
State-of-the art on existing models for processes,
resources, constraints and security, and their
underlying formalisms

Deliverable D2.1

FFG – IKT der Zukunft
SHAPE Project
2014 – 845638

Table 1 Document Information

Project acronym: SHAPE
Project full title: Safety-critical Human- & dAta-centric Process management

in Engineering projects

Work package: 2
Document number: 2.1
Document title: State-of-the art on existing models for processes, resources,

constraints and security, and their underlying formalisms
Version: 1

Delivery date: 01 April 2015 (M1)
Actual publication date: —————–
Dissemination level: Public
Nature: Report

Editor(s) / lead beneficiary: WU Vienna
Author(s): Cristina Cabanillas, Giray Havur, Jan Mendling, Axel Polleres,

Alexander Wurl, Simon Steyskal
Reviewer(s): Tudor Ionescu, Jan Mendling

Contents

1 Introduction 1

2 Business Process Modeling 1

3 Formalizing Business Processes and Constraints 4
3.1 Resource Constraints . 6
3.2 Security and Compliance Constraints (policies) 7

4 Reasoning over Business Processes and Constraints 13
4.1 Resource Allocation/Work Distribution 14

4.1.1 Petri Nets . 15
4.1.2 Automated Reasoners . 16
4.1.3 ASP . 17
4.1.4 ΠN : A Generic Formulation of 1-safe Petri Nets 19
4.1.5 ΠT : Activity Scheduling using Timed Petri Net 20
4.1.6 ΠR : Resource Allocation . 20
4.1.7 Time Relaxation . 22

4.2 Resources Analysis . 23
4.2.1 Person-Activity Analysis Operations 23
4.2.2 Automated Analysis at Design Time 26

4.3 Security and Compliance in Business Processes 29

5 Business Process Management Systems/Suites 30
5.1 Criteria for Evaluation . 30
5.2 Notation in BPMS . 30
5.3 Extensions . 31
5.4 Some Suites evaluated . 31

6 Summary 34

Bibliography 34

SHAPE FFG-2014-845638 1

1 Introduction

This document is part of work package 2 (WP2) on Semantic Models for Mining &
Monitoring Process Relevant Data of the SHAPE project1. It reports work performed
under Task 2.1 State-of-the art on existing models for processes, resources, constraints
and security, and their underlying formalisms. Its goal is to provide an overview of
approaches addressing different aspects of Business Process Management (BPM)
that are interesting in the scope of SHAPE.

In particular, the content of this deliverable is structured as follows: Section 2
introduces business process modeling and the main perspectives that must be
considered in the BPM life cycle (cf. Deliverable 3.1 [?] for an overview of the
BPM life cycle). Section 2 delves into the formalization of business processes and
constraints modeled with them. Afterwards, we focus on the business process re-
source perspective, crucial in the context of SHAPE as seen in the project require-
ments described in Deliverable 4.1 [13]. Section 4 addresses automated reasoning
on the allocation of resources to business process activities and presents a sum-
mary of automated reasoners that could be used for that purpose together with an
approach based on Answer Set Programming (ASP). That section also describes
resource analysis in business processes and an approach to automate resource-
related analysis operations based on Description Logics (DLs). Section 5 presents
a survey on latest business process management systems and suites and Section 6
concludes the deliverable.

Regarding publications, this first deliverable of WP2 has yielded the following
paper submissions so far:

Giray Havur, Cristina Cabanillas, Jan Mendling, and Axel Polleres. Automated
Resource Allocation in Business Processes with Answer Set Programming. Submitted
to BPM 2015.

Simon Steyskal and Axel Polleres. Towards Formal Semantics for ODRL Policies.
Submitted to RuleML 2015.

2 Business Process Modeling

A business process is a collection of activities that are executed in a logical order
along time to achieve a defined goal within an organisational and technical envi-
ronment. To do so, they take one or more kinds of input and create an output

1 https://ai.wu.ac.at/shape-project/

2 Public Document

that is of value to the customer or the market [31, 18, 69]. As stated in [60, 19], the
basis of BPM is the explicit representation of business processes. Representing a
business process helps to discover weaknesses related to the order in which activ-
ities are performed, the information that is handled, and any other issue involved
in business process execution. Hence, an easy-to-understand-and-use, editable,
and executable mechanism to represent business processes is convenient. Business
process models are defined for that purpose, that is, a business process model is the
representation of the activities, documents, people and all the elements involved
in a process, as well as the execution constraints between them [69]. It serves as a
starting point to be analysed and improved before, during and after execution.

Olympic Games

IN
TE

RN
AT

IO
N

AL
 O

LY
M

PI
C

CO
M

M
IT

TE
E

INTERNATIONAL OLYMPIC COMMITTEE

Collect
candidates

Assess
candidates

Approve
accepted

candidates
Vote Check

winner

Delete last
posit ion

Is there
a winner?

Notify
results

Publish
winner

Candidatures
created

Candidatures
assessed

Candidatures
selected

Resolut ion
created

Candidatures
updated

Resolut ion
updated

Resolut ion
notif ied

Resolut ion
published

Candidatures
stored

Candidatures
updated

Ye
s

N
o

CRISTINA CABANILLAS MACÍAS 1 of 1 10.12.2012

Figure 1 BPMN model of a process to select the venue place for the Olympic Games,
taken from [11]

Let us exemplify all this with an example described in [11]. The process
model depicted in Figure 1 represents the process to select the venue place for
the Olympic Games, a procedure known worldwide that has been simplified for
the sake of clarity. The International Olympic Committee is in charge of this pro-
cess. In a nutshell, this committee first receives the applications of the cities that
want to organise the Olympic Games. Each city is evaluated, so that only those
cities that meet all the requirements pass to the approval step, where the candi-
dates still need a final approval by the committee in oder to participate in the
voting rounds. Once the list of candidates is ready, a first round of secret voting
is carried out. If there is consensus and only one city is selected, then the winner
venue is published. Otherwise, the least voted city is eliminated from the list of
candidates and a new voting round is performed. This is repeated until there are
only two cities left. Then, the city with a greatest number of votes wins.

The core elements in a business process are the activities and their execution or-

SHAPE FFG-2014-845638 3

der. However, there are other elements also involved in business processes, which
must be also considered when designing and modelling the processes. These el-
ements are called business process perspectives or business process dimensions. There
are typically five perspectives in business processes [19, 22, 69], which were sum-
marised in [11] as follows:

The functional perspective provides a description of all the activities to be per-
formed in a business process. It usually consists of a textual definition of
the activity, its goal, the elements involved in its execution, and any other re-
striction that needs to be taken into account for its performance. According
to Business Process Modelling Notation (BPMN) [45], there are two types of
activities: atomic activities are called Tasks, and decomposable activities are
known as Sub-Processes. Activities can be executed by a system (automated) or
by people (manual). Furthermore, all activities share common attributes and
behaviour such as states and state transitions, that is, an activity has a life cycle
generally characterizing its operational semantics. There is not consensus in
literature on the states of the life cycle of a process activity. Several proposals
can be found in [45, 69, 51].

The control flow perspective (also known as (a.k.a.) behavioural dimension) speci-
fies the control flow dependencies between these activities, that is, the order in
which the activities of a process must be performed, e.g. some candidate cities
must be selected before carrying out a voting round. The process modelling
languages usually represent the control flow by means of arrows that connect
the process elements (i.e. activities, control flow structures, events) to define
the dynamic behaviour of the process.

The resource perspective (a.k.a. organisational dimension) focuses on the people,
roles, organisational units and any other entities of the organisational model of a com-
pany that are involved in a process, e.g. how the members of the International
Olympic Committee are structured in the organisational model. That is, this
dimension is focused on the management of the resources that participate in a
process, in particular the human resources involved in the process activities. The
people interacting with the process should also be modelled and associated to
the process diagram in order to enable the automation of the allocation of work
to specific persons at run time. We delve into how resources can be specified
in business processes in Section 4.

The data perspective (a.k.a. informational dimension) defines the information that
must be produced or consumed by activities, that is, the data handled in the
process, e.g. a document containing the description of the candidate cities, or
a report with the summary of each voting round during the selection process.

4 Public Document

The execution of process activities may involve managing a large amount of
data that can flow throughout the process, which can and should also be rep-
resented in the process models. Notations such as BPMN provide two forms
of modelling data [45]. First, as data objects attached to the process activities
or to control flow elements. Each data object can appear multiple times in a
process diagram, but each of these appearances references the same data object
instance. Optionally, data objects can be associated to states (a.k.a. data states),
representing the state of the information they contain (cf. Figure 1). Second, as
data stores representing repositories from which activities can take information,
and where activities can leave information produced as a result of the action
performed. These repositories are supposed to be accessible by the process
activities and/or the human resources in charge of manipulating the data used
in the activities.

The technical perspective makes reference to the different tools or machines that
may be required in order to perform certain activities, e.g. the voting may be
done electronically so that the votes can be counted automatically. Thus, it is
related to the Business Process Management System (BPMS) where the process
is deployed and enacted (cf. Section 5 for information about BPMSs).

There is consensus about the aforementioned business process perspectives.
Nonetheless, other aspects of processes can also be seen as process perspectives,
since they cover the entire BPM life cycle as well. For instance, policies and reg-
ulations that constitute the source for compliance checking must be enforced and
modeled at design time and implemented at run time and they can be checked
before, during of after process execution [?].

3 Formalizing Business Processes and Constraints

In this section, we discuss the formalization of business processes and related con-
straints. The modeling notation used in the Figure 1 is BPMN, the de facto standard
for process modelling [45]. Apart from BPMN, there are other notations that allow
the definition of process models, e.g. Event-driven Process Chain (EPC), Unified
Modeling Language (UML) Activity Diagrams, Business Process Execution Lan-
guage (BPEL) or Web Service Business Process Execution Language (WS-BPEL),
Petri Nets, Workflow (WF) Nets and Yet Another Workflow Language (YAWL).
All of them support the definition of activities, decision points with alternative
paths of execution, event handling, and other elements and structures required
to model a process [3]. EPC [52] is a modelling language to specify the temporal
and logical relationships between activities of a process. UML is a language pro-

SHAPE FFG-2014-845638 5

posed by the Object Management Group (OMG) for providing a standard way to
visualize the design of a system [25, 49], especially focused on the development of
software systems. Since it was not developed specifically for process modelling,
business processes are modelled by extending the Activity Diagrams provided by
the language by means of the so-called UML profiles. WS-BPEL [1] is a language
that allows the specification of Executable and Abstract business processes based
on Web services2. It is aimed at facilitating the expansion of automated process
integration in both the intra-corporate and the business-to-business spaces. Petri
Nets [58, 43] are a special form of graphs or finite automata that can be used to
represent processes. For the representation, validation and verification of busi-
ness processes, we can use WF Nets, a subclass of Petri Nets suitable for dealing
with complex processes[57, 30]. YAWL [59] extends Petri Nets and WF Nets for
process modelling with constructs to address the multiple process instances, ad-
vanced synchronization, and cancellation patterns. A Petri net example is shown
in Fig. refpetrimapping.

Figure 2 Example timed Petri net

Moreover, there are translations between different modeling notations and
Petri nets. For instance, the mapping from BPMN to Petri nets is provided in [20]
and summarized in Fig. 3.

Processes can collaborate with other processes and can cross organisational
boundaries. The interaction between processes developed in two different organ-
isations is usually performed by means of bidirectional message interchange. In
BPMN, this scenario is called collaboration. Please, notice that we will use the BPM

2 According to WS-BPEL [1], “Executable business processes model actual behaviour of a partici-
pant in a business interaction, while Abstract business processes are partially specified processes
that are not intended to be executed”.

6 Public Document

Figure 3 Mapping from BPMN to Petri nets, adapted from [20]

vocabulary provided by BPMN [45] throughout this document.

3.1 Resource Constraints

There are different kinds of constraints that can be applied on resources in busi-
ness processes. For instance, the organizational model described in Figure 4 relates
roles and resources (Role× Resource).

Oliver EvanGlen Drew

Amy Publisher

Copy Editor Graphic Artist Administrative
Assistant

Figure 4 Example organizational model (Role× Resource)

Activities in a business process are mostly executed by a Resource associated
with a predefined Role. Therefore, we introduce here another relation between

SHAPE FFG-2014-845638 7

roles and activities (Role× Activity). Using these two relations, resource allocation
for a business model can be easily performed by simply assigning an available
member who has a role that is in relation with the activity to be executed.

Resources can also be associated with their performances (i.e. Completion
time) on specific activities in a business process. Such a relation can be formal-
ized with a triple (Resource × Activity × Per f ormance). Similarly, a relation for
describing the cost of assigning a resource to an activity with a triple (Resource×
Activity× Cost). Such relations can be used to optimize overall completion time
of business processes, overall cost of business processes, etc.

3.2 Security and Compliance Constraints (policies)
In the following, we will propose a potential formal representation format for
modeling security and compliance constraints. More precisely, we define an ab-
stract syntax as well as formal semantics for the well-known Open Digital Rights
Language (ODRL) [36].

Table 2 represents the abstract syntax of ODRL, which can be read as follows:

text in bold represents non-terminal symbols
text in typewriter represents terminal symbols
text in italic represents functions and identifiers
A∗ indicates zero or more occurrences of symbol A
A+ indicates one or more occurrences of symbol A
A? indicates zero or one occurrence of symbol A

A Policy contains at least one PermissionRule or ProhibitionRule and has an as-
sociated ODRL ConflictResolutionStrategy which is either permit overrides (perm),
prohibition overrides (prohibit), or no conflicts allowed (invalid). A Policy is appli-
cable, if at least one of the Rules contains matches with the request.

A ProhibitionRule defines the prohibition of performing an Action on an asset
by a particular role which are both declared in the RuleMatch component of the
ProhibitionRule. When its RuleMatch and Action components match a particular
request, the applicability of the ProhibitionRule can be further constrained by a set
of Constraints. Constraints are represented as boolean formulas that compare a
status according to an operator3 with a respective bound. The status of a particular
Constraint is provided by a respective Proof or DutyProof that serve as input for
the Constraint.

3 Note, that we do not take set operators into account, but see them as a potential extension for
further work

8 Public Document

ODRL Policy Components

Policy P ::= Pid = [〈(PRRid|PERid)
+〉,ALG]

ProhibitionRule PRR ::= PRRid = [RM, A, CONS]
PermissionRule PER ::= PERid = [RM, A, 〈DUR∗id〉, CONS]
DutyRule DUR ::= DURid = [RM, A, CONS]
ConstraintSet CONS ::= CONS id = 〈CON ∗id〉
Constraint CON ::= CON id = f bool(status(a), operator(o), bound(a))
RuleMatch RM ::= RMid = 〈M+〉
Match M ::=Mid = φ(a)
Action A ::= Aid = action(a)

φ(a) ::= party(a) | asset(a)
a ::= value
o ::= eq | neq | lt | lteq | gt | gteq

ConflictRes.Strat. ALG ::= perm | prohibit| invalid

Query & Proof

QueryRequest Q ::= 〈party(a)?, action(a), asset(a)〉
DutyTarget DT ::= DT id = 〈party(a)?, action(a), asset(a)?〉
DutyProof DPF ::= DPF id = [DT ,CON id,status(a)]
Proof PF ::= PF id = [CON id,status(a)]
ProofSet PFS ::= 〈(DPF id|PF id)

∗〉
Table 2 Abstract Syntax of ODRL

PermissionRules are similarly defined as ProhibitionRules, but instead of pro-
hibiting the execution of an Action they permit it. Furthermore, a sequence of
DutyRules can be associated with PermissionRules. All associated DutyRules must
be fulfilled in order for the respective PermissionRule to become valid.

A QueryRequest contains a particular access request that consists of an action
and the respective asset it should be performed on, as well as optional information
about the party which shall be performing the action.

Basic Semantics of ODRL Policies

The following section proposes a possible interpretation of the formal semantics
of ODRL which differs from earlier approaches defined in [47, 35], as it proposes
semantics for the entire core model of ODRL instead of only capturing parts of it.

Match and RuleMatch

Let M be either a Match or a RuleMatch component and let QDT either be a set
of possible QueryRequests or DutyTargets. A match semantic function is a map-

SHAPE FFG-2014-845638 9

ping [[M]] : QDT → {m, nm}, where m and nm denote match and no match
respectively.

A certain Match component (i.e. the attribute value it represents) matches,
whenever it is part of a particular Query or DutyTarget.

[[Mid]](QDT) =

m ifM ∈ QDT

nm ifM /∈ QDT
(1)

A RuleMatch component (i.e. a set of Match components) only matches, if all of
its Match components are evaluated to m.

[[RMid]](QDT) =

m if ∀i : [[Mi]](QDT) = m

nm if ∃i : [[Mi]](QDT) = nm
(2)

Action

Let A be an Action component and let QDT either be a set of possible QueryRe-
quests or DutyTargets. An action semantic function is a mapping [[A]] : QDT →
{m, broadm, narm, reqm, partm, nm}, where m denotes match, broadm match of
broader action, narm match of narrower action, reqm match of requiring action,
partm match of required action, and nm denotes no match.

A certain Action component (i.e. the action it represents) matches, whenever
it is part of a particular Query or DutyTarget or if an equivalent action is part of
a particular Query or DutyTarget. Otherwise, it either evaluates to broadm if it is
related to a broader action that is part of the Query or DutyTarget, or to narm if it
is related to a narrower action that is part of the Query or DutyTarget, or to partm
if it is related to an action that is part of the Query or DutyTarget and this action
requires the Action component for its execution, or to reqm if it requires another
action for its execution and this required action is part of the Query or DutyTarget,

10 Public Document

or to nm otherwise.

[[Aid]](QDT) =



m if Aid ∈ QDT or

∃i : equals(Aid,Ai) ∧ Ai ∈ QDT

narm else if ∃i : broader(Ai,Aid) ∧ Ai ∈ QDT

broadm else if ∃i : broader(Aid,Ai) ∧ Ai ∈ QDT

partm else if ∃i : requires(Ai,Aid) ∧ Ai ∈ QDT

reqm else if ∃i : requires(Aid,Ai) ∧ Ai ∈ QDT

nm otherwise

(3)

Constraint and ConstraintSet

Let CON be a Constraint component, CONS a ConstraintSet component, and
let PFS be a ProofSet. A constraint semantic functions is a mapping [[CON]] :
PFS → {t, f}, where t and f indicate whether the boolean formula represented
by CON holds, given PFS as input.

This boolean formula is evaluated, if provided ProofSet contains a Proof that
is associated with the respective Constraint of the formula. If no associated Proof
exists, it is evaluated to f.

[[CON id]](PFS) =


f bool(PF i , operator(o), bound(a)) if ∃i : PF i ∈ PFS∧

i = id

f otherwise

(4)

A ConstraintSet component (i.e. a set of Constraint components) only evaluates
to t, if all of its Constraint components are evaluated to t or the ConstraintSet is
empty, i.e. there does not exist any associated Constraints at all.

[[CONS]](PFS) =


t if ∀i : [[CON i]](PF i) = t or

CONS = ∅

f if ∃i : [[CON i]](PF i) = f

(5)

DutyRule

Let DUR be a DutyRule component of the form DURid = [RM, CONS] and
let PFS be a ProofSet. A duty rule semantic function is a mapping [[DUR]] :

SHAPE FFG-2014-845638 11

PFS → {t, f}, where t represents the fulfilment of DUR, and f the exact opposite.

A DutyRule component evaluates to t, if there exists at least one DutyProof
in the ProofSet whose DutyTarget matches with the RuleMatch component of the
respective DutyRule, and its ConstraintSet component returns true. It evaluates to
f in any other case.

[[DURid]](PFS) =


t if ∃i : DPF i ∈ PFS ∧ [[RMid]](DT id) = m ∧

[[Aid]](DT id) = m ∧ [[CONS]](PFS) = t

f otherwise

(6)

PermissionRule

Let PER be a PermissionRule component of the form PERid = [RM,A, 〈DUR∗id〉, CONS]
and let Q be a set of possible QueryRequests. A permission rule semantic function
is a mapping [[PER]] : Q→ {permission, cper, cpro, na, nm}, where permission rep-
resents permission of Q, cper denotes conditional permission of Q, cpro indicates
conditional prohibition of Q, and na, nap represent not active and not applicable
respectively.

A PermissionRule component evaluates to permission, if its RuleMatch compo-
nent matches with Q, its ConstraintSet component returns true, and if it has no
associated duties. It evaluates to cpro if its RuleMatch component matches with Q,
its ConstraintSet component returns true, but it has at least one associated DutyRule
component that evaluates to false given a specific ProofSet as input. It evaluates
to cper if its RuleMatch component matches with Q, its ConstraintSet component
returns true, and all associated DutyRule components evaluate to true given a spe-
cific ProofSet as input. Finally, a PermissionRule component evaluates to na if its
RuleMatch component matches with Q but its ConstraintSet component returns

12 Public Document

false, and it evaluates to nap if its RuleMatch component does not match with Q.

[[PERid]](Q) =



permission if [[RMid]](Q) = m, [[Aid]](Q) 6= nm,

[[CONS]](Q) = t and 〈DUR∗id〉 = ∅

cpro if [[RMid]](Q) = m, [[Aid]](Q) 6= nm,

[[CONS]](Q) = t and ∃i : [[DURi]](PF i) = f

cper if [[RMid]](Q) = m, [[Aid]](Q) 6= nm,

[[CONS]](Q) = t and ∀i : [[DURi]](PF i) = t

na if [[RMid]](Q) = m, [[Aid]](Q) 6= nm and

[[CONS]](Q) = f

nap otherwise

(7)

ProhibitionRule

Let PRR be a ProhibitionRule component of the form PRRid = [RM,A, CONS]
and let Q be a set of possible QueryRequests. A prohibition rule semantic function
is a mapping [[PRR]] : Q → {prohibition, na, nm}, where prohibition represents
the prohibition of Q, na denotes that PRRid is not active, and nap represents not
applicable.

A ProhibitionRule component evaluates to prohibition, if its RuleMatch compo-
nent matches with Q and its ConstraintSet component returns true. It evaluates
to na if its RuleMatch component matches with Q but its ConstraintSet component
returns false, and it evaluates to nap if its RuleMatch component does not match
with Q (i.e. the rule is not applicable).

[[PRRid]](Q) =



prohibition if [[RMid]](Q) = m, [[Aid]](Q) 6= nm and

[[CONS]](PF) = t

na if [[RMid]](Q) = m, [[Aid]](Q) 6= nm and

[[CONS]](PF) = f

nap otherwise

(8)

Policy

Let P be a Policy component and let Q be a set of possible QueryRequests. A policy
semantic function is a mapping [[P]] : Q→ {permission, prohibition, cpro, na, nm},

SHAPE FFG-2014-845638 13

where permission represents permission of Q, prohibition represents prohibition of
Q, cpro indicates conditional prohibition of Q, and na, nap represent not active
and not applicable respectively.

Given a Policy Pid of the form Pid = [RM,A,R,ALG] where Rule R either
represents a ProhibitionRule or a PermissionRule, R = 〈R1, . . . ,Rn〉 be the set of all
Rules of Pid, and ALG denotes the conflict resolution strategy of the Policy. Pid

is not active, if all R in Pid are evaluated to na. Pid is not applicable (nap), if all
R in Pid are evaluated to nap. If there is at least one R in Pid which is neither
evaluated to na nor nap, Pid is evaluated to the result returned by the respective
conflict resolution strategy ALG that takes those Rules as input.

[[Pid]](Q) =



na if ∀i : [[Ri]](Q) = na

na if ∃i : ¬([[Ri]](Q) = (permission|prohibition)) and

∃j : [[Rj]](Q) = na

nap if [[RMid]](Q) = nm and [[Aid]](Q) = nm

⊗ALG(R) otherwise

(9)

4 Reasoning over Business Processes and Constraints

Process models that include information related to all the business process per-
spectives (cf. Section 2) constitute an analysis source to extract information and
infer knowledge in an automated way.

There is vast literature on the analysis of the control flow to check, for in-
stance, whether a business process has deadlocks or livelocks [58]. Most of the
approaches rely on Petri nets [43] as process representation formalism due to its
well-defined semantics. The so-called behavioral profiles [68] describe the differ-
ent relations between process activities and have been used for several purposes,
e.g., for process model abstraction [53] or to check process consistency [66], pro-
cess compliance [67] and model equivalence [65].

Other approaches target the analysis of the data perspective [41]. Approaches
for the automatic generation of a data-centered view of processes [16], data-aware
checking of conformance between two process models [42] or data-aware business
process model abstraction [32] are examples of work performed in this regard.

However, less attention has been paid so far to the business process resource4

4 We will mainly refer to human resources.

14 Public Document

perspective, which, nonetheless, is crucial in the correct execution of processes. In
fact, it is one of the main concerns in the scope of SHAPE, as can be seen in the
requirements described in Deliverable 4.1 [13]. There are two fundamental actions
related to resource management in business processes:

Resource assignment is the definition of conditions or constraints that specify
the set of resources that are allowed to take part in a process activity, known
as potential participants or potential performers. The kind of participation can be
given by so-called task duties [11], which define the degree of involvement of
a resource in an activity. For instance, For instance, the Generic Human Roles
defined in BPEL4People [2] describe a resource responsible for the execution
of an activity, a resource in charge of approving the work performed, and a
resource being informed of the completion of an activity. The so-called RACI
matrices [54]) extend this set of task duties to include resources helping in the
execution of an activity by providing information required.

Resource allocation is the selection of actual participants or actual performers among
the resources assigned to an activity. There are several allocation mechanisms,
such as those detailed in the Workflow Resource Patterns [50]. Prioritization
mechanisms may help to decide who must take part in an activity in a specific
moment [12].

Unlike resource assignment, which has been often addressed by researchers in
the last years [55, 56, 14], resource allocation and work scheduling has tended to
be disregarded. In the following, we describe an approach for automated resource
allocation in business processes along with a mechanism to automatically analyze
the resource perspective at design time (i.e., before a process is executed) that
complements the analyses of the other perspectives (i.e., control flow and data)
mentioned above. In addition, we will briefly describe how security and policies
can be enforced in business process models such that we can automatically check
whether processes comply with regulations, laws and policies a process-oriented
organization may be subject to.

4.1 Resource Allocation/Work Distribution
Human resources are key elements in business process management as they are
responsible for process execution or supervision. Companies must ensure they
have the necessary human resources5 to carry out all the business activities. At

5 From now on resources for the sake of brevity.

SHAPE FFG-2014-845638 15

best, all the activities of the process instances running concurrently can be allo-
cated to suitable resources so that processes can be completed in an acceptable
amount of time. However, lack of resources or an suboptimal work schedule may
produce delayed work, leading to a reduced quality in the provided services, an
increase of the time required to finish a process and, potentially, an increase in the
costs of hiring or re-organising the available resources.

In this section, we address the problem of allocating the resources available
in a company to the activities in the running process instances in a time optimal
way, i.e., such that process instances are completed in the minimum amount of
time. Our approach lifts limitations of prior research pursuing similar goals, which
assumes simplified non-cyclic processes and does not necessarily search for an
optimal resource allocation [62, 48].

We represent business processes as timed Petri nets in this Section. Therefore
a brief preliminary about Petri nets and timed Petri nets are included as follows.

4.1.1 Petri Nets

Petri nets [44] provide a diagrammatic tool to model concurrency and synchro-
nization in distributed systems. A Petri net is defined as a 4-tuple N = 〈P, T, F, M0〉,
where P is a finite set of places, T is a finite set of transitions, with P ∩ T = ∅,
F ⊂ (P× T) ∪ (T × P) describes a bipartite graph. A marking(state) M : P → Z+

assigns to each place a non-negative integer, denoting number of tokens in places,
where M0 is the initial marking. Each arc f ∈ F either connects a place to a transi-
tion (P× T) or a transition to a place (T× P). The set of places on incoming arcs of
a transition t ∈ T is called input place set •t and the set of places on outgoing arcs
of t is called output place set t•. As a complimentary definition we can also talk
about the input transition set •p of a place and vice versa. A transition may fire
when all input places p ∈ •t have tokens. When a transition t fires, written t−→, it
consumes all tokens in places •t and it produces tokens in each place p ∈ t•. Petri
nets whose places can contain at most one token in any state are called 1-safe Petri

nets. A marking Mk is reachable from a marking Mk−1 in one step if Mk−1
tk−1−−→ Mk.

A firing sequence of transitions −→σ = 〈t1t2...tn〉 changes the state of the Petri net at
each firing: M0

t1−→ M1
t2−→ M2

...−→ Mn. Two important properties of Petri nets that
we need with the scope of this paper are soundness and free-choiceness. Soundness
means that from every reachable state, a proper final state can be reached in N.
Thus, a successful execution is guaranteed. In a free-choice Petri net, every two
transitions t1 and t2, •t1 ∩ •t2 6= ∅ implies •t1 = •t2. Further properties of Petri
nets are detailed in [63].

16 Public Document

Timed Petri Nets. Several models have been developed to handle time in Petri
nets [6, 61, 46]. We adopt the concept of timed Petri nets described in [46], which
associates a firing finite duration c(t) with each transition t ∈ T of the net: a timed
Petri net is defined by a 5-tuple NT = 〈P, T, F, c, M0〉 such that 〈P, T, F, M0〉 is a
Petri net and c : T → N is a function that assigns firing delays to every transition
t ∈ T. Fig. 2 shows an example of a timed Petri net: circles represent places,
squares represent transitions, and numbers in brackets on transitions denote firing
delays. Filled squares denote “silent” transitions that have no firing delays, i.e.,
c(t) = 0. However, note that also normal transitions that correspond to activities
can have no delay, e.g., tm in Fig. 2.

4.1.2 Automated Reasoners

For automated resource allocation, we need an efficient automated reasoner. There
are four admissible alternatives supporting different formalisms that are appropri-
ate for our purpose. Namely, they are

Flora-2: Flora − 2 is an advanced object-oriented knowledge representation
and reasoning system. The formalism it requires is a dialect of F-logic [38] with
numerous extensions, including meta-programming in the style of HiLog [17],
logical updates in the style of Transaction Logic [8], and defeasible reasoning [64].

STeLP: STeLP is a solver for Answer Set Programming with temporal opera-
tors [10]. Taking as an input a particular kind of logic program with modal oper-
ators, STeLP obtains its set of temporal equilibrium models that are represented
in terms of a deterministic Büchi automaton capturing the complete program be-
haviour.

clingo: clingo is an answer set solver for normal and disjunctive logic pro-
grams [28]. It combines the high-level modelling capacities of Answer Set Pro-
gramming (ASP) [9, 27, 5, 39], which is a declarative knowledge representation
and reasoning formalism, with state-of-the-art techniques from the area of Boolean
constraint solving.

dlvhex: dlvhex system is a logic-programming reasoner for computing the
models of so-called HEX-programs [23], which are an extension of answer-set
programs towards integration of external computation sources.

We formalise our domain in ASP and used clingo as automated reasoner. This
decision is made due to high performance of clingo [34] and the big community
size of ASP. Further investigations on problem-based performance evaluation be-
tween these reasoners are planned as a future work. Now, we describe the syntax
and the semantics of ASP.

SHAPE FFG-2014-845638 17

4.1.3 ASP

Answer Set Programming (ASP) is a declarative programming paradigm oriented
towards solving combinatorial search problems along with declaratively defined
background knowledge in the form of rules.

Syntax. An ASP program Π is a finite set of rules of the form

A0:-A1, . . . , Am, not Am+1, . . . , not An. (10)

where n≥m≥ 0 and each Ai ∈ σ is an (first-order) atom, with the exception of A0,
which can be either an atom or bottom ⊥. A rule is called a fact if m=n=0 and a
constraint if A0 is ⊥. We generally omit the :- sign for facts, and the ⊥ sign for
constraints. In (10), not is meant to stand for “default negation” (sometimes re-
ferred to as “negation as failure”). Consider an example program Π1 = {lights_on.
shop_open:-lights_on, not door_locked.}With these two rules, intuitively, lights_on
should be derived since it is given as a fact, plus shop_open should also be de-
rived, because lights_on is derivable and there is no reason to assume door_locked,
as it is not derivable from any other rule. While this example considers only
propositional atoms in rules, whenever Ai is a first-order predicate with vari-
ables within a rule of the form (10), this rule is considered as a shortcut for its
“grounding” ground(r), i.e., the set of its ground instantiations obtained by re-
placing the variables with all possible constants occurring in Π. Likewise, we
denote by ground(Π) the set of rules obtained from grounding all rules in Π.
For instance, let Π2 = {p(1). p(2). q(X):-p(X).} then ground(Π2) = {p(1). p(2).
q(1):-p(1). q(2):-p(2).}.

Semantics. An interpretation I of a ground ASP program Π is a set of atoms.
A rule is satisfied by an interpretation I if the head (A0) of the rule is true when-
ever the body of the same rule is true with respect to I, that is A1, . . . , Am ∈ I
and Am+1, . . . , An 6∈ I. An interpretation I satisfies a program Π if it satisfies
all the rules in the program, and it is called a model of Π. An answer set of a
program Π that does not contain negation as failure is defined to be the unique
subset-minimal Herbrand model (i.e., intuitively, a subset of all rule heads) of
Π. Now consider a program Π that may contain negation. A model I is an
answer set for Π if it is an answer set of the reduct ΠI of Π w.r.t. I, defined
as the set of rules {A0:-A1, . . . , Am. | {Am+1, . . . , An} ∩ I = ∅} for all rules
of the form (10) in Π. For instance, for Π1 above the unique answer set is
{lights_on, shop_open}. Note that programs can have several answer sets, e.g.
Π3 = Π1 ∪ {door_locked:-lights_on, not shop_open} would have the additional
answer set {lights_on, door_locked}.

18 Public Document

Incremental ASP (iASP). Many problems conveniently modelled in ASP re-
quire a boundary parameter k that reflects the size of the solution. However, often
in problems like planning or model checking this boundary (e.g., the plan length
in a planning problem) is not known upfront, and therefore such problems are
addressed by considering one problem instance after another while gradually in-
creasing the parameter k. However, re-processing repeatedly the entire problem
is a redundant approach, which is why an extension of clingo natively supports
incremental computation of answer sets (iASP)[26, 28]; the intuition is rooted in
treating programs in program slices (extensions). Each time the parameter is in-
creased, a successive extension of the program is considered altogether with exist-
ing program slices. Redundancy in solving programs that require an incremental
parameter can be reduced in this incremental approach.

An iASP program is a triple (B, A[k], Q[k]), where B describes the static knowl-
edge, and A[k] and Q[k] are ASP programs parameterized by a single parameter k
that ranges over positive integers. In the iterative answer set computation of iASP,
while the knowledge derived from the rules in A[k] accumulates as k increases, the
knowledge obtained from Q[k] is only considered for the latest value of k. For this
reason, A[k] and Q[k] are named cumulative knowledge and volatile knowledge,
respectively. More formally, an iASP solver computes in each iteration i

Π[i] = B ∪⋃
1≤j≤i A[k/j] ∪Q[k/i]

until an answer set for some (minimum) integer i ≥ 1 is found. We will demon-
strate next, how iASP can be successfully used to model and solve various variants
of resource allocation problems in business process management.

The bottom layer is the generic iASP encoding ΠN for finding a firing sequence
between initial and goal markings of a 1-safe Petri net N. This provides a marking
of N at each value of parameter k. On a second layer we extend ΠN towards
ΠT to encode timed Petri Nets, i.e., we support business processes encoded as
timed Petri nets whose activities can have a duration. Consequently, this encoding
cannot only compute possible markings, but also the overall duration for a firing
sequence. In other words, now we also know about the value of the overall time
spent time at a firing sequence of length k. In the upper layer ΠR, we include rules
and constraints about resources in order to encode an iASP program that allocates
activities to available resources for a certain period of time.

Please, note some general assumptions that we make about the structure of a
resource allocation problem: (i) no resource may process more than one activity
at a time; (ii) each resource is continuously available for processing; (iii) no pre-
emption, i.e., each activity, once started, must be completed without interruptions;

SHAPE FFG-2014-845638 19

AN [k] :

{fire(T, k, I) : inPlace(P, T), instance(I)}. (11)

:-fire(T, k, I), instance(I), inPlace(P, T), not tokenAt(P, k, I). (12)

tokenAt(P, k, I):-fire(T, k− 1, I), outPlace(P, T), instance(I). (13)

:-inPlace(P, T1), inPlace(P, T2), T1! = T2, fire(T1, k, I), fire(T2, k, I), (14)

instance(I).

consumeToken(P, k, I):-inPlace(P, T), fire(T, k, I), instance(I). (15)

tokenAt(P, k, I):-tokenAt(P, k− 1, I), not consumeToken(P, k− 1, I). (16)

QN [k] :

:-not tokenAt(pg, k, I), instance(I). (17)

Figure 5 1-safe Petri net formulation in iASP

and (iv) the processing times are independent of the schedule, and they are known
in advance. These assumptions are common in related approaches [62].

4.1.4 ΠN : A Generic Formulation of 1-safe Petri Nets
Based on the notions introduced in preliminary section for Petri nets, we formalise
the firing dynamics of 1-safe Petri net N = 〈P, T, F, M0〉 in an iASP program
(BN , AN [k], QN [k]). Given a goal state Mk, which for the sake of simplicity we
assume to be defined in terms of a single goal place pg, the aim is to find a shortest
possible firing sequence in number of firings −→σ = 〈t1t2...tk〉 that does not violate
the constraints, from M0 to Mk. The formulation is shown in Fig. 5.

BN : N = 〈P, T, F, M0〉 is represented by facts using predicates inPlaceN(p, t)

and outPlaceN(p, t) that encode F. We encode different instances i of N by the
unary predicate instanceN , which allows us to run the allocation problem against
different instances of the same process; initial markings of instance M0i are defined
as facts via predicate tokenAtN(P0, k0, i) where for each p ∈ P0, M0(p) = 1.6

AN [k]: Rule (11) guesses all subsets of possible firing actions for each instance
of N. Constraint (12) ensures that any transition t is fired only if all input places in
•t have tokens. Rule (13) models the effect of the action fire on output places by
assigning a token to each output place in the step following the firing. Constraint
(14) prohibits concurrent firings of transitions t ∈ p•. Rules (15) and (16) preserve
tokens at place p in successive steps if none of the transitions t ∈ p• fires.

QN [k]: Finally, constraint (16) in Fig. 5 enforces a token to reach the goal place

6 Since in the following we only consider instances of the same Petri Net, we will drop the suscript
N in the predicates.

20 Public Document

pg (for all instances i ∈ I). The computation ends as soon as this constraint is
not violated in an iteration of the iASP program, i.e., it computes the minimally
necessary number of iterations k to reach the goal state.

4.1.5 ΠT : Activity Scheduling using Timed Petri Net

In order to model activity durations, we extend the above iASP encoding towards
Timed Petri nets: that is, ΠN is enhanced with the notion of time in ΠT. By doing
so, ΠN ∪ΠT becomes capable of scheduling activities in instances of a timed Petri
net NT.

BT: We expand the input of ΠN with facts related to time and with the rules
that are independent from the parameter k. For each fact tokenAt(p0, k0, i) previ-
ously defined we add in BT a fact timeAt(p0, c0, k0, i) where c0 is the initial time
at p0. In order to distinguish activity transitions and (“silent”) non-activity tran-
sitions7, we add facts activity(t) for all activities. Durations of activities are
specified with facts timeActivity(t,c) where t is an activity and c ∈ Z+. The
remainder of BT is given by rules (18)+(19) in Fig. 6: rule (18) defines firing delays
of each transition in N and rule (19) assigns duration zero to activity transitions
per default, where the delay is not otherwise specified.

AT[k]: Rule (22) defines the effect of action fire on timeAt for all output places
t• where t is a non-activity transition. In this case, the maximum time among the
input places, which is computed by rules (20) and (21), is propagated over all
output places. As opposed to (22), rule (23) defines the effect of action fire on
timeAt for activity transitions. Time value derived in rule (23) for the next step
is the sum of the maximum time value at the input places and the value of the
activity duration. Rule (24) conserves the time value of a place in the succeeding
step k in case the transition does not fire at step k− 1.

QT[k]: On top of QN [k], an optimization statement (25) is added for computing
answer sets with the minimum time cost.

4.1.6 ΠR : Resource Allocation

In the last layer of our iASP program, ΠR, we additionally formalise resources and
related concepts. ΠN ∪ΠT ∪ΠR allow allocating resources to activities for a time
optimal execution of all defined instances of NT.

7 Recall: in Petri nets representing business processes, activity transitions are empty squares while
silent transitions are represented in filled squares (cf. Fig. 2).

SHAPE FFG-2014-845638 21

BT :

firingDelay(T, C):-timeActivity(T, C). (18)

firingDelay(T, 0):-not timeActivity(T, _), activity(T). (19)

AT [k] :

greTimeInPlace(P1, T, k, I):-inPlace(P1, T), inPlace(P2, T), fire(T, k, I), (20)

timeAt(P1, C1, k, I), timeAt(P2, C2, k, I), P1! = P2,

C1 < C2, instance(I).

maxTimeInPlace(P, T, k, I):-inPlace(P, T), not greTimePlace(P, T, k, I), (21)

fire(T, k, I), instance(I).

timeAt(P2, C, k, I):-not activity(T), fire(T, k− 1, I), outPlace(P2, T), (22)

maxTimeInPlace(P, T, k− 1, I), timeAt(P, C, k− 1, I),

instance(I).

timeAt(P2, C, k, I):-activity(T), fire(T, k− 1, I), outPlace(P2, T), (23)

maxTimeInPlace(P, T, k− 1, I), timeAt(P, C, k− 1, I),

firingDelay(T, D), C = C1 + D, instance(I).

timeAt(P, C, k, I) :-not consumeToken(P, k− 1, I), inPlace(P, T), (24)

timeAt(P, C, k− 1, I), instance(I).

QT [k]′ :

#minimize{timeAt(pg, C, k, I) : instance(I) = C} (25)

Figure 6 Scheduling extension

BR: The facts related to resources and organisational models are defined in
the input of ΠT. An example organisational model is shown in Fig. 4. Facts
hasRole(r,l) relates a resource r to a role l. Activities are related to a role via facts
of the form canExecute(l,t), which means that a role l is allowed to performing
an activity t. An optional estimated duration for a resource to execute an activ-
ity can be defined by timeActivityResource(t,l,c). Similarly an optional esti-
mated duration for a role per activity can be defined by timeActivityRole(t,l,c).
Both can override the default timeActivity(t,c). In particular, the order (>) pre-
ferred in resource-time allocation is timeActivityResource>timeActivityRole>

timeActivity. This is especially useful when a resource or a role is known to
execute a particular activity in a particular amount of time, which can be longer
or shorter than the default duration of the activity. In our program (cf. Fig. 7) this
preference computation is encoded in rules (26)-(30). Rule (26) and (27) are pro-
jections of optionally defined activity execution durations. Rules (28)-(30) derive
correct execution duration for resource-activity pairs considering both mandatory
and optional duration knowledge.

AR[k]: In the iterative part, rule (30) allocates a resource r to an activity t from

22 Public Document

BR :

existsTimeActivityResource(T, R):-timeActivityResource(T, R, C). (26)

existsTimeActivityRole(T, L):-timeActivityRole(T, L, C), hasRole(R, L). (27)

takesTime(T, R, C):-timeActivityResource(T, R, C). (28)

takesTime(T, R, C):-timeActivityRole(T, L, C), hasRole(R, L), canExecute(L, T), (29)

not existsTimeResource(T, R).

takesTime(T, R, C):-firingDelay(T, C), hasRole(R, L), canExecute(L, T), (30)

not existsTimeActivityResource(T, R),

not existsTimeActivityRole(T, L).

AR[k] :

{assign(R, T, C, C2, k, I) : takesTime(T, R, C), C2 = C + D}:-inPlace(P1, T), (31)

timeAt(P1, C, k, I), activity(T), instance(I).

timeAt(P2, C2, k, I):-activity(T), assign(R, T, C1, C2, k− 1, I), (23)*

fire(T, k− 1, I), outPlace(P2, T), instance(I).

assigned(T, k, I):-assign(R, T, C1, C2, k, I). (32)

:-not assigned(T, k, I), fire(T, k, I), activity(T), instance(I). (33)

:-assign(R, T, C1, C2, K, I), assign(R1, T, C3, C4, K, I), R! = R1. (34)

:-assign(R, T1, C1, C2, K1, I1), assign(R, T2, C1, C2, K2, I2), C1! = C2, T1! = T2. (35)

:-assign(R, T, C1, C2, K1, I1), assign(R, T, C1, C2, K2, I2), C1! = C2, I1! = I2. (36)

:-assign(R, T1, C1, C2, K1, I1), assign(R, T2, C1, C2, K2, I2), (37)

C1! = C2, I1! = I2, T1! = T2.

:-assign(R, T, B1, B2, K1, I), assign(R, T2, A1, A2, K2, I2), A1 > B1, A1 < B2. (38)

:-assign(R, T, B1, B2, K1, I), assign(R, T2, A1, A2, K2, I2), A2 < B2, A2 > B1. (39)

Figure 7 Allocation extension

time c to time c2. Note that, for handling optional execution durations, rule (23)
from Fig. 6 is replaced by rule (23)*. Rule (32) along with constraint (33) prohibits
any firing of an activity transition that is not allocated to a resource. Constraint
(34) ensures that an activity cannot be assigned to more than one resource. Con-
straints (35)-(37) guarantee that only one resource is assigned to one activity at a
time. Constraints (38) and (39) prevent a resource to be assigned when it is busy.

4.1.7 Time Relaxation

In case a resource is busy at the time when s/he is required for another activity,
our program would be unsatisfiable as it is. We add rules (40) and (41) (cf. Fig. 8)
into AT[k] for allowing the demanding activity to wait until the required resource
is available again.

SHAPE FFG-2014-845638 23

AT [k]′ :

relaxationAt(P, C + 1, k, I):-timeAt(P, C, k− 1, I), inPlace(P, T), activity(T), (40)

not consumeToken(P, k− 1, I), instance(I).

timeAt(P, C, k, I):-relaxationAt(P, C, k, I). (41)

Figure 8 Time relaxation for optimality

The extended version of this section is submitted to Business Process Manage-
ment 2015. Therefore, an example scenario and the performance evaluation can be
found in [33].

4.2 Resources Analysis
We have identified and formally defined a set of Person-Activity analysis oper-
ations related to how resources are involved in process activities, which can be
divided into three categories: basic operations, consistency checking operations
and criticality checking operations. We next summarize them together with a
mechanism to automatically execute them based on Description Logics(DLs). The
complete information can be found in [14].

4.2.1 Person-Activity Analysis Operations
All the operations have been defined to be as reusable as possible.

4.2.1.1 Basic Person-Activity Operations

These operations analyse the relations between the activities of a process and the
people who can perform them according to the resource assignments. There are
four basic person-activity operations, one of which (Potential Participants) has
already been identified in the literature.

Potential Participants (PP) The PP operation takes an activity and a task duty
and returns the people who are candidates to perform that specific task duty
for the activity specified. Thus, at design time, a person is a potential partic-
ipant of an activity for a specific task duty if there is some process instance in
which she can be an actual performer of that task duty8.
Although obtaining the potential participants of an activity is sometimes straight-
forward, the presence of access-control constraints in processes may make it

8 Note that from this definition, participant and performer can be used as synonyms in this context.

24 Public Document

significantly more difficult, especially when they affect loops. We refer the
reader to [14] for further information.

This operation serves for studying or checking whether people are involved in
specific types of activities as well as for detecting security problems derived
from an incorrect assignment of permissions in terms of activity execution,
i.e., a person who was supposed to be involved in an activity but cannot take
part in it due to the assignment. It is also useful to detect activities that can
be assigned to the same resources and, hence, are candidates for aggregation
when creating an executable BP model [21]. Furthermore, typical operations
for set comparison used in Set Theory [24] can be applied to this operation,
e.g., to determine whether the potential participants in two given activities are
exactly the same resources.

Potential Activities (PA) The PA operation lists the activities that may be allo-
cated to one resource with regard to a specific task duty during a process
instance execution. It takes the identity of a specific person and the task duty
to be checked, and it returns the activities that can be potentially allocated to
this person for that task duty.

This operation is useful to provide people with a personalised list of all of the
activities they may be involved in or to identify the requirements for some-
one who is going to substitute a certain person in the organisation. It is also
useful to detect the degree of involvement of a person in a process in terms
of the number of activities in which she can take part. Moreover, similar to
potential participants, typical operations for set comparison can also be used
to determine, for instance, whether the set of activities that can be allocated
to a specific person is a subset of the set of activities potentially allocated to
another person.

Non-potential Activities (NPA) The NPA operation takes a person and a task
duty and calculates the activities in which she cannot perform that task duty, if
any.

This operation is useful when one is interested in increasing the responsibilities
of a person in the organisation. The outcome of this operation is a set of
activities whose resource assignments are candidates to be changed to include
the resource at hand.

Non-participants (NP) The NP operation takes an activity and a task duty and
returns the people who can never participate in the activity performing that
task duty, if any.

This operation is a way to quickly detect the relationship between people and
processes in an organisation, making it easier to ensure that certain resources

SHAPE FFG-2014-845638 25

do not have access to processes that are not aligned with their duties or respon-
sibilities in the company. Such duties may be defined in the form of access-
control policies of people to specific types of processes or activities.

4.2.1.2 Consistency Checking Person-Activity Operation

This category of operations includes just one operation focused on checking whether
for all activities of the process there is at least one person who is allowed to per-
form the task duty for any execution of the activity. Specifically, the consistency
checking (CC) operation takes a task duty and returns whether the process model
is consistent with regard to that task duty, i.e., if it is always possible to find a
potential participant for an activity during any execution of the process for that
task duty. This definition is based on the definition of consistency introduced in
[7], although it has been extended to address task duties.

An inconsistent process may result in behavioural problems at run time be-
cause there may not be anyone to whom some task duty can be allocated in case
the activity needs to be executed in a process instance. Therefore, this operation
is fundamental to ensure the correct operation of the business process resource
perspective, as it detects situations in which the process could fall into a deadlock.

4.2.1.3 Criticality Checking Person-Activity Operations

Apart from consistency, one aspect that is relevant to resource assignment is check-
ing whether there is only one person who is authorised to perform a certain activ-
ity of the process. Identifying these people is useful for reducing the vulnerability
of the organisation to failure, which, according to Malone et al. [40], is strongly
related with the possibility to replace one resource with another. The two novel
operations introduced next detect weak points of a process in the face of resource
unavailability.

Critical Participants (CP) One or more people are critical participants of a pro-
cess if they have to be allocated to one or more activities because there are no
more potential participants for them. The CP operation takes a task duty and
returns the members of the organisation who are critical in the execution of a
process for that task duty.

The simplest case is when there is only one potential participant for an activ-
ity. However, this operation also has to take into account situations that may
appear in the presence of access control constraints. We refer the reader to [14]
for further information.

26 Public Document

A process with a critical participant for task duty Responsible is a process
whose execution may eventually depend on one unique person. This fact may
make the organisation vulnerable in the sense that it may depend on one spe-
cific person to complete one of its business processes. Therefore, this operation
is useful for identifying those people who have this particular relevance in the
organisation. Furthermore, it is also useful as a mechanism to identify po-
tential bottlenecks without the need to gather and analyse process execution
logs.

Critical Activities (CA) An activity is a critical activity for a given task duty if it
has only one potential participant for that task duty. The CA operation takes a
person and a task duty and returns the critical activities in which that person
is involved with the given task duty.

Detecting the activities of a process that can only be performed by one person
helps pinpoint potential bottlenecks without the need to gather and analyse
process execution logs. It is also useful for obtaining the activities whose re-
source assignments should be modified temporarily or permanently when a
specific person is unavailable for a specific (or indefinite) period of time to
avoid process deadlocks.

4.2.2 Automated Analysis at Design Time

We show that the automated analysis of the business process resource perspective
is possible with an implementation of the analysis operations described in Sec-
tion 4.2.1 based on DLs and target at design-time analysis, i.e., with static infor-
mation before a process is executed. To that end, all the required information must
be included in a DL-based Knowledge Base (KB). Specifically, a KB comprises two
components, the TBox and the ABox. The TBox describes terminology, i.e., the KB
in the form of concepts and property definitions, and their relations; the ABox con-
tains assertions about individuals using the terms from the TBox. For our purpose,
the following mappings to DLs are required: the mapping of the organisational
information of the company, i.e., an organizational model with roles, positions,
resource skills, and the like; the mapping of the process elements, i.e., the process
model with resource-related information being analyzed; and the mapping of the
resource assignment conditions (cf. Section 4) from the resource assignment lan-
guage used. We rely on the mappings explained in [14], which are summarized in
Deliverable D4.1 [13]. We use Resource Assignment Language (RAL) [15] to de-
fine the resource assignment conditions because it is more expressive than other
notations, as shown in [11, 14].

SHAPE FFG-2014-845638 27

Before defining the analysis operations in terms of standard DL reasoning op-
erations, it is necessary to introduce the DL-based KB that will be used.

I Definition 1 (DL-based knowledge base KC). Let O be an organisational model,
bp be a business process, and ρ be a resource assignment for the activities of bp.
KC is a DL-based KB obtained after mapping the elements of O, bp, and ρ into DLs
using the mappings described in [14] and summarized in Deliverable D4.1 [13],
and including the following axioms:
1. For every activity a in the business process that is not in a loop: {a} v≤

1isO f Type−

2. For every activity a in the business process: {a} v≥ 1isO f Type−

Equipped with the KB KC, the person-activity analysis operations can be for-
mulated in terms of standard DL reasoning tasks that are implemented by most
DL reasoners. In particular, the following DL reasoning tasks are used.

Concept subsumption, which is the problem of deciding whether a concept C1

is subsumed by another concept C2 with respect to a KB K. In particular, we
are interested in obtaining all concepts that are subsumed by a concept C1 and
denote this reasoning task as subconceptsK.
Concept retrieval, which is the problem of computing the set containing exactly
every instance of a concept C with respect to a KB K. We denote this reasoning
task as individualsK.
Consistency, which is the problem of deciding whether a KB K is consistent.
We denote this reasoning task as consistentK.

4.2.2.1 Basic Person-Activity Analysis Operations

The non-participants of an activity a for task duty d are those people p for which
there is no ia ∈ AIa such that d(ia, p), i.e., those people p such that p ∈ Person u
¬∃d−.AIa. This corresponds to the concept retrieval reasoning task, and hence, the
non-participants operation can be expressed in terms of a DL reasoner as follows:

NP(abp, dbp) = individualsKC(Person u ¬∃d−.AIa)

Having the non-participants of an activity a for a task duty d, the potential
participants of a for task duty d can be obtained as those people who are not non-
participants of a for task duty d because for any person p and task duty d, it holds
that PP(a, d) ∪ NP(a, d) ≡ Person, and PP(a, d) ∩ NP(a, d) = ∅.

The same approach can be followed for the operations that obtain the activities
in which a person can participate. The non-potential activities of a person p for

28 Public Document

task duty d are those activities for which there is no ia ∈ AIa such that d(ia, p).
Therefore, an activity a is a non-potential activity of a person p regarding a task
duty d if its activity instances AIa v ActivityInstanceu¬∃d.{p}. This corresponds
with the concept subsumption reasoning task as follows:

NPA(pbp, dbp) = subconceptsKC(ActivityInstance u ¬∃d.{p})

Finally, similar to potential participants, the potential activities of a person p
for a task duty d can be obtained as those activities of the process that are not
amongst its non-potential activities.

4.2.2.2 Consistency Checking Person-Activity Operations

As proven in [14], checking the consistency of a business process is equivalent to
checking its so-called α-consistency. Furthermore, the α-consistency of a process
can be computed by checking the consistency of K1

C.

As a result, the consistency checking operation can be expressed in terms of
the consistency reasoning task as follows:

CC ⇔ consistentK1
C

4.2.2.3 Criticality Checking Person-Activity Operations

The two criticality checking person-activity operations can be defined in terms of
DL reasoning tasks as follows. A person p is a critical participant for task duty d if
there is a subset of activities in the process such that p has to be allocated to task
duty d of some activity instance of any of these activities in any possible execution
that involves any of them. In other words, a person p is critical if KC entails that
p participates with task duty d in some activity instance of the process KC |=
p ∈ ∃d−.ActivityInstance, which can be easily computed using a DL reasoner by
means of the concept retrieval reasoning task:

CP(dbp) ≡ individualsKC(∃d−.ActivityInstance)

An activity a is critical for person p and task duty d if p is the only person who
can perform task duty d in activity a. In other words, a is critical if AIa v ∃d.{p}.
Therefore, to obtain all critical activities of a person, the concept subsumption
reasoning task can be used as follows:

CA(pbp, dbp) ≡ subconceptsKC(∃d.{p})

SHAPE FFG-2014-845638 29

4.3 Security and Compliance in Business Processes
Security or in general compliance in business processes can be understood as con-
sistence of a set of rules in business processes against a set of rules stated in some
regulatory documents (e.g. business contracts). Those documents provide general
guidance in how parties agreed to work with each other, i.e. ensuring compliance
of business processes according to regulatory documents means to check whether
the specification and all possible execution paths of a business process comply
with a normative document regulating the domain of the process [29].

Figure 9 Compliance Space as linkage between Legal Space and Business Process Space
taken from [29].

Furthermore, compliance of business processes with regulatory documents is
important to integrate the two perspectives of legal and business process spaces
which are usually separated from each other (cf. Figure 9).

While in the legal domain, the focus lies on contract negotiation, contract draft-
ing and ensuring the legal validity of contracts according to relevant laws such as
business contracts law and various regulations, the business process perspective
deals with management science, such as various business process re-engineering
approaches.

The compliance space however, is particularly driven by recent regulative and
legislative acts, which require the establishment of stronger and more enforce-
able compliance requirements against the target set of rules. Ensuring compli-
ance of business processes with business contracts is a complex problem which
was mostly done through manual checking and analysis of regulatory documents.
However, approaches towards formalisation of contract conditions [4], open new

30 Public Document

possibilities for an increasing role of tools to support contract analysis (e.g. to
identify clause inconsistency), and automated reasoning over compliance rules.

5 Business Process Management Systems/Suites

The development of transaction management (Business Process Management (BPM))
has made rapid progress within the last years. More and more companies use
corresponding tools particularly for process automation - Business Process Man-
agement Suites (BPMS).
An evaluation of currently existing tools on the market will promote the decision
which tool satisfies both formal modelling processes (also in the concern of re-
source allocation) and integrating these models in a BPMS capable to deal with
Siemens environment.

5.1 Criteria for Evaluation
The whole list within all of its details will be available in the next deliverable since
the evaluation is not finished yet. But to provide an insight into the extensive
evaluation progress, tools are evaluated and selected based on criteria in

design time validation (e.g. is the format of BPMN 2.0 supported, and process
realization)
runtime validation (e.g. process execution with deadlocks)
execution support in resource allocation & scheduling (e.g. how is it sup-
ported to allocate resources to tasks, how can constraints on resource allocation
be modelled and how is it supported to schedule allocations)
adaptivity (e.g. changes at runtime - how are they supported, through which
API the tool is extensible)

5.2 Notation in BPMS
The notation of business processes is the first level for Business Process Modeling
Suites (BPMS) to design processes in a human-readable way and make them in-
teroperable with different BPMS at the same time. Since there exist some methods
for converting formal models of processes to a notation interoperable with BPMS,
this will be investigated in the next deliverable.
BPMN [45] is one of the most advanced and widely used representation of busi-
ness processes. In its actual form, BPMN 2.0 is the most recent release to enable
a metamodel and interchange format beside the notation. This is a critical point

SHAPE FFG-2014-845638 31

to decide which BPMS (Business Process Modeling Suites) to use for further pro-
cess representation and execution. For instance, the tool Bizagi claims to support
BPMN 2.0. But instead using the BPMN2 XML standard Bizagi creates an XML
file only readable for Bizagi so that the advantage of BPMN 2.0 to interchange
diagrams easily is not given. The focus on this tool definitely lies on the usability
of the software. On the other hand, this is exactly what makes this tool remark-
able, the user is guided through a convenient wizard step by step. So the great
advantage of BPMN 2.0 for BPMSs is the handling of imports and exports because
BPMN 2.0 allows saving the model as a BPMN2 XML file which is accepted from
tools like Bonita, Camunda (formerly known as Activiti) and jBPM. With a val-
idation module, syntax errors are detected, which would produce an erroneous
BPMN2 XML file.

5.3 Extensions
Most of the BPMSs have a web service API to extend the process externally. Due
to the possibility of interchanging the metadata of a process diagrams via BPMN2
XML format, this can also be seen as an extension. Table 3 visualizes an overview
of extensions of tools.

5.4 Some Suites evaluated
According to the evaluation criteria tools will evaluated and selected. To obtain an
overview what tools exist on market, the study [37] which is a mix of open source
and enterprise tools evaluation give an insight of strengths and weaknesses of
BPMS.

The Adobe solution is recommended if a convenient and appealing process ex-
ecution for end users is important and the processing of PDF documents across
different input and output channels represents the central concern of the BPM
project. The solution is less recommended when issues such as process control-
ling or technical process modeling with BPMN are relevant, or at least an exchange
is requested with appropriate modeling tools.
The solution of Axon Active is recommended when a powerful and intuitive pro-
cess implementation using BPMN is required in the development environment,
while professional and technical models should be supported. The solution, how-
ever, is less recommended, for example, when an appealing user interface for end
users without previous adaptation ("out of the box") must be available, or when
a special task on BPM Governance aspects (such as rights management and life

32 Public Document

Table 3 API - Extensions

Suite Notation API

Adobe BPMN, but not fully supported Service invocation via Java uti-
lizes Remote Method Invocation
(RMI) and utilizes a strongly
typed API

Axon Active BPMN 2.0 on graphically stan-
dard but not stored in BPMN2
XML file

SAP, MS-SharePoint

Bizagi BPMN 2.0 on graphically stan-
dard but not stored in BPMN2
XML file

The information exchange be-
tween Bizagi and the external
system is performed through
JSON files. RESTful services
and SOAP Web services allow
systems and portals to integrate

Bosch SI BPMN 2.0 stored in XML HTTP, WS, REST
Camunda BPMN 2.0 is used; Graph is

stored in BPMN2 XML file.
Java makes it very flexible and
extendable. Powerful REST API

Prologics BPMN but focus on designing
even with Gantt diagram; Word,
Excel, XML export

MS-SharePoint, SAP Integration

SAP BPMN 2.0 is used; Graph is
stored in BPMN2 XML file.

Java makes it very flexible and
extendable. Powerful REST API

Vitria BPMN 2.0 on graphically stan-
dard but not stored in BPMN2
XML file

Social Acitivity: Twitter, Face-
book, WebServices: ESB

Bonita BPMN 2.0 is used; Graph is
stored in BPMN2 XML file.

REST API

IBM BPMN 2.0 is used; Graph is
stored in BPMN2 XML file.

REST API

ProcessMaker BPMN Nothing available because it is a
Web UI

jBPM BPMN 2.0 is used; Graph is
stored in BPMN2 XML file.

REST API

cycle management) is located.
The solution of BizAgi is recommended if a comfortable, simple yet powerful
(functional and technical) process modeling, process implementation and process
execution is desired based on BPMN. The user interface of the modeling tools
is leaning against other MS Office, which facilitates entry. The solution is also
recommended if a simple integration of external systems or good possibilities of
Controlling are desired options. The solution is known, however, to recommend
less if comprehensive delegation capabilities are needed or when short response

SHAPE FFG-2014-845638 33

times within the development environment a relevant selection criterion repre-
sent.
The solution from Bosch SI is recommended for high standards of BPM gover-
nance (such as rights management and life cycle management) or when runtime
management (in particular task delegation) is important. Various adapters and
a very flexible customizable end-user portal are further essential aspects. Less
recommendable is the solution when a separation of professional and technical
models is wanted but a common language should be used, since in addition to
BPMN its own proprietary language for the implementation process is used. Even
for the more complicated use of the development environment, extensive devel-
opment knowledge should be available, what the solution can thus appear less
suitable for business users.
The solution of Camunda is recommended when highly individual, performance
standards compliant solutions with Java and based on BPMN models are to be
developed, with the possibility of this even free of charge to do on open-source
basis. The solution is recommended if a BPM Suite is needed to be integrated
into an existing application. The solution is less recommended if the customer
provides no Java developers, as this is an essential prerequisite. Many things are
only feasible if it they are implemented individually using Java.
The solution of PROLOGICS is recommended if special requirements to BPM
governance (such as rights management and life cycle management) are needed
and a separation of professional and technical modeling is desired. The solution is
also recommended when controlling process or a good development and test envi-
ronment is required. In addition, it is useful if a strong integration with Microsoft
products is sought and a high degree of usability is required in the development
environment. The solution is less recommended if the suite is to be operated out-
side the Microsoft world or clustering functionality is required.
The SAP solution is recommended if BPM governance and control management
play an important role or there are high administrative requirements. Numerous
adapters to external systems and thus high flexibility when integrating and good
interaction with other SAP products are further essential advantages. The solu-
tion is less recommended when simple process implementation and usability /
user experience are particularly important.
The solution of Vitria recommended when process control, flexible mash-ups and
skills for complex event processing as well as a web-based development are im-
portant requirements. The solution, however, is less recommendable when ease of
process implementation, usability/user experience, as well as adequate runtime
management are required.

34 Public Document

To sum up, process modeling, process execution and the integration are realized
by systems very well in most products, but there is still potential to improve in the
areas of runtime management and process controlling. Also in the area of process
execution and BPM-Governance almost all supplier have potential to improve.
Concerning this project where the transformation from formal modelled processes
to a BPMN notation is highly required, that part cannot be done from BPMS since
their starting point is at most a standardized notation like BPMN 2.0. The step to
convert into BPMN for executing at runtime by any APIs will be investigated in
the next deliverable.

6 Summary

In this deliverable we have investigated the state-of-the-art on existing models for
processes, resources, constraints and security, and their underlying formalisms. As
a result of the work, we outlined some of the latest literature on business process
modeling (cf. Section 2), different formalizations and reasoning techniques (cf.
Section 3 and 4, respectively) as well as a brief survey on latest business process
management systems and suites (cf. Section 5).

For the next deliverable we plan to tackle other requirements of SHAPE de-
scribed in Deliverable 4.1 [13] that concern WP2. Specifically, we will try some of
the formalisms presented in this deliverable to solve the same problems addressed
with ASP so far and we will extend our approach to allocate not only individual
resources but also teams to process activities.

References
1 Web Services Business Process Execution Language v2.0. Technical report, OASIS, 2007.

2 WS-BPEL Extension for People (BPEL4People). Technical report, OASIS, 2009.

3 V. Andrikopoulos, S. Benbernou, M. Bitsaki, O. Danylevych, M.S. Hacid, W.J. van den

Heuvel, D. Karastoyanova, B. Kratz, F. Leymann, M. Mancioppi, K. Mokhtari, C.N. Niko-

laou, M.P. Papazoglou, and B. Wetzstein. Survey on Business Process Management. Tech-

nical report, 2008.

4 Tara Athan, Harold Boley, Guido Governatori, Monica Palmirani, Adrian Paschke, and

Adam Wyner. Oasis legalruleml. In Proceedings of the Fourteenth International Conference

on Artificial Intelligence and Law, ICAIL ’13, pages 3–12, New York, NY, USA, 2013. ACM.

5 Chitta Baral. Knowledge representation, reasoning and declarative problem solving. Cambridge

university press, 2003.

6 B. Berthomieu and M. Diaz. Modeling and verification of time dependent systems using

time Petri nets. IEEE Trans. on Soft. Eng., 17(3):259–273, Mar 1991.

SHAPE FFG-2014-845638 35

7 Elisa Bertino, Elena Ferrari, and Vijay Atluri. The specification and enforcement of au-

thorization constraints in workflow management systems. ACM Trans. Inf. Syst. Secur.,

2:65–104, February 1999.

8 Anthony J Bonner and Michael Kifer. A logic for programming database transactions. In

Logics for databases and information systems, pages 117–166. Springer, 1998.

9 Gerhard Brewka, Thomas Eiter, and Mirosław Truszczyński. Answer set programming

at a glance. Communications of the ACM, 54(12):92–103, 2011.

10 Pedro Cabalar and Martín Diéguez. Stelp–a tool for temporal answer set programming.

In Logic Programming and Nonmonotonic Reasoning, pages 370–375. Springer, 2011.

11 Cristina Cabanillas. Enhancing the Management of Resource-Aware Business Processes. PhD

thesis, University of Seville, December 2012.

12 Cristina Cabanillas, José María García, Manuel Resinas, David Ruiz, Jan Mendling, and

Antonio Ruiz Cortés. Priority-Based Human Resource Allocation in Business Processes.

In Samik Basu, Cesare Pautasso, Liang Zhang, and Xiang Fu, editors, ICSOC, volume

8274 of Lecture Notes in Computer Science, pages 374–388. Springer, 2013.

13 Cristina Cabanillas, Alois Haselböck, Jan Mendling, Axel Polleres, Simon Sperl, and Si-

mon Steyskal. Engineering Domain Ontology: Base Regulations and Requirements De-

scription. Project deliverable, Vienna University of Economics and Business, Austria,

2015.

14 Cristina Cabanillas, Manuel Resinas, and Antonio Ruiz Cortés. Specification and Auto-

mated Design-Time Analysis of the Business Process Human Resource Perspective. Inf.

Syst., page In press., 2015.

15 Cristina Cabanillas, Manuel Resinas, and Antonio Ruiz-Cortés. RAL: A High-Level User-

Oriented Resource Assignment Language for Business Processes. In Business Process Man-

agement Workshops (BPD’11), pages 50–61, 2011.

16 Cristina Cabanillas, Manuel Resinas, Antonio Ruiz-Cortés, and Ahmed Awad. Automatic

Generation of a Data-Centered View of Business Processes. In CAiSE, volume 6741, pages

352–366, 2011.

17 Weidong Chen, Michael Kifer, and David S Warren. Hilog: A foundation for higher-order

logic programming. The Journal of Logic Programming, 15(3):187–230, 1993.

18 Thomas H. Davenport. Process innovation: reengineering work through information technol-

ogy. Harvard Business School Press, Boston, MA, USA, 1993.

19 Gero Decker. Design and Analysis of Process Choreographies. PhD thesis, University of

Potsdam, 2009.

20 Remco M Dijkman, Marlon Dumas, and Chun Ouyang. Semantics and analysis of busi-

ness process models in bpmn. Information and Software Technology, 50(12):1281–1294, 2008.

21 Marlon Dumas, Marcello La Rosa, Jan Mendling, and Hajo A. Reijers. Fundamentals of

Business Process Management. Springer, 2013.

22 Johann Eder and Walter Liebhart. Workflow Recovery. In CoopIS, pages 124–134, 1996.

36 Public Document

23 Thomas Eiter, Giovambattista Ianni, Thomas Lukasiewicz, Roman Schindlauer, and Hans

Tompits. Combining answer set programming with description logics for the semantic

web. Artificial Intelligence, 172(12):1495–1539, 2008.

24 H.B. Enderton. Elements of Set Theory. Acad. Press, 1977.

25 UML Revision Task Force. OMG Unified Modeling Language Specification, Version 1.4

(final draft), Februrary 2001.

26 Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max Ostrowski, Torsten Schaub,

and Sven Thiele. Engineering an incremental ASP solver. In Logic Programming, pages

190–205. Springer, 2008.

27 Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. Answer Set

Solving in Practice. Synthesis Lectures on Artificial Intelligence and Machine Learning.

Morgan & Claypool Publishers, 2012.

28 Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. Clingo=

asp+ control: Extended report. Technical report, Technical report, 2014.

29 Guido Governatori, Zoran Milosevic, and Shazia Sadiq. Compliance checking between

business process and business contracts. In Proceedings of the 10th IEEE Conference on

Enterprise Distributed Object Computing, pages 16–20. IEEE Computer Society, October

2006.

30 Katalina Grigorova. Process modelling using Petri nets. In Proceedings of the 4th interna-

tional conference conference on Computer systems and technologies: e-Learning, CompSysTech

’03, pages 95–100, 2003.

31 Michael Hammer and James Champy. Reengineering the corporation: a manifesto for business

revolution. HarperBusiness, New York, 1st ed. edition, 1993.

32 Josefine Harzmann, Andreas Meyer, and Mathias Weske. Deciding Data Object Relevance

for Business Process Model Abstraction. In International Conference on Conceptual Modeling

(ER), pages 121–129, 2013.

33 Giray Havur, Cristina Cabanillas, Axel Polleres, and Jan Mendling. Automated Resource

Allocation in Business Processes with Answer Set Programming. Business Process Man-

agement, submitted to BPM 2015 (on 2015.03.22).

34 Marijn JH Heule and Torsten Schaub. What’s Hot in the SAT and ASP Competitions. In

Association for the Advancement of Artificial Intelligence (AAAI), 2015.

35 Markus Holzer, Stefan Katzenbeisser, and Christian Schallhart. Towards formal semantics

for ODRL. In Proceedings of the First International Workshop on the Open Digital Rights

Language (ODRL), Vienna, Austria, April 22-23, 2004, pages 137–148, 2004.

36 Renato Iannella, Susanne Guth, Daniel Pähler, and Andreas Kasten. Odrl: Open dig-

ital rights language 2.1. W3C ODRL Community Group, 2012. http://www.w3.org/

community/odrl/.

37 Fraunhofer IESE. Studie - BPM SUITES 2013. http://www.iese.fraunhofer.de/, 2013.

38 Michael Kifer, Georg Lausen, and James Wu. Logical foundations of object-oriented and

frame-based languages. Journal of the ACM (JACM), 42(4):741–843, 1995.

http://www.w3.org/community/odrl/
http://www.w3.org/community/odrl/
http://www.iese.fraunhofer.de/

SHAPE FFG-2014-845638 37

39 Vladimir Lifschitz. Answer set programming and plan generation. Artificial Intelligence,

138(1):39–54, 2002.

40 Thomas W. Malone. Modeling Coordination in Organizations and Markets. Management

Science, 33(10):1317–1332, October 1987.

41 Andreas Meyer, Sergey Smirnov, and Mathias Weske. Data in Business Processes. EMISA

Forum, 31(3):5–31, 2011.

42 Andreas Meyer and Mathias Weske. Weak Conformance between Process Models and

Synchronized Object Life Cycles. In Xavier Franch, Aditya K. Ghose, Grace A. Lewis,

and Sami Bhiri, editors, ICSOC, volume 8831 of LNCS, pages 359–367. Springer, 2014.

43 T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,

77(4):541 –580, apr 1989.

44 Tadao Murata. Petri nets: Properties, analysis and applications. IEEE, 77(4):541–580,

1989.

45 OMG. BPMN 2.0. Recommendation, OMG, 2011.

46 Louchka Popova-Zeugmann. Time Petri Nets. In Time and Petri Nets, pages 139–140.

Springer Berlin Heidelberg, 2013.

47 Riccardo Pucella and Vicky Weissman. A Formal Foundation for ODRL. CoRR, ab-

s/cs/0601085, 2006.

48 A. Rozinat and R. S. Mans. Mining CPN Models: Discovering Process Models with Data

from Event Logs. In Workshop and Tutorial on Practical Use of Coloured Petri Nets and the

CPN, pages 57–76, 2006.

49 James E. Rumbaugh, Ivar Jacobson, and Grady Booch. The unified modeling language

reference manual. Addison-Wesley-Longman, 1999.

50 N. Russell, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Workflow

Resource Patterns. Technical report, BETA Working Paper Series, WP 127, Eindhoven

University of Technology, Eindhoven, 2004.

51 Nick Russell, Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, and David Edmond.

Workflow Resource Patterns: Identification, Representation and Tool Support. In CAiSE,

pages 216–232, 2005.

52 August-Wilhelm Scheer, Oliver Thomas, and Otmar Adam. Process Modeling using Event-

Driven Process Chains, pages 119–145. John Wiley and Sons, Inc., 2005.

53 Sergey Smirnov, Matthias Weidlich, and Jan Mendling. Business Process Model Abstrac-

tion Based on Synthesis from Well-Structured Behavioral Profiles. Int. J. Cooperative Inf.

Syst., 21(1):55–83, 2012.

54 Michael Smith. Role And Responsibility Charting (RACI). In Project Management Forum

(PMForum), page 5, 2005.

55 Mark Strembeck and Jan Mendling. Modeling process-related RBAC models with ex-

tended UML activity models. Inf. Softw. Technol., 53:456–483, 2011.

56 L. J. R. Stroppi, O. Chiotti, and P. D. Villarreal. A BPMN 2.0 Extension to Define the

Resource Perspective of Business Process Models. In CIbS’11, 2011.

38 Public Document

57 Wil M. P. van der Aalst. Verification of workflow nets. In Application and Theory of Petri

Nets 1997, volume 1248 of Lecture Notes in Computer Science, pages 407–426. Springer

Berlin / Heidelberg, 1997.

58 Wil M. P. van der Aalst. The Application of Petri Nets to Workflow Management. Journal

of Circuits, Systems, and Computers, 8(1):21–66, 1998.

59 Wil M. P. van der Aalst and Arthur H. M. ter Hofstede. YAWL: Yet Another Workflow

Language. Inf. Syst., 30(4):245–275, 2005.

60 Will .M.P van der Aalst, Arthur H.M. ter Hofstede, and Mathias Weske. Business pro-

cess Management: A survey. In Business Process management, volume 2678, pages 1–12.

Springer, 2003.

61 W.M.P. van der Aalst. Interval Timed Coloured Petri Nets and Their Analysis. In Inter-

national Conference on Application and Theory of Petri Nets, pages 453–472, 1993.

62 W.M.P. van der Aalst. Petri net based scheduling. Operations-Research-Spektrum, 18(4):219–

229, 1996.

63 W.M.P. van der Aalst. Structural characterizations of sound workflow nets. Eindhoven Uni-

versity of Technology, Department of Mathematics and Computing Science, 1996.

64 Hui Wan, Benjamin Grosof, Michael Kifer, Paul Fodor, and Senlin Liang. Logic program-

ming with defaults and argumentation theories. In Logic Programming, pages 432–448.

Springer, 2009.

65 Matthias Weidlich, Remco M. Dijkman, and Mathias Weske. Behaviour Equivalence and

Compatibility of Business Process Models with Complex Correspondences. Comput. J.,

55(11):1398–1418, 2012.

66 Matthias Weidlich, Jan Mendling, and Mathias Weske. Efficient Consistency Measure-

ment Based on Behavioral Profiles of Process Models. IEEE Trans. Software Eng., 37(3):410–

429, 2011.

67 Matthias Weidlich, Artem Polyvyanyy, Nirmit Desai, Jan Mendling, and Mathias Weske.

Process compliance analysis based on behavioural profiles. Inf. Syst., 36(7):1009–1025,

2011.

68 Matthias Weidlich, Mathias Weske, and Jan Mendling. Change Propagation in Pro-

cess Models Using Behavioural Profiles. In International Conference on Services Computing

(SCC), pages 33–40. IEEE Computer Society, 2009.

69 M. Weske. Business Process Management: Concepts, Languages, Architectures. Springer Ver-

lag, 2012.

	Introduction
	Business Process Modeling
	Formalizing Business Processes and Constraints
	Resource Constraints
	Security and Compliance Constraints (policies)

	Reasoning over Business Processes and Constraints
	Resource Allocation/Work Distribution
	Petri Nets
	Automated Reasoners
	ASP
	N : A Generic Formulation of 1-safe Petri Nets
	T : Activity Scheduling using Timed Petri Net
	R : Resource Allocation
	Time Relaxation

	Resources Analysis
	Person-Activity Analysis Operations
	Automated Analysis at Design Time

	Security and Compliance in Business Processes

	Business Process Management Systems/Suites
	Criteria for Evaluation
	Notation in BPMS
	Extensions
	Some Suites evaluated

	Summary
	Bibliography

