑜) ∈ 𝐺}| (7) 

Definition 10 (direct in-degree) The direct in-degree of o, denoted 𝑑𝑒𝑔𝐷
+(𝑜), is defined as the number of different 

subjects of G with which o is related as an object in a triple of graph G.  

 𝑑𝑒𝑔𝐷
+(𝑜) = |{𝑠|∃𝑦 ∈ 𝑃𝐺 , (𝑠, 𝑦, 𝑜) ∈ 𝐺}| (8) 

Note that the cardinality, average cardinality, inverse cardinality and average inverse cardinality metrics by Hogan 

et al [29] are equivalent to partial out-degree, average partial out-degree, partial in-degree and average partial in-degree. 

3.1.1. Example and potential uses 

We illustrate these properties in a small example graph presented in Figure 1. The graph models a resource John, who is 

an instance of the class Researcher and has two mail boxes. We also represent his birth place, named “Roma” in Italian, 

and two resources, Giacomo and Piero, whose area of work is also Roma.   

 

Figure 1. Running example: A basic RDF graph. 

Table 1 reports the metrics for this example. In the example, the node http://example.org/John has a significant out-

degree (it is related to four nodes, above average) and hence it conforms a star-shaped node. When designing an RDF 

data structure, e.g. an index, it is potentially interesting to know the presence or absence of these nodes, but also the 

distribution of these high out-degrees. For instance, if a real-world RDF graph has a maximum out-degree close to 1, it 

stands for a very simple graph whose access may be optimized. In contrast, a skewed distribution of out-degrees could 

require a more refined structure than the previous case. Thus, out-degree distribution together with maximum and mean 

values constitutes a fair characterization of these nodes in a given graph. Similar reasoning can be made for object in-

degree, where the node is not a source, but is a common destination object node.   

<http://example.org/John> <http://example.org/Rome>
ex:birthPlace

“john@doe.org”

“Roma”@it

foaf:name

<http://example.org/Researcher>

rdf:type

foaf:mbox

<http://example.org/Giacomo>

ex:areaOfWork

<http://example.org/Piero>

ex:ex:areaOfWork
“john@example.org”

foaf:mbox
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Table 1. Summary of structural metrics describing the running example. 

Metric Value Metric Value 

SUBJECT 

OUT-

DEGREE 

Max 

total 𝑑𝑒𝑔−(𝐺) 4.00 

OBJECT 

IN-

DEGREE 

Max 

total 𝑑𝑒𝑔+(𝐺) 3.00 

partial 𝑑𝑒𝑔−−(𝐺) 2.00 partial 𝑑𝑒𝑔++(𝐺) 2.00 

labeled 𝑑𝑒𝑔𝐿
−(𝐺) 3.00 labeled 𝑑𝑒𝑔𝐿

+(𝐺) 2.00 

direct 𝑑𝑒𝑔𝐷
−(𝐺) 4.00 direct 𝑑𝑒𝑔𝐷

+(𝐺) 3.00 

Mean 

total 𝑑𝑒𝑔−̅̅ ̅̅ ̅̅ ̅(𝐺) 1.75 

Mean 

total 𝑑𝑒𝑔+̅̅ ̅̅ ̅̅ ̅(𝐺) 1.40 

partial 𝑑𝑒𝑔−−̅̅ ̅̅ ̅̅ ̅̅ ̅(𝐺) 1.17 partial 𝑑𝑒𝑔++̅̅ ̅̅ ̅̅ ̅̅ ̅(𝐺) 1.17 

labeled 𝑑𝑒𝑔𝐿
−̅̅ ̅̅ ̅̅ ̅(𝐺) 1.50 labeled 𝑑𝑒𝑔𝐿

+̅̅ ̅̅ ̅̅ ̅(𝐺) 1.20 

direct 𝑑𝑒𝑔𝐷
−̅̅ ̅̅ ̅̅ ̅(𝐺) 1.75 direct 𝑑𝑒𝑔𝐷

+̅̅ ̅̅ ̅̅ ̅(𝐺) 1.40 

PREDICATE 

DEGREE 

Max 

total 𝑑𝑒𝑔𝑃 (𝐺) 2.00 

RATIOS 

∝𝑠−𝑜 (𝐺) 0.13 
out 𝑑𝑒𝑔𝑃

−(𝐺) 2.00 

In 𝑑𝑒𝑔𝑃
+(𝐺) 2.00 

∝𝑠−𝑝 (𝐺) 0.00 

Mean 

total 𝑑𝑒𝑔𝑃
̅̅ ̅̅ ̅̅ ̅(𝐺) 1.40 

out 𝑑𝑒𝑔𝑃
−̅̅ ̅̅ ̅̅ ̅(𝐺) 1.20 

∝𝑝−𝑜 (𝐺) 0.00 
In 𝑑𝑒𝑔𝑃

+̅̅ ̅̅ ̅̅ ̅(𝐺) 1.20 

 

Regarding partial and labeled out- and in- degrees, they provide information on the different types of edges coming 

out from (or going into) a node. Partial degree provides a metric of the multi evaluation of pairs (subject-predicate or 

predicate-object), while labeled degree refines the nodes categorization. In the example, http://example.org/Rome is a 

common object as three subjects are related to it, hence its in-degree is three. However, the labeled in-degree is “two” as 

it receives edges from two labels ex:birthPlace and ex:areaOfWork. Subsequently, its partial in-degree is two, denoting 

that the pair (http://example.org/Rome, ex:areaOfWork) is multivalued. 

As we shown in the forthcoming evaluation, labeled out-degree verifies that few predicates are related to the same 

subject or object. This could allow RDF structures for optimizing the representation of the list of predicates related to a 

given subject or object. 

Finally, direct out- and in-degrees complete the degree metrics for subject and objects. They indicate the cardinality 

of binary relations between subjects and objects disregarding the labels. In the example, direct degrees throw similar 

results as the out- and in-degrees, as every (subject,object) pair is related only with one predicate. Direct degrees are 

useful when representing RDF as a classical adjacency matrix, e.g. representing subjects in rows and objects in columns. 

In such scenario, direct out-degrees model the cardinality of rows, whereas direct in-degrees describe the cardinality in 

columns. 

3.2. Predicate Degrees 

Despite the fact that important RDF characteristics can be extracted from the previous metrics (or a combination of 

them), one could argue that some RDF indexing techniques need further details. For instance, the family of indexing 

techniques following vertical partitioning [37] builds indexes per predicate. Typically, these techniques index all the 

(subject,object) pairs for each predicate. In such scenario, the number of (subject,object) pairs for each predicate would 

be a good indicator of the size and distribution of these predicate partitions. 

With this objective in mind, we detail predicate degrees following the same preceding principles of simplicity and use in 

other scenarios. The purpose of the metrics is summarized as follows: 

 Predicate degrees: to know the cardinality of predicates. In contrast to the relational model in which every 

row of a table is described with the same number of attributes (columns), the flexibility of RDF yields to a 

potentially high variability in the number of predicates describing each subject. Thus, this metric is an 

important clue to find the most used predicates in a given RDF dataset. 

 Predicate in- degrees: to describe the number of subjects related to given predicates. It serves to refine 

knowledge about the distribution of subjects per predicate. 

 Predicate out- degrees: to know the number of different objects related to given predicates, also used to 

describe the predicate degree in detail. 
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We make use of the aforementioned notation, being G an RDF graph, with SG, PG, OG the sets of subjects, predicates 

and objects in G and generic s ∈  SG, p ∈  PG and o ∈  OG. 

Definition 11 (predicate degree) The predicate degree of p, denoted 𝑑𝑒𝑔𝑃(𝑝), is defined as the number of triples of 

graph G in which p occurs as predicate.  

 𝑑𝑒𝑔𝑃(𝑝) = |{(𝑥, 𝑝, 𝑧)|(𝑥, 𝑝, 𝑧) ∈ 𝐺}| (9) 

Definition 12 (predicate in-degree) The predicate in-degree of p, denoted  𝑑𝑒𝑔𝑃
+(𝑝), is defined as the number of 

different subjects of G with which p is related as a predicate in a triple of G.  

 𝑑𝑒𝑔𝑃
+(𝑝) = |{𝑠|∃𝑧 ∈ 𝑂𝐺 , (𝑠, 𝑝, 𝑧) ∈ 𝐺}| (10) 

Definition 13 (predicate out-degree) The predicate out-degree of p, denoted 𝑑𝑒𝑔𝑃
−(𝑝), is defined as the number of 

different objects of G with which p is related as a predicate in a triple of G.  

 𝑑𝑒𝑔𝑃
−(𝑝) = |{𝑜|∃𝑥 ∈ 𝑆𝐺 , (𝑥, 𝑝, 𝑜) ∈ 𝐺}| (11) 

Analogously, the maximum and mean predicate degree, in-degree and out-degree are defined as the maximum 

and mean predicate corresponding degrees of all predicates in G. 

3.2.1. Explanation and potential uses. 

As stated, the predicate degree constitutes an essential metric when a (subject,object) or (object,subject) is built for each 

predicate, such as the vertical partitioning technique [37].  

The predicate degree reflects the number of entries for a predicate partitioning. In turn, the predicate in-degree and 

out-degree refine this metric by providing the domain and range sizes for each predicate. For instance, predicates such 

as rdf:type have a limited range (low predicate out-degree) but a great domain (high predicate in-degree). In turn, if a 

predicate returns a high degree (it appears in many triples) but a low out-degree, it reveals that few values are repeated 

along descriptions. For instance, this is the case of discrete values for predicates such as “City_State” or “Postal_code” 

in which a dozen of similar values could be repeated in thousands or millions of records. 

Figure 1 illustrates these metrics. Despite the limited size of the example, it shows the variable figures of predicate 

degrees. For instance, foaf:name is present only once whereas foaf:mbox and ex:areaOfWork are twice. In this latter, its 

predicate in-degree is two (denoting two different subjects) yet the out-degree is only one (two subjects point to the 

same object). This shows that predicate in- and out- degree could roughly classify predicate usage as follows: 

 N:N predicates, having a similar in- and out-degree, i.e., deg𝑃
+(p) ≅ deg𝑃

−(p). Note that a special case would 

be 1:1 predicates, i.e. predicates appearing only in one triple, but this is a marginal case at large scale. In 

general, it is accepted that the number of predicates is much smaller than the number of subjects and objects 

[38]. 

 1:N predicates, having a significant smaller in-degree than their out-degree, deg𝑃
+(p) ≪ deg𝑃

−(p). 

 N:1 predicates, having a significant greater in-degree than their out-degree, deg𝑃
+(p) ≫ deg𝑃

−(p). 

Although the formal demonstration of this classification goes beyond the purpose of this paper, one could envision 

that this is a general scenario in real-world datasets. For instance, predicates describing unique IDs, such as “Passport” 

or “Protein_ID”, belong to 1:1 predicates. In turn, the mentioned “City_State” or “Postal_code” fall into N:1 predicates. 

Finally, other predicates, such as “foaf:mbox” in the example, can belong to 1:N predicates.  

3.3. Common Ratios 

The presence of star nodes is popularly accepted as a natural consequence when describing a resource in depth. A 

second popular “construction” is the presence of chains, i.e., paths of linked nodes. This construction occurs, for 

instance, whenever we use owl:sameAs to interlink two described entities. As some of these nodes in the chain is also a 

star, one could talk of “star chained design” for RDF datasets. 

Intermediate nodes in chains appear in two triples acting with different roles. For instance, let us suppose a design 

such as 𝐴
𝑝1
→ 𝐵 and 𝐵

𝑝2
→ 𝐶. As shown, B is present in two triples, being an object in the first one, and subject in the latter.  

Additionally, we should also consider that predicates can again appear as nodes of other edges, acting also as 
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intermediate nodes. In general terms, considering the three different roles in triples (subjects, predicates and objects), 

there could exist elements which are present in a graph acting with more than one role. 

We use three metrics to characterize the proportion of common elements with respect to the total elements. In short: 

 Subject-object ratio: to describe the number of elements acting both as subject and objects among all subjects 

and objects. In other words, the subject-object ratio denotes the percentage of nodes having incoming and 

outgoing edges. They are, in fact, the main players when navigating the graph. 

 Subject-predicate ratio: to describe the number of elements acting both as subject and predicates among all 

subjects and predicates. This points that semantics is given to predicates, e.g. using rdfs:domain or rdfs:range. 

 Predicate-object ratio: to describe the number of elements acting both as predicates and objects among all 

predicates and objects. It refines the previous metrics, e.g. when using rdfs:subPropertyOf. 

Formally described, let us retake again G as an RDF graph, with SG, PG, OG the sets of subjects. 

Definition 14 (subject-object ratio s-o) The subject-object ratio s-o(G) of a graph G is defined as the ratio of 

common subjects and objects in the graph G.  

 ∝𝑠−𝑜 (𝐺) =
|𝑆𝐺∩𝑂𝐺|

|𝑆𝐺∪𝑂𝐺|
 (12) 

Definition 15 (subject-predicate ratio s-p) The subject-predicate ratio s-p(G) of a graph G is defined as the ratio of 

common subjects and predicates in the graph G.  

  ∝𝑠−𝑝 (𝐺) =
|𝑆𝐺∩𝑃𝐺|

|𝑆𝐺∪𝑃𝐺|
 (13) 

Definition 16 (predicate-object ratio p-o) The predicate-object ratio p-o(G) of a graph G is defined as the ratio of 

common predicates and objects in the graph G. 

  ∝𝑝−𝑜 (𝐺) =
|𝑃𝐺∩𝑂𝐺|

|𝑃𝐺∪𝑂𝐺|
 (14) 

3.3.1. Explanation and potential uses. 

Ratios give evidence of chain constructions. Figure 1 illustrates that there are no common subject-predicates and 

predicates-objects. In contrast, in the previous example, the subject-object ratio reveals that 13% of the subjects and 

objects are common elements which take part in a subject-object path. 

Subject-object is, in fact, the most common construction as it is a natural way of linking the description of two 

resources. Thus, this ratio provides a good measure of potential paths and the level of “navigability”. 

In turn subject-predicate and predicate-object ratios, when present, show how far predicates are also used as subjects 

or objects. These two ratios can be used to justify the consideration (or not) of a given RDF dataset as a graph. If there is 

a null influence of these types of shared nodes, one could assume that little semantics has been added. 

3.4. Subject-Object Degrees. 

Given the importance of subject-object nodes, a fine-grained analysis can be made. In particular, one could study the in- 

and out-degrees restricted to subject-object nodes. We define these degrees implicitly, as their formalization is 

equivalent to the degrees presented in Section 3.1, but restricted to subject-object nodes. For instance, the maximum 

out-degree of the graph G restricted to subject-objects, which is denoted as 𝑑𝑒𝑔−(𝐺)|𝑠−𝑜  is the maximum out-degree of 

all subject-object nodes in the graph G. Its formal definition is provided in Equation 15, while Equation 16 defines the 

mean out-degree of the graph G restricted to subject-objects. 

 𝑑𝑒𝑔−(𝐺)|𝑠−𝑜 =  𝑚𝑎𝑥𝑠∈𝑆𝐺∩𝑂𝐺
(𝑑𝑒𝑔−(𝑠)) (15) 

 𝑑𝑒𝑔−̅̅ ̅̅ ̅̅ ̅(𝐺)|𝑠−𝑜 =  
1

|𝑆𝐺∩𝑂𝐺|
∑ (𝑑𝑒𝑔−(𝑠))𝑠∈𝑆𝐺∩𝑂𝐺

 (16) 
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3.4.1. Explanation and potential uses. 

These metrics serve the same purposes as the original ones in Section 3.1, but restricted to subject-object nodes. This 

enables to provide a more detailed vision of what is going on in these important, intermediate nodes. 

This characterization might result especially useful when common subject-objects connect two different graphs. In 

this case, one could grasp the features of these “connecting nodes” with these metrics, gaining insights to improve 

navigability. For instance, additional structures and indexes can be built for query suggestion or visualization purposes.  

3.5. Predicate Lists. 

The list of predicates related to a subject may vary greatly for each subject. However, there would exist repetitions 

whenever two subjects are described in the same way. For instance, the list of predicates used to describe a song varies 

enormously from those used to categorize a protein, and both can coexist in a cross-domain dataset. We define metrics 

to characterize these lists. In short: 

 Number and ratio of predicate lists: it counts the different lists, and the ratio of lists from the total lists. 

 Degree of predicate lists: it characterizes the number of repetitions of each list. 

 Lists per predicate: it counts the number of different lists including each predicate.  

Formally described, let Ls be the set of predicates (labels) related to the subject s. That is, the set of predicates Ls = 

{p | ∃z ∈ OG, (s, p, z) ∈ G}. We denote as LG to the set of different predicate lists in G. That is, LG = {Lx, x ∈ SG}, 

hence the number of different lists in the graph G is |LG|. Note that the total predicate lists (with repetitions) is equal to 

the number of different subjects SG. 

Definition 17 (Ratio of repeated predicate lists) The ratio of repeated predicate lists 𝑟𝐿(𝐺) of a graph G is defined 

as the ratio of repeated predicate lists from the total lists in the graph G.  

 𝑟𝐿(𝐺) = 1 −
𝐿𝐺

𝑆𝐺
  (17) 

Definition 18 (predicate list degree) The predicate list degree of a predicate list Ls, denoted 𝑑𝑒𝑔𝑃𝐿(𝐿𝑆), is defined 

as the number of different subjects in G whose list of predicates is exactly Ls. Equation 18 provides its formal 

definition. In turn, Equations 19 and 20 defines the maximum predicate list degree,  and resp. the mean 

predicate list degree of the graph G, as the maximum and mean out-degrees of all predicate lists in G. 

 𝑑𝑒𝑔𝑃𝐿(𝐿𝑆) = |{𝐿𝑥| 𝑥 ∈ 𝑆𝐺 , 𝐿𝑥 = 𝐿𝑠}| (18) 

  𝑑𝑒𝑔𝑃𝐿(𝐺) = 𝑚𝑎𝑥𝐿𝑥∈𝐿𝐺
 (𝑑𝑒𝑔𝑃𝐿(𝐿𝑥)) (19) 

  𝑑𝑒𝑔𝑃𝐿
̅̅ ̅̅ ̅̅ ̅̅ ̅(𝐺) =

1

|𝐿𝐺|
∑ 𝑑𝑒𝑔𝑃𝐿(𝐿𝑥)𝐿𝑥∈𝐿𝐺

 (20) 

Definition 19 (lists per predicate degree) The lists per predicate degree of a predicate p,  𝑑𝑒𝑔𝐿𝑃𝑃(𝑝), is defined as 

the number of different predicate lists in LG in which the predicate appears.  

 𝑑𝑒𝑔𝐿𝑃𝑃(𝐿𝑆) = |{𝐿𝑥| 𝑝 ∈ 𝑆𝐺 , 𝐿𝑥 = 𝐿𝐺}| (21) 

The maximum and resp. the mean lists per predicate degree of the graph can be defined as the maximum and mean 

out-degrees of all predicates in G.  

3.5.1. Explanation and potential uses.  

The metrics for the predicate lists characterize the repetition of predicate structures. On the one hand, if a short set of 

lists is present (highly structured data), one could perfectly categorize and manage a reduce set of combinations. On the 

other hand, “random” lists denote the presence of a cross-domain datasets or a light schema, as few repetitions are 

present. 

The example in Figure 1 presents four predicate lists (one per subject): [rdf:type, ex:birthPlace, foaf:mbox], 

[foaf:name], and [ex:areaOfWork], repeated twice. This repetition denotes a common pattern in the data (despite the 
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reduced size of the example). In fact, the ratio of repeated predicate lists is rL(G) = 1 – 3/4 = 0.25. This means that 25% 

of the predicate lists are repetitions. Note also that each predicate is present in only one list. In other words, in this 

particular case, predicates are unequivocally included in one list. 

Predicate lists characterization would serve several purposes. For instance, for large-scale visualization, 

Khatchadourian and Consens [39] group common predicate structures to summarize the links between Linked Open 

datasets, hence these metrics may contribute by categorizing the type of repetitions. In turn, several RDF indexing 

approaches consider the commonalities in the predicate structures. Campinas et al [40] make a structural summary 

grouping the entities having the same set of predicates in order to suggest potential predicates and relationships when 

writing a query. Tran et al [41] propose a structure index for RDF, grouping similar structured data elements. 

Hernández-Illera et al [42] follow a similar approach as a preprocessing step to compress RDF data. In these cases, the 

proposed metrics may help in determining structural properties of the indexes. 

3.6. Typed Subjects and Classes 

RDF resources can be associated to types by means of the rdf:type predicate. The values for this predicate are then 

Classes, which can be described in detail by means of RDFS [14]. For instance, in the example in Figure 1, John is of 

type Researcher. One should expect that, as previously mentioned, entities of the same class would be described with 

similar predicates.  We define metrics to characterize these commonalities. In short: 

 Number of classes: it counts the number of different classes. 

 Number and ratio of typed subject: it counts the number of typed subjects (those including at least one type) 

and the ratio over the total subjects. 

 Lists per class: it counts the number of different predicate lists included in each class.  

 Out-degrees of typed subject: it characterizes the out-degrees of typed subjects. 

 Degree of predicate lists for typed subjects: it characterizes the number of repetitions of those predicate list 

including at least one rdf:type. 

Formally, let CG be the set of all classes in the graph G, and c a generic class, 𝑐 ∈ 𝐶𝐺. The number of all different 

classes is then |𝐶𝐺|. Let S
c
 be the set of subjects of type c, 𝑆𝐶 = {𝑠|(𝑠, 𝑡, 𝑐) ∈ 𝐺}, being t the predicate rdf:type. The set   

𝑆𝐺
𝐶 denotes all different typed subjects in the graph G, that is 𝑆𝐺

𝐶 = {𝑠|∃𝑐 ∈ 𝐶𝐺 , (𝑠, 𝑡, 𝑐) ∈ 𝐺}, with predicate t= rdf:type. 

The number of different typed subjects in the graph is then |𝑆𝐺
𝐶|. 

Definition 20 (Ratio of typed subjects). The ratio of typed subjects 𝑟𝑇(𝐺) of a graph G is defined as the ratio of 

different typed subjects from the total subjects of G.  

 𝑟𝑇(𝐺) =
|𝑆𝐺

𝐶|

|𝑆𝐺|
 (22) 

Let 𝐿𝐺
𝐶  be the set of different predicate lists for typed subjects. That is, formally described, 𝐿𝐺

𝐶 = {𝐿𝑥 , 𝑥 ∈ 𝑆𝐺
𝐶}. 

Definition 21 (lists per class degree). The lists per class degree} of a class c, 𝑑𝑒𝑔𝐿𝑃𝐶(𝑐), is defined as the number of 

different predicate lists in LG in which the class c appears as a value for a typed subject.  

 𝑑𝑒𝑔𝐿𝑃𝐶(𝑐) = |{𝐿𝑥|𝐿𝑥 ∈ 𝐿𝐺
𝐶 , 𝑥 ∈ 𝑆𝐶}| (23) 

The maximum and resp. the mean lists per class degree of the graph can be defined as the maximum and mean out-

degrees of all classes in G.  

We define the typed subject out-degrees and the degree of predicate lists for typed subjects implicitly, as their 

formalization is straightforward. In the first case, the typed subject out-degrees are equivalent to those studied in Section 

3.1. but restricted to typed subjects. For instance, the maximum out-degree of the graph G restricted to typed subjects, 

which is denoted as 𝑑𝑒𝑔−(𝐺)|
𝑆𝐺

𝐶  is the maximum out-degree of all typed subjects in the graph G. Its formal definition is 

provided in Equation 24, while Equation 25 defines the mean out-degree of the graph G restricted to typed subjects. 

 𝑑𝑒𝑔−(𝐺)|𝑆𝐺
𝐶 = 𝑚𝑎𝑥

𝑠∈𝑆𝐺
𝐶(𝑑𝑒𝑔−(𝑠)) (24) 
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 𝑑𝑒𝑔−̅̅ ̅̅ ̅̅ ̅(𝐺)|𝑆𝐺
𝐶 =

1

|𝑆𝐺
𝐶|

∑ 𝑑𝑒𝑔−(𝑠)𝑠∈𝑆𝐺
𝐶  (25) 

3.6.1. Explanation and potential uses. 

The characterization of different classes and typed subjects, as well as their degrees, is an important step in describing a 

common schema, if present. As we have motivated, one should expect that subjects typed equally would be described 

with similar predicates. These metrics provide an answer to this assumption, and give insights of other schema features. 

For instance, the ratio of typed subjects constitutes a ratio of the level of well-categorized information. They also help 

determine if typed subjects are (or not) further described than non-typed ones.  

In our example in Figure 1 only one class (Researcher) and one typed subject (John) are present. As there are four 

different subjects, the ratio of typed subjects is 0.25. In this simple example, there is only one predicate list per class, 

[rdf:type, ex:birthPlace, foaf:mbox]. As for the previous predicate list metrics, this characterization may serve diverse 

purposes, e.g. visualization [40] and structural indexing [41,42], but also reasoning. For this latter, we characterize not 

only the presence of instances for the classes, but the different predicate lists, which may be useful to create a reduced 

index with all the possible variants.  

4. Experimental Evaluation 

We perform an evaluation to illustrate the proposed metrics on real-world RDF datasets. Thus, we first establish an 

experimental framework (Section 4.1) and we compute and present the aforementioned parameters (Section 4.2). Note 

that the results on this corpus should not be extrapolated to the whole linked open data cloud, but they show the use of 

the metrics to characterize an RDF dataset and gain insights toward the aforementioned potential uses. For a 

comprehensive explanation, the order of presentation of the results is slightly different than the previous definitions. 

4.1. Experimental Framework 

Table 2 shows our experimental framework. We define seven categories: media, publications, knowledge base, 

government, sensors, geography and biology. This distinction is based on the Linked Open Data cloud topics. We 

choose fourteen datasets based on the number of triples, topic coverage, availability and previous uses in benchmarking. 

Most datasets are well-known in the area: 

 Media: Jamendo represents music records and artists, LinkedMDB stores movies and authors, Dbtune provides 

music-related structured data, and Flickr Event Media (Flickr hereinafter) holds Flickr events and their authors. 

 Publication: SWDF is a small dataset with information related to the main conferences and workshops in the 

area of Semantic Web, whereas Faceted DBLP (referred to as DBLP hereinafter) is an RDF conversion of the 

well-known bibliographic repository. 

 Knowledge Bases: Wordnet 3.0 is a conversion to RDF of Wordnet (a lexical database of English) and 

Dbpedia 3-8 is an RDF conversion of Wikipedia. 

 Government: The 2011 Australian Census is an open portion of the given census with aggregated data and the 

2000 US Census comprises the first entities of the given census. 

 Sensors: AEMET includes measurements made by the network of meteorological stations of the Spanish 

Meteorological Agency, and Ike contains meteorological sensor information of the real Ike hurricane. 

 Geography: Linked Geo Data holds geographic information mainly from OpenStreetMap. 

 Biology: Affymetrix contains probesets used in DNA microarrays. 

A preprocessing phase is applied (all final datasets are publicly available
7
). First, for a fair comparison, we convert 

all datasets to N-Triples [43] (by means of the Any23 tool
6
), a basic format containing one sentence per line. Then, 

datasets are lexicographically sorted and duplicate triples are discarded. Table 2 reflects the number of triples, the final 

dataset size, and the number of different subjects, predicates, objects, and common subject-objects. As expected, the 

number of predicates remains commonly low. There are two exceptions: Dbpedia and Linked Geo Data are extreme 

cases in which the number of predicates grows to the order of thousands due to the variability of the represented 

information.  However, note that the number of predicates remains proportionally small to the total number of triples.   

 

Accepted for Publication
By the Journal of Information Science: http://jis.sagepub.co.uk 



Fernández et al 12 

 

Journal of Information Science, 2016, pp. 1-27 © The Author(s), DOI: 10.1177/0165551510000000 

 

 

Table 2. Description of the evaluation framework. 

 
Dataset Triples Size(MB) Subjects Predicates Objects 

Common 
SO 

Media Jamendo 1,049,637 144 335,925 26 440,602 290,291 

LinkedMDB 6,147,996 850 694,400 222 2,052,959 416,664 

Dbtune 58,920,361 9,566 12,401,228 394 14,264,221 10,076,199 

Flickr Event 

Media 

49,107,168 6,714 5,490,007 23 15,041,664 3,822,727 

Publications SWDF 101,321 16 10,476 132 34,609 10,374 

Faceted DBLP 60,139,734 9,799 3,591,091 27 25,154,979 1,323,104 

Knowledge Wordnet 3.0 6,257,922 974 1,100,503 85 1,689,363 1,021,222 

Dbpedia 3-8 431,440,396 63,053 24,791,728 57,986 108,927,201 22,762,644 

Government 2011 Australian 

Census 

361,842 52 51,768 26 6,901 508 

2000 US Census 149,182,415 21,796 23,904,658 429 23,996,813 23,815,829 

Sensors AEMET 3,547,154 726 394,289 23 793,664 433 

Ike 514,824,008 102,662 114,484,017 10 114,629,189 114,484,017 

Geography Linked Geo Data 274,668,813 39,423 51,916,995 18,272 121,749,861 41,471,798 

Biology Affymetrix 44,207,145 6,526 1,421,763 105 13,240,270 245 

 

4.2. Ratios 

Table 3 shows the ratios (see Section 3.3.) of the evaluated datasets. They are a good starting point as they can reveal a 

level of cohesion between the different types of nodes and denote the presence (or absence) of shared nodes and labels.  

Table 3 Ratios of the given datasets. 

 Dataset Common SO 
(∝𝑠−𝑜 (𝐺)) 

Common SP 
(∝𝑠−𝑝 (𝐺)) 

Common PO 
(∝𝑝−𝑜 (𝐺)) 

Media Jamendo 0.60 0 0 

LinkedMDB 0.18 0 1.66*10
-5

 

Dbtune 0.61 0 7344*10
-6

 

Flickr Event Media 0.23 0 0 

Publications SWDF 0.30 0 0 

Faceted DBLP 0.05 7.52*10
-6

 0 

Knowledge Wordnet 3.0 0.58 7.27*10
-6

 1.78*10
-6

 

Dbpedia 3-8 0.21 2.24*10
-3

 7.50*10
-5

 

Government 2011 Australian 

Census 

0.01 9.65*10
-5

 8.67*10
-4

 

2000 US Census 0.99 0 0 

Sensors AEMET 3.65*10
-4

 0 0 

Ike 0.99 0 0 

Geography Linked Geo Data 0.31 0 4.52*10
-7

 

Biology Affymetrix 1.67*10
-5

 0 5.89*10
-6

 

 

As expected, subject-object is the most frequent path constructor indeed and subject-predicate and predicate-object 

ratios are almost negligible. In fact, these latter are scheme descriptions, which are rare due to the RDF itself is schema-

relaxed and the vocabulary can evolve as needed on demand.  

The subject-object ratio shows interesting variable figures, ranging between 0 to 99%. Extreme cases are particularly 

of interest. For instance, the 2011 Australian Census and AEMET present values near to 0 whereas their counterparts per 
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category, the 2000 US Census and Ike show values near of 99% of shared nodes. One can find the explanation in the 

diverse strategy followed to model the information. On the one hand, both the 2011 Australian Census and AEMET 

describe particular values for a given entity (a statistic value or a sensor measure). Thus, a more “isolated” graph can be 

found in such cases where we represent certain measures. On the other hand, both the 2000 US Census and Ike make use 

of intermediate nodes (blank nodes in the census and entity resources in Ike) to organize the different types of measures, 

resulting in a highly connected graph.  

The low subject-object ratio in Faceted DBLP and Affymetrix is due to a different reason. In both cases, the datasets 

describe entities with a high number of different literals values. In the first case, titles, identifiers, dates, homepages, 

etc., of authors, articles and conferences are scarcely repeated. In the second, Affymetrix also describes entities 

(probesets) by different literal values (for labels, identifiers, version, description, dates, etc.). In addition, although URIs 

are used as objects, they are further described (as subjects) in other different datasets in the bio2rdf project. 

The rest of the datasets can be grouped into two categories: datasets holding around 20-30% of shared entities 

(LinkedMDB, Flickr, SWDF, Dbpedia and Linked Geo Data), or near 60% (Jamendo, Dbtune and Wordnet). 

4.3. Out- and in-degrees 

In this section we study the mean out- and in-degree for subjects and objects respectively. The mean results and their 

standard deviations are presented in Figure 2. For the sake of comprehensibility, we erase hereinafter those error bars 

that significantly exceed the range of the figure. In this case, all in-degree deviations are erased. It is worth mentioning 

that both axes are in logarithmic scale. We also plot a dashed line delimiting the 1 value.  

 

Figure 2 Mean out- and in-degrees for the evaluation datasets. 

Most datasets present a limited mean number of triples per subject and object. Regarding the out-degree, its mean is 

modestly greater than 10 only for DBLP, Dbpedia and Affymetrix. This denotes that most datasets (even those with 

hundreds of millions of triples) present a mean of 10 triples per subject. In turn, the mean in-degree is even lower. All 

datasets have a lower mean in-degree than out-degree, being always smaller than 10, i.e. objects appear in a mean of 10 

triples. The exception is the 2011 Australian Census, whose discrete object values are highly repeated in many triples. 

Both mean out- and in-degrees show, in general, a high standard deviation. In fact, all in-degree deviations exceed 

considerably the range of the figure. This points to a noticeable skewed structure, more remarkable in objects.  

Then, we study the out- and in-degrees, i.e. the subject and object distributions. Figure 3 illustrates these distributions 

for some representative datasets (LinkedMDB, Dbpedia, AEMET and Ike). In general, subjects and objects (out- and in-
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degree) present skewed distributions. In fact, the in-degree in all datasets reveal a remarkably power law distributions in 

objects. Only AEMET (Figure 3, bottom left) slightly differs from the general tendency.  

In turn, subjects (out degrees) also show clear power law distributions, represented in Figure 3 by LinkedMDB and 

Dbpedia. At this point, it is worth mentioning that the concrete power law exponent (denoting the slope of the line in a 

log-log scale) varies among datasets, ranging from -0.833 in LinkedMDB to -2.081 in Dbpedia (this latter is close to the 

-2.166 exponent by Ding and Finin [9]). 

In contrast, a flat distribution is present in a reduced number of datasets, such as the two census datasets and AEMET 

(in Figure 3, bottom left). This reveals a data modelling where subjects are described with a similar number of triples. 

Finally, Ike distribution (Figure 3, bottom right) is a variation of the previous two types: some subjects are deeply 

described (or they have more relations) whereas others are concisely defined with few triples. 

 

 

Figure 3 Degree distribution of representative datasets, in logarithmic scale. 

Subject-object distribution. Figure 4 compares the previous mean out- and in-degree (presented in Figure 2) with the 

same degrees restricted to subject-object. For a fair comparison, we split the datasets by their range of common subject-

object ratio (as stated in Section 4.2): common entities around 0%, 20-30%, 60% and 99%. We order the description of 

the results by these sets for explanation purposes: 

 Common entities around 0%: In this case, the common entities are so rare that the means refer to few elements 

of the total. However, the mean in-degree restricted to these subject-objects is remarkably higher than for the 

total objects. We can find the reason of this difference in the non shared objects distribution. In all these 

datasets, a large number of different objects are present, whose in-degree is low (or even close to 1) as we can 
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see in their corresponding in-degree distributions. Thus, the common subject-objects are more frequently 

present as they act as intermediate nodes and then playing as object in more triples on average.  

 

Figure 4 Mean out- and in-degrees for the evaluation datasets in comparison with the common subject-objects.  

 Common entities around 99%: This is the case of the 2000 US Census and Ike. Figure 4 shows low figures for 

the mean in-degree, being exactly 1 for the 2000 US Census.  We have argued that both datasets make use of 

different shared elements to organize the different types of figures or measures, hence the low in-degree. In 

contrast, given that 99% of elements are shared, the mean out-degree for these nodes is almost equal to the out-

degree for all subjects. 

 Common entities around 60%: The mean out-degrees are almost equivalent as more than 50% of the elements 

are shared, hence these nodes highly contribute to the original figures. As for the previous case of common 

entities around 99%, this scenario shows low figures for the mean in-degree. The reason in this case is 

equivalent as intermediate nodes organize the information.  

 Common entities around 20-30%: This is the most variable set and datasets can present different results. In 

general terms, the mean out-degrees remain comparable. Nevertheless, Flickr and Linked Geo Data show a 

slightly smaller out-degree for subject-object nodes. This fact clearly depends on the represented information. 

For instance, this phenomenon can appear when an “event” in Flickr is described in depth but the related 

subject-object nodes representing “authors” are usually described in lesser depth. Regarding the in-degrees, in 

some cases the figures restricted to subject-objects are equal, slightly smaller or bigger than the non-restricted 

metric. The reasons are similar to the presented above: it would be slightly smaller for subject-objects when 

they serve to organize the information and slightly bigger whenever non repeated objects are predominant. 
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4.4. Predicates per Subject and Object 

We study the labeled out- and in-degrees, that is, the predicates per subject and object respectively. Figure 5 illustrates 

the mean figures. As can be seen, the results show that few predicates are related to the same subject, on average. The 

only exception is Affymetric, were 20 predicates are present per subject. This fact, together with its large mean out-

degree (more than 30 triples per subject) reflect a dataset design where entities are described in detail. In contrast, 

datasets such as Jamendo and Ike show a mean of 3-4 predicates per subject, reflecting a less diverse description. Note 

that, in all cases, the mean labeled out-degree is a clear indicator of the presence of star-shaped nodes, i.e., nodes with 

different triples around one common subject. 

 

Figure 5 Mean labeled out- and in-degrees for the evaluation datasets. 

The analysis of the mean labeled in-degree reveals an important conclusion. As shown in Figure 5, the average 

number of predicates related to a given object is very close to 1. This stands for specific “leave nodes” reached by only 

one different predicate. 

Table 4 provides the maximum labeled out- and in-degrees for the analysed datasets and the ratio over the total 

number of predicates. The results for the maximum out- and in-degrees confirm the previous facts (the distribution is 

not skewed and the deviation is small), i.e., even in corner cases, few predicates are related to the same subject, and 

even less predicates are related to the same object. 

The ratio of maximum degrees provided in Table 4 comes to similar conclusions. For instance, a ratio of 20% in the 

labeled out-degree of Wordnet means that, at most, a subject is related to the 20% of the predicates in the dataset. As 

expected, the smallest ratios correspond to the less structured datasets such as Dbpedia and Linked Geo Data.  

Finally, it is worth noting that we studied the mean labeled degrees of the common subject-objects with respect to the 

values obtained without restrictions, obtaining similar results. The corner case was Affymetrix, which presents a 

significant reduction for subject-objects. One could argue that, in this case, general entities are detailed in depth whereas 

common subject-objects are simple nodes grouping discrete values and hence its smaller number of related predicates. 

Note that the mean labeled in-degree of common subject-objects remained close to 1, i.e. the intermediate nodes (which 

are important for navigation) are also reached by a mean of one unique predicate, on average. Therefore, particular 

solutions could be designed in such case.  
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Table 4 Values and ratios of the maximum labeled out- and in-degree for the experimental framework. 

 

Dataset 

Max. predicates per subjects Max. predicates per object 
Labeled out 

deg.  

𝑑𝑒𝑔𝐿
−(𝐺) 

Ratio 

|𝑑𝑒𝑔𝐿
−(𝐺)|

|𝑃𝐺|
 

Labeled out deg.  

𝑑𝑒𝑔𝐿
+(𝐺) 

Ratio 

|𝑑𝑒𝑔𝐿
+(𝐺)|

|𝑃𝐺|
 

Media Jamendo 10 28.46% 5 19.23% 

LinkedMDB 31 13.96% 50 22.52% 

Dbtune 24 6.09% 93 23.60% 

Flickr Event Media 14 60.87% 5 21.74% 

Publications SWDF 21 15.91% 13 9.85% 

Faceted DBLP 18 66.67% 4 14.81% 

Knowledge Wordnet 3.0 17 20.00% 10 11.76% 

Dbpedia 3-8 480 0.83% 6,005 10.36% 

Government 2011 Australian 

Census 

7 26.92% 3 11.11% 

2000 US Census 104 24.24% 366 85.31% 

Sensors AEMET 12 52.17% 5 21.74% 

Ike 5 41.67% 1 8.33% 

Geography Linked Geo Data 76 0.42% 3,431 18.78% 

Biology Affymetrix 35 33.33% 5 4.76% 

 

4.5. Partial and Direct Degrees 

First of all, let us remember that partial out- and in-degrees reflect the presence of multivalued (subject,predicate) and 

(predicate,object) pairs respectively.  Figure 6 shows the mean partial out- and in-degrees. As can be seen, the mean 

partial out-degree is slightly bigger than 1, revealing that the presence of multivalued (subject,predicate) pairs is not so 

frequent. In fact, the deviation is not pronounced (except for Wordnet) which denotes a uniform distribution. In contrast, 

the mean in-degree remains close to 1, but it presents bigger deviations. Almost all deviation extends the range of the 

figure and they have been erased for the sake of clarity. This fact denotes a pronounced skewed distribution of 

multivalued (predicate,object) pairs. That is, a large amount of different subjects are related to the same 

(predicate,object) (e.g. this can be the case of rdf:type and its related classes)  while others pairs are related to few 

subjects, being 1 on average.   
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Figure 6 Mean partial out- and in-degrees for the evaluation datasets. 

Next, we study the direct degrees, which measure the relationship between subjects and objects disregarding the 

presence of predicates. Figure 7 compares the mean out- and in-degrees and their respective mean direct degrees, 

showing that they have similar figures. That is, given a subject and an object, if they are related, only one predicate 

brings these nodes together, on average.   

 

Figure 7 Mean direct degrees in comparison with mean out- and in-degrees for the evaluation datasets. 

4.6. Predicate Degrees 

In this section we study the predicate degrees, i.e the cardinality of predicates. We also detail their out- and in-degrees, 

that is, the objects and subjects related to each predicate. Figure 8 shows the mean predicate degrees for all datasets. 

 

Figure 8 Mean predicate degrees for the evaluation datasets. The y-axis is in logarithmic scale. 
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First, note that predicate degrees are highly biased by the number of triples of each dataset. For instance, one could 

add more observations in Ike and the cardinality will be increased resp. In general terms, we can observe that the mean 

predicate out degree is slightly smaller than the corresponding mean in degree. That is, given a predicate at random, it is 

probably related with more subjects than objects. This fact is in line with previous labeled and partial measurements; 

subjects are more related to predicates than objects, and multivalued (subject,predicate) pairs are, when present, more 

infrequent than (predicate, object) pairs. 

We then study, in the following, the distribution of predicates, as they can reveal different use patterns for the 

predicates. It is clear that no prior assumption can be made on predicate distribution as, in general terms, predicate 

distribution is tight to the information modelling. Nevertheless, in the studied datasets, we can roughly distinguish three 

types of patterns, illustrated in Figure 9 for the sensor, geography and biology domain: 

 Clear power law distributions, where most predicates are present in a reduced number of triples, whereas few 

predicates are related to thousand or millions of triples. This corresponds to the definition of a power law 

distribution. We can find these very clear skewed distributions in cross-domain datasets such as Dbpedia, or 

datasets including information about a given domain but from diverse sources such as Linked Geo Data (Figure 

9, bottom left). Due to the same reasons, these two datasets hold the higher numbers of predicates of all the 

evaluation datasets (see Table 2). 

 Skewed distributions, i.e. some predicates are present rarely while others are frequently used, but not accurately 

fitting a power law distribution. This is the general tendency in most of the studied datasets, illustrated in 

AEMET (Figure 9, top left) and Affymetrix (Figure 9, bottom right).  

 Flat distribution where mostly all predicates are present in every entity. In such case, the predicates are in the 

same region as they participate in a similar range of triples, exemplified in (Figure 9, top right). 

 

Figure 9 Predicate degree distribution (sensors, geography and biology), in logarithmic scale.  
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4.7. Study of Predicate Lists 

Table 5 presents the number and repetition ratio of predicate lists, for all subjects as well as restricted to typed 

subjects. As can be seen, in both cases the number of different predicate lists is spectacularly lo. For instance, in 

Jamendo, which holds 26 predicates, only 43 different lists are present (999.872‰ of the lists are repetitions). This fact 

remains true event in those cross-domain datasets with more predicates and thus different entities such as Dbpedia.  

Table 5 Number and ratio of predicate lists for all subjects (left) and restricted to typed subjects (right). 

 

Dataset 

All subjects Typed subjects 

Predicate 
lists |𝐿(𝐺)| 

Repetition Ratio 

 (1 −
|L(𝐺)|

|𝑆𝐺|
) 

Predicate lists  

|𝐿(𝐺)| 

Repetition Ratio 

 (1 −
|L(𝐺)|

|𝑆𝐺|
) 

Media Jamendo 43 999.872‰ 41 999.859‰ 

LinkedMDB 8,459 987.818‰ 8,442 987.314‰ 

Dbtune 963 999.922‰ 782 999.922‰ 

Flickr Event Media 25 999.996‰ 22 999.987‰ 

Publications SWDF 364 965.254‰ 341 961.754‰ 

Faceted DBLP 254 999.929‰ 254 999.929‰ 

Knowledge Wordnet 3.0 872 999.208‰ 868 999.007‰ 

Dbpedia 3-8 1,309,392 947.184‰ 1,152,617 712.413‰ 

Government 2011 Australian 

Census 

14 999.730‰ 14 999.730‰ 

2000 US Census 106 999.996‰ - - 

Sensors AEMET 5 999.987‰ 5 999.987‰ 

Ike 5 1,000.000‰ 4 1,000.000‰ 

Geography Linked Geo Data 220,902 995.745‰ 219,015 995.562‰ 

Biology Affymetrix 9,434 993.365‰ 9,424 993.369‰ 

 

Next, we study the number of repetitions per list, and their distribution. This mean has been defined as the mean 

predicate list degree (Definition 18), and the results are shown in Figure 10.  
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Figure 10 Mean predicate list degree for the evaluation datasets. 

The results of the number of repetitions per list are in line with the presented repetition ratio. Nevertheless, it is 

important to note that, as for the predicate cardinality, these results can be highly biased by the number of triples (the y-

axis is in logarithmic scale). In plain words, the more triples are present in the dataset, the higher can be the number of 

repetitions. Intuitively, one could expect that these distributions would correspond to the predicate distributions 

presented in the previous Section 4.6. That is, if a skewed distribution is present in predicates, the same result could be 

found in predicate lists. In turn, if all predicates participate in similar number of triples (uniform distribution), the same 

shape is present in predicate lists. Our evaluation analysed the predicate list distribution and showed that both 

assumptions remain true for the studied datasets, exemplified in Figure 11 for Linked Geo Data and IKE.  

 

Figure 11 Predicate list degree distribution (sensors, geography and biology), in logarithmic scale. 

Finally, we study the number of different lists per predicate, on average. This is shown in Figure 12 (in logarithmic 

scale) which shows a significant low number of different lists in which a predicate is present. Note that if a predicate 

was related to one or two lists, given a predicate it is almost direct to know its peer predicates for any subject or object, 

even for the biggest datasets. In other words, the nearer this means is to 1, the easier could be to discern the concrete list 

given a predicate, even in the biggest datasets. The highest figures are obviously obtained for those datasets with more 

predicate lists, but they remain proportionally small to the number of lists.  
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Figure 12 Mean list per predicate degree for the evaluation datasets, in logarithmic scale. 

4.8. Study of Classes and Typed Subjects 

We finish our evaluation with a brief study on typed entities given the importance for other uses such as reasoning (see 

the potential uses of these metrics in Section 3.6). Table 6 shows the resulting number of classes, typed subjects and the 

ratio of these typed subjects over the total subjects. First, one could expect that the larger is the dataset, the more classes 

are included. However, it is worth remembering that RDF holds a relaxed schema, hence this assumption can result 

completely false. In other words, a “small” dataset such as Jamendo or SWDF can include more classes than the bigger 

Flickr or AEMET. Thus, the number of classes and typed subjects is completely biased by the data modelling and the 

domain/s involved in the dataset. 

Table 6 Number of classes, typed subjects and its ratio for the experimental framework. 

 Dataset Classes 
Typed Subjects 

(|SG
C|) 

Ratio 

(
|SG

C |

|SG|
) 

Media Jamendo 11 290,291 86.42% 

LinkedMDB 53 665,441 95.83% 

Dbtune 64 10,042,747 80.96% 

Flickr Event Media 3 1,690,338 30.79% 

Publications SWDF 62 8,916 85.11% 

Faceted DBLP 14 3,591,091 100.00% 

Knowledge Wordnet 3.0 25 873,986 79.42% 

Dbpedia 3-8 351 4,007,892 16.17% 

Government 2011 Australian Census 15 51,768 100.00% 

2000 US Census 0 0 0.00% 

Sensors AEMET 5 394,289 100.00% 

Ike 12 114,471,666 99.99% 

Geography Linked Geo Data 1,081 49,352,200 95.06% 

Biology Affymetrix 3 1,421,291 99.97% 
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With this assumption in mind, we can find in the results that the number of classes remain proportionally small with 

respect of the number of triples and entities. This is an obvious result as classes model common semantic types of 

entities, and this distinction should be limited. However, the ratio of typed subjects draws more interesting results. 

Table 6 reflects three types of modelling: 

 Non-typing: in this case no types are used, such as the 2000 US Census. 

 Small-medium typing: datasets in which types are used around one of every four subjects ( 25%). In our 

study, we find two cases, Flickr (31%) and Dbpedia (16%), matching this scenario.  

 Extensive-typing: most subjects are typed. This is the case of most datasets in our study, ranging from 79% to 

100% of typed subjects. 

Next, we extend our previous study on predicates, performing a mean of predicate lists per class (see Definition 21). 

This is represented in Figure 13. Note that the mean is exactly 1 (with no deviation) for AEMET and Ike. 

 

Figure 13 Mean lists per class for the evaluation datasets. The y-axis is in logarithmic scale. 

The mean figures show that, seven of thirteen datasets hold a mean of less than ten predicate lists per class, and it 

remains valid independently of the size of the dataset. This means that, given a class, we can automatically state that all 

subjects of this class are described with one of ten variations of predicates, on average. Another three datasets range 

between 10 and 100 lists per class (which remains still small). The three datasets with more different lists, obviously 

present more lists per class (up to 19,000 for Dbpedia). Nevertheless, in these latter cases the deviation is also high, 

hence we can also find classes with much lesser variants. 

Finally, we present in Figure 14 a brief comparison of mean out-degrees for typed subjects with respect to all 

subjects. We restrict to those datasets having small-medium typing (as defined above), Flickr and Wordnet, as in the 

extensive-typing case both means are similar and the comparison makes no sense. We extend the range of the y-axis to 

show that both means and deviations are comparable. Nevertheless, typed subjects are actually described with slightly 

more triples than those subjects without restrictions, on average. This can be seen as a way of providing detailed 

descriptions for these special nodes, of particular interest to navigate and organize the graph.  
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Figure 14 Mean out degree for the evaluation datasets in comparison with typed subjects. 

5. Discussion 

5.1. Contributions 

In this work we have studied and characterized the real structure of RDF datasets. We have motivated our purpose in the 

sparingly number of previous empirical studies and the few parameters considered. Then, we propose and define novel 

metrics for RDF aimed at characterizing real-world RDF data. Our initial purpose was to provide a toolkit of parameters 

that could both (i) determine common features in most RDF datasets and (ii) become a useful handbook when 

developing or optimizing RDF data structures, indexes and other related technologies.  

The proposed metrics cover a wide spectrum of parameters. First, the RDF dataset is regarded as a graph labeled with 

predicates, and we give metrics to characterize the subject (out-) and object (in-) distributions.  We measure their degree 

(out- and in-degrees respectively), the presence of multivalued pairs (partial degree), the number of different predicates 

per node (labeled degree) and the direct relationships between nodes disregarding labels (direct degree).  

Then, we characterize the distribution of predicates, which is of great importance as they hold the semantics of the 

datasets. We define their cardinality (predicate degree), and the distribution of subjects and objects per predicate 

(predicate in and out-degree). This later is equivalent to describe the domain and range of each predicate. 

We consider the repetitions of nodes playing different roles, hence common ratios are defined: subject-object, 

subject-predicate and predicate-object. Given the importance of the first ones as hubs in the navigation of the graph, we 

propose to characterize the subject and object degrees restricted to common subject-objects.  

Agreeing that the list of predicates per subject can be repeated in several subjects, we then focus on parameterize 

these list and their repetitions. We define a ratio of repeated predicate lists, the cardinality of each list (predicate list 

degree) and the number of lists in which each predicate takes part (lists per predicate degree). 

Finally, we make a special distinction of typed subjects, as they could share commonalities. We count the number of 

classes, typed subjects and their ratio over the total number of subjects. We also define the number of different predicate 

lists per class (lists per class degree) and consider the subject and predicate list degrees restricted to typed subjects.  

5.2. Result Summary and Applications 

We established an evaluation framework consisting in fourteen datasets trying to cover a wide range of different 

datasets. The following summary of conclusions can be drawn from the evaluation results: 
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 All datasets show a skewed structure on subjects and even more remarkable on objects, with very clear power-

law distributions. This is, of course, the perfect scenario to allow RDF compressors to obtain high compression 

rates. In turn, RDF stores can also leverage these statistical properties to adapt their query plans to the 

selectivity of the involved entities. Note that, in general, the mean degree of subjects and objects (established in 

10 triples in the studied datasets) is not representative as these skewed distributions result in a high standard 

deviation.  

 As we expected, subject-predicate and predicate-object ratios are almost negligible and the number of classes 

remains proportionally small w.r.t the number of triples and entities in the dataset. This result highlights that 

RDF stores can indeed make use of dedicated structures to manage schema and data instances in order to 

optimize the space of the representation and to speed up specific schema retrieval operations and reasoning 

processes.    

 Complementing the previous finding, our evaluation also revealed that most datasets are extensively typed 

(more than 80% of the subjects have an rdf:type), and that each class tends to appear in few predicate lists (less 

than 10 predicate lists per class), independently of the dataset size. This states that RDF compressing and 

indexing techniques can treat rdf:type as a frequent predicate and optimize its representation (e.g. assigning 

less bits to  encode it or even representing it implicitly). Then, it implies that the type of the subject univocally 

determines the predicates to which the subject is related, so that applications (e.g. serializations, RDF stores or 

visualizers/browsers) can use this association for multiple purposes, such as optimizing the underlying 

structures, curating datasets by suggesting changes, or inferring implicit information.  

 Subject-object was identified as the most frequent path constructor, which can constitute more than 60% of the 

entities. This result directly affects how RDF compressors and RDF stores encode these intermediate nodes. In 

general, a dictionary encoding is used to assign one unique integer ID to each subject, predicate and object in 

the graph, hence minimizing the space overheads of long repeated strings and managing a much more efficient 

graph of IDs. Thus, a high ratio of subject-objects points out that these dictionary-based techniques could 

assign a unique ID to each of these nodes, with a two-fold objective. First, strings are encoding just once 

(instead of represented twice with the subject and object roles), which results in significant space savings. 

Then, an efficient identification and filtering of these particular subject-object IDs can speed up the navigation 

of the graph. Nonetheless, results also show that the design of the dataset has a strong influence in the presence 

of such intermediate nodes.  

 Most datasets show that each subject is described with less than 10 different predicates, on average, remaining 

true if we restrict to common subject-objects. In addition, the number of different predicate lists is 

spectacularly low. These results suggest again that RDF managing systems can make use of structural clusters 

for different purposes. For instance, RDF compressors and RDF stores can assign one ID to each different 

predicate list and can efficiently encode the predicates related to a given subject by referring to the ID of the 

predicate list.  Furthermore, the distribution of predicate lists is also skewed, hence its representation is highly 

compressible. Our analysis also reveals that each predicate participates in a small number of predicate lists. 

Thus, retrieval mechanisms can index such relations to boost performance when retrieving all the triples for a 

given predicate, filtering in which lists the given predicate may appear.  

 Surprisingly, our evaluation highlights that the number of predicates related to a given object is very close to 1. 

This suggests that systems can isolate the use of each predicate and establish a range of application (object 

values for each predicate) with none or few intersections. This isolation can improve the codification of the 

graph and its space needs (a smaller range implies less bits to encode each value).    

 Regarding multivalued pairs, experiments show that each (subject,predicate) is mostly related to a unique 

object, and each (predicate,object) is often related to one subject, but the high standard deviation of this latter 

denotes a pronounced skewed distribution. These results suggest that the adjacency list encoding of the first 

one requires less bits that the latter, as one can use an encoding considering that each (subject,predicate) pair is 

related to one object by default, and only use a special mark to know those few pairs that are  related to more 

objects.  

 Finally, the results for predicate degrees state that, on average, each predicate is related with more subjects than 

objects. This impacts query resolution plans, where a query with a bounded subject, (S,P,?o), should be 

promoted over a bounded object, (?s,P,O), as the first one produces less intermediate results than the latter. In 

contrast, an RDF index by predicate and object (referred to as POS) may require less space than one by 

predicate and subject (referred to as PSO), as the number of objects per predicate is smaller than the subjects 

per predicate. 
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5.3. Future work 

We expect that these metrics and observations can provide insights to take advantage of some of the revealed features to 

develop and optimize better dataset designs, visualizations, efficient RDF data structures, indexes (in particular, 

structural indexes) and compression techniques. The concrete optimizations and decisions are subject of each particular 

scenario and are out of the scope of this study, nonetheless we have introduced potential application scenarios. 

In particular, as the number of predicates per object is close to 1, this stands for a specific treatment of these “leave 

nodes” for each predicate. Thus, approaches such as a specific compression over vertical partitioning can obtain 

important results. In turn, the number of few predicates per subject and their distribution (labeled out degree) is a clear 

indicator of the presence of star-shaped nodes. Together with the characterization of intermediate nodes, this could serve 

query suggestion and visualization purposes. In particular, it is highly remarkable that intermediate nodes are reached by 

a mean of one predicate, reducing the number of predicates which connects different parts of the graph. 

The family of indexing techniques following vertical partitioning can consider also the predicate distributions and, 

potentially, make use of these metrics to optimize the resolution of complex queries.  

Predicate lists and the characterization of classes would serve several purposes such as visualization, structural 

indexing for querying and reasoning. We would like to remark the massive repetition of predicate lists, in general, and 

the low number of predicates per class in particular. This may help in determining structural indexes for such purposes. 

Finally, as a complementary effort, we expect that future studies on the state of the art of the linked open data cloud 

will consider our fine-grained metrics to help categorize different design patterns.  

Notes 

1. http://stats.lod2.eu/  

2. http://linkeddata.org/   

3. http://xmlns.com/foaf/spec/  

4. http://dbpedia.org/    

5. http://bio2rdf.org/  

6. http://any23.apache.org/   

7. ftp://nassdataweb.infor.uva.es/RDFmetrics/datasets/  
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