
Unified semantic model and reasoning techniques
for mining and monitoring process-relevant data

Deliverable D2.2

FFG – IKT der Zukunft
SHAPE Project
2014 – 845638

Table 1 Document Information

Project acronym: SHAPE
Project full title: Safety-critical Human- & dAta-centric Process management

in Engineering projects

Work package: 2
Document number: 2.2
Document title: Unified semantic model and reasoning techniques for mining

and monitoring process-relevant data
Version: 1

Delivery date: 01 October 2015 (M2)
Actual publication date: —————–
Dissemination level: Public
Nature: Report

Editor(s) / lead beneficiary: WU Vienna
Author(s): Cristina Cabanillas, Giray Havur, Jan Mendling, Axel Polleres
Reviewer(s): Vadim Savenkov, Axel Polleres and Alois Haselboeck

Contents

1 Introduction 1

2 Semantic Models for Mining and Monitoring Process-Relevant Data 1

3 Reasoning over Process-related Data for Compliance, Safety and Security 3

4 Reasoning over Business Processes and Constraints 3
4.1 Resource Allocation Problem . 4
4.2 Resource Allocation in iASP . 5
4.3 Resource Allocation in Transaction Logic 8
4.4 Resource Allocation in CLP-FD . 11
4.5 Elicitation of a Unified Formalism to Solve the Reasoning Tasks in

SHAPE . 12

5 Performance Evaluation of Formalisms 12
5.1 Benchmark Design for Resource Allocation Task 12

6 Preprocessing Business Processes for Improving Feasibility and Scalabil-
ity 16

7 Summary and Future Work 16

Appendices 18

A Visualization of Automated Resource Allocation Solutions 18

B iASP Encoding for Automated Resource Allocation 20

Bibliography 23

SHAPE FFG-2014-845638 1

1 Introduction

This document is part of work package 2 (WP2) on Semantic Models for Mining &
Monitoring Process Relevant Data of the SHAPE project1. It reports work performed
under Task 2.2 Elicit and formalize the extended model in a unified formalism.

Building upon the resource allocation example in the first deliverable, we in-
vestigate various reasoning tasks for checking constraints on business processes
against (mined) historical data about process executions. We investigate possi-
ble formalisms that can perform reasoning tasks related to business processes.
Namely; we look into incremental Answer Set Programming(iASP), Transaction
Logic and Constraint Logic Programming in Finite Domains(CLP-FD).

In particular, the content of this deliverable is structured as follows: Section 2
provides an overview on semantic models for mining and monitoring process-
relevant data. Section 3 describes models along with reasoning tasks for ensuring
compliance and security requirements for business process. Section 4 describes re-
source allocation problem in three different formalisms: Incremental Answer Set
Programming(iASP), Transaction Logic and CLP-FD. Section 5 gives an insight
into scalability of the resource allocation problem in these formalisms and their
performance comparisons. Section 6 suggests a novel method for improving fea-
sibility and scalability for time-optimal resource allocation in business processes.
Section 7 concludes the deliverable by remarking ongoing and future work.

2 Semantic Models for Mining and Monitoring
Process-Relevant Data

Process mining is about extraction of useful and non-trivial information from
event logs stored in an information system. It is a young research subject that
has vastly evolved since the early work (i.e. [1, 13, 14]) on process logs.

Monitoring is considered an important building block to support business pro-
cess compliance. A key application of monitoring business processes is revealing
and pinpointing violations of imposed compliance rules that occur during process
execution, which is crucial to SHAPE project [32]. An overview of process mining
and monitoring is given in Figure 1.

Today, the majority of enterprise information systems are process-aware, using
some mechanism to support, control, and monitor business processes [18]. This
drives the trend in the business process management research towards semantic

1 https://ai.wu.ac.at/shape-project/

2 Public Document

technologies and targeted visualisation techniques that are more user-friendly to
business experts and process owners [27].

There are different challenges that concerns mining and monitoring business
process-relevant data. Some of these challenges are as follows:

1. Lack of common format of workflow logs

2. Incorrect identification of individual activities

3. Lack of means for proactive prevention of execution violations

information
system

models
analyzes

discovery

records
events,e.g.,
messages,

transactions,
etc.

specifies
configures

implements analyzes

supports/
controls

extension
conformance

“world”
people machines

organizations
components

business processes

(process)
model

event
logs

Process Mining Tools

Monitoring
Tools

acts
notifies

uses

Figure 1 Overview of process mining and monitoring [15]

Semantic technologies [15, 38, 36], in particular ontologies [22, 33, 34], together
with software tools such as repositories and reasoners, offer a suitable framework
for business process mining and monitoring, catering for great interoperability
and extensibility. There are two important qualities of semantic technologies that
helps mining and monitoring business process-relevant data:

Integration of heterogeneous sources of information (with regard to challenge
1)

Formal definition ready for querying and automated reasoning (with regard to
challenges 2 and 3)

The semantic models used in our project are further detailed in Deliverable 4.2-4.4
whereas herein we focus on encoding possible reasoning problems assuming that
mined data witnessing process execution is already available.

SHAPE FFG-2014-845638 3

3 Reasoning over Process-related Data for Compliance,
Safety and Security

The fulfillment of compliance, safety and security requirements in business pro-
cesses is indispensable for meeting all the governing regulations enforced on busi-
ness operations [23]. Such regulations put restrictions and provide guidelines for
businesses about performing operations to stay compliant. In case of a misalign-
ment with these regulations, financial and criminal penalties are imposed. For this
reason, there are many compliance management frameworks that help businesses
to support specific compliance, safety and security requirements. [5] (e.g. [19] pro-
vides a literature surveys on the applicability of these frameworks). [10] studies
different frameworks and modeling languages using a four point criteria. Seman-
tic technologies, due to their benefits listed in Section 2, are applied in analyzing
compliance, safety and security requirements [35, 25, 26].

There are different challenges at fulfillment of safety and security require-
ments which can benefit from automated reasoning methods and their applica-
tions. Some of them are namely

detection of any non-compliant patterns at execution-time,

detection of any non-compliant patterns in historical data (i.e. logs),

planning the series of activities for ensuring compliant business processes exe-
cution, and

documentation of compliance to safety and security regulations.

We will investigate the possibilities in some of the above mentioned directions
concerning possible reasoning applications. The details of semantic models in this
concern are further detailed in Deliverable 4.2-4.4.

4 Reasoning over Business Processes and Constraints

Various reasoning tasks over business processes can greatly benefit from histor-
ical business process execution data(i.e. activity execution times of resources).
Such data about processes and resources can be obtained by applying data min-
ing techniques on process logs(cf. Deliverable 3.1 [4], Deliverable 3.2 [3]). By using
this data, we extend our automated resource allocation encoding [8] in iASP [21]
and defined the resource allocation problem in Transaction Logic [6, 30] and CLP-
FD [28].

4 Public Document

4.1 Resource Allocation Problem

Automated resource allocation problem in this section comprise the following el-
ements:

A timed Petri net2 PN describing a set of activities A, their estimated durations
DA and precedence constraints PA

An organizational model describing a set of resources R and their roles in the
organizational hierarchy LR

A set of role-activity constraints CR×A

A set of temporal constraints C(R∪L)×A×Z

We describe an example scenario for clarifying the encodings of the problem.
Fig. 2 and Fig. 3. Fig. 2 depicts a model representing the process of publishing
a book from the point of view of a publishing entity. In particular, when the
publishing entity receives a new textbook manuscript from an author, it must be
proofread. If changes are required, the modifications suggested must be applied
on text and figures, which can be done in parallel. This review-and-improvement
procedure is repeated until there are no more changes to apply, and the improved
manuscript is then sent back to the author for double-checking. In Fig. 2, the
numbers above the activities indicate their (default maximum) duration in generic
time units (TU)3. The organisational model depicted in Fig. 3 shows the hierarchy
of roles of a publishing entity. Specifically, it has four roles and five resources
assigned to them. The following relation specifies how long it takes to each role
and resource to complete the process activities: (Role ∪ Resource) × Activity ×
TU ⊃{(Copy Editor, Proofread, 2), (Glen, Proofread, 5), (Drew, Proofread, 2),
(Drew, Revise Text, 2)}. For resource allocation purposes, the duration associated
with a specific resource is used in first place followed by the duration associated
with roles and finally, the duration of activities (cf. Fig. 2). Resources are assigned
to activities according to their roles. In particular, the relation activity-role in this
case is as follows: Role× Activity ⊃{(Publisher, Receive Manuscript), (Copy Edi-
tor, Proofread), (Copy Editor, Revise Text), (Graphic Artist, Revise Visual), (Admin.
Asst., Send Press Release)}.

2 Timed Petri nets are detailed in Section 4 of [8]
3 Please, note that events are instantaneous, and hence, they take zero time units.

SHAPE FFG-2014-845638 5

Figure 2 Process to publish a book

Figure 3 Organisational model of
AmyPublishingHouse

4.2 Resource Allocation in iASP

In the previous report, we provided a detailed explanation of an automated re-
source allocation encoding in iASP [8]. We have improved this encoding with
additional concepts and constraints related to time and resources.

4.2.1 Resource Allocation for Multiple Processes

We add the capability of resource allocation for multiple processes with multiple
instances by identifying each process instance with both a business process ID,
B, and an instance ID, I. Appendix B provides the updated version of the ASP
encoding.

4.2.2 Break Calendars

As an additional temporal constraint, adding the following rule to our program
gives us the possibility of not assigning any activities to a resource between a
given time C1 and C2. In the program, this interval is defined with the predicate
noAssignmentBetween(C1, C2).

:- noAssignmentBetween (C1 ,C2), assign (_, _,C3 ,C4 , _, _, _),C1 >=C3 ,
C2 <=C4.

This rule allows us to define breaks such as holidays in the assignment schedule.

6 Public Document

4.2.3 Separation of Duties
Separation of duties is a requirement of having more than one person required
to complete a task. This separation of more than one individual on one single
task is an internal control intended to prevent fraud or error. The predicates
strictlySeparated and weaklySeparated introduce this concept at two different
levels.

The following rules are related to strict separation of activities, which separate
the assignee of the activity A of business process B from the the assignee of the
activity A1 of business process B1 for the overall execution of the process.

notAssignStrictly (R,A1 ,B1 ,C2 ,s) :- strictlySeparated (A,B,A1 ,B1),
assign (R,A,_,C2 ,s-1,B,I).

:- assign (R,A,C1 ,C2 ,S,B,I), notAssignStrictly (R,A,B,C,S1), C1 >=C.

The following rules are related to weak separation of activities, which separate
the assignee of the activity A of business process B from the assignee of the activity
A1 of business process B1 for one consecutive execution of A and A1.

notAssignWeakly (R,A1 ,B1 ,C2 ,s) :- weaklySeparated (A,B,A1 ,B1),
assign (R,A,_,C2 ,s-1,B,I).

notAssignWeakly (R,A,B,C,s) :- notAssignWeakly (R,A,B,C,s-1),
not assign (_,A,_,_,s-1,B,_).

:- assign (R,A,C1 ,C2 ,s,B,I), notAssignWeakly (R,A,B,C,s), C1 >=C.

4.2.4 Binding of Duties
A binding of duty ensures that if a particular resource is assigned to perform a
certain activity, then the same user must also be assigned to perform a certain
other activity. The predicates strictlyBinded and weaklyBinded introduce this
concept in two different levels.

The following rules are related to strict binding of activities, which bind the
assignee of the activity A of business process B with the assignee of the activity A1

of business process B1 for the overall execution of the process.

mustAssignStrictly (R,A1 ,B1 ,C2 ,s) :- strictlyBinded (A,B,A1 ,B1),
assign (R,A,_,C2 ,s-1,B,I).

:- assign (R1 ,A,C1 ,C2 ,S,B,I), mustAssignStrictly (R,A,B,C,S1), C1 >=C,
R1!=R.

The following rules are related to weak binding of activities, which bind the
assignee of the activity A of business process B with the assignee of the activity A1

of business process B1 for one consecutive execution of A and A1.

SHAPE FFG-2014-845638 7

mustAssignWeakly (R,A1 ,B1 ,C2 ,s) :- weaklyBinded (A,B,A1 ,B1),
assign (R,A,_,C2 ,s-1,B,I).

mustAssignWeakly (R,A,B,C,s) :- mustAssignWeakly (R,A,B,C,s-1),
not assign (R,A,_,_,s-1,B,_).

:- assign (R1 ,A,C1 ,C2 ,s,B,I), mustAssignWeakly (R,A,B,C,s), C1 >=C,
R1!=R.

4.2.5 Mapping of RAL Expressions to ASP Rules
Resource Assignment Language (RAL) is a domain-specific language that enables
the definition of conditions to select the candidates to participate in a process
activity. Listing 1 describes all possible expressions that can be formed in RAL.
We refer the reader to [9] for further information about RAL.

Listing 1 The Extended Backus–Naur Form (EBNF) syntax of RAL [9]

Expr = PersonExpr / GroupResourceExpr / CommonalityExpr
/ CapabilityExpr / HierarchyExpr / ReportExpr /
DelegateExpr / DenyExpr / CompoundExpr

CompoundExpr = (Expr "OR" Expr)/
(Expr "AND" Expr)

PersonExpr = "IS" PersonConstraint

GroupResourceExpr = ("HAS" RoleConstraint ("IN" UnitConstraint)?)/
("HAS" PositionConstraint)/
("HAS" UnitConstraint)

CommonalityExpr = (" SHARES " Amount " POSITION WITH" PersonConstraint)/
(" SHARES " Amount "UNIT WITH" PersonConstraint)/
(" SHARES " Amount "ROLE" ("IN" UnitConstraint)?

"WITH" PersonConstraint)

CapabilityExpr = ("HAS CAPABILITY " capability)
HierarchyExpr = (ReportExpr) / (DelegateExpr)
ReportExpr = (Depth " REPORT TO" PositionRef) /

("IS" Depth " REPORTED BY" PositionRef)

DelegateExpr = ("CAN DELEGATE WORK TO" PositionRef) /
("CAN HAVE WORK DELEGATED BY" PositionRef)

DenyExpr = ("NOT" DeniableExpr)
DeniableExpr = PersonExpr / GroupResourceExpr / CommonalityExpr /

CapabilityExpr

8 Public Document

PersonConstraint = (personName) / (" PERSON IN DATA FIELD"
dataObject . fieldID)/

("ANY PERSON " taskDuty " ACTIVITY " activityID)

PositionConstraint = (" POSITION " positionName) /
(" POSITION IN DATA FIELD" dataObject . fieldID)

UnitConstraint = ("UNIT IN DATA FIELD" dataObject . fieldID)/
("UNIT" unitName)

RoleConstraint = ("ROLE IN DATA FIELD" dataObject)/
("ROLE" roleName !"IN")

PositionRef = (" POSITION OF" PersonConstraint) / PositionConstraint

Depth = " DIRECTLY "?
Amount = "SOME" / "ALL"

We make use of RAL expressions for describing resource selection constraints
in our ASP program. For this reason, we map these expressions into ASP rules. For
instance, if the activity Receive_Manuscript in Fig. 2 has the following statement:

HAS ROLE Copy_Editor IN AmyPublishingHouse

the corresponding ASP rule with respect to the encoding in Appendix B would be
canExecute(Copy_Editor,Receive_Manuscript).

4.3 Resource Allocation in Transaction Logic
Transaction Logic has been proved to be useful in a vast range of applications:
from databases to robot action planning to reasoning about actions to workflow
analysis. FLORA-2 integrates Transaction Logic [7, 29] with other formalisms such
as F-logic [31] and HiLog [12] with new extensions. In this section, we encode
resource allocation problem in FLORA-2.

4.3.1 FLORA-2
FLORA-2 is a knowledge base engine and a complete environment for developing
knowledge-intensive applications using Transaction Logic formalism [30].

4.3.1.1 F-Logic

F-logic (frame logic) is a knowledge representation and ontology language [37]. It
combines the advantages of a declarative approach with object-oriented concep-

SHAPE FFG-2014-845638 9

tual modeling. Some of its features are namely object identity, complex objects, in-
heritance, polymorphism, query methods and encapsulation. first-order variable-
free terms to represent object identity(OID). Objects can have single-valued, set-
valued or Boolean attributes. These formulas are called F-logic molecules. For
instance:

billing_process[biller→ john, customers � {alice, nancy}].
billing_process[customers � {jack}, valid_voucher].

Note that each formula above asserts more than one fact simultaneously. In the
first formula biller→ john says that object billing_process has a single-valued
attribute biller, whose value is OID john, while customers→ {alice, nancy} in
the same object description says that the value of the set-valued attribute customers

is a set that contains two OIDs: alice and nancy. We emphasize “contains” be-
cause sets do not need to be specified all at once. For instance, the second for-
mula above says that billing_process has another customer jack. The attribute
valid_voucher in the second formula is Boolean: its value is true in the above
example.

In the standard convention, uppercase symbols denote variables while symbols
beginning with a lowercase letter denote constants. For example,

X[customer � {C}] : −Y[biller→ X, customer � {C}].
derives john[customers � {alice, nancy, jack}].

There are also functions that take arguments in F-logic, called methods. For
instance,

john[salary(january, 2015)→ 1000, on_leave(2015) � {june, july}].
says that john has a single-valued method, salary, whose value on the arguments
january and 2015 is 1000; it also has a set-valued method on_leave, whose value
on the argument 2015 is a set of OIDs that contains june and july. Like attributes,
methods can be defined using inference rules.

The F-logic syntax for class membership is john : employee and for subclass
relationship it is employee :: person. In addition, F-logic supports specification of
schema information. For instance, person[name⇒ string, colleague⇒⇒ person]

says that the signature of class person has two attributes, a single-valued attribute
name and a set-valued attribute colleague. Moreover, the first attribute returns
objects of type string and the second returns sets of objects such that each object
in the set is of type person. F-logic is an extension of first-order logic and thus
it integrates relational and object-oriented paradigms. We refer to [31] for further
details of F-logic.

10 Public Document

4.3.1.2 Hi-Log

HiLog was introduced in [12] in order to extend logic programming with higher-
order syntax in first-order semantics. The main goal was to enable flexible and
natural querying of term structures and to support reification of atomic formulas.
For instance, the following statement,

call(X) : −X.
means that HiLog does not distinguish between function terms and atomic formu-
las. Combined with F-logic, HiLog improves the meta-features of the language.
For example, in the combined language, one can write:

X[methods � {M}] : −X[M(_, _)→ _].
Thus, a query of the form

?− john[methods � M].
will return the set of all 2-argument set-valued methods defined for the object
john.

4.3.1.3 Transaction Logic

For updating the database part of the program, Prolog introduced assert and
retract operators. However, these operators could never provide a truly logical
database update system, because in case the execution of a Prolog program fails,
all the changes made by assert and retract would stay in the database, which
may easily lead an inconsistent state. Transaction Logic [7, 6] provides a compre-
hensive theory of logical updates in logic programming, which does not suffer
from the drawbacks of Prolog style updates that previously detailed. In Transac-
tion Logic, both actions (transactions) and queries are represented as predicates. In
FLORA-2, transactions are represented as object methods with a prefixed symbol
“#′′.

4.3.2 Problem Encoding in FLORA-2

The input for the running example is provided in Figure 2 and Figure 3. We
encode this static knowledge in FLORA-2 as follows:

// petri net

publish_book : business_process .

publish_book [inPlace (receive_manuscript)->{p0 }].
publish_book [inPlace (proofread)->{p1 }].
publish_book [inPlace (send_press_release)->{p2 }].

SHAPE FFG-2014-845638 11

publish_book [inPlace (and_split)->{p2 }].
publish_book [inPlace (revise_text)->{p3 }].
publish_book [inPlace (revise_visual)->{p5 }].
publish_book [inPlace (and_join)->{p4 ,p6 }].

publish_book [outPlace (receive_manuscript)->{p1 }].
publish_book [outPlace (proofread)->{p2 }].
publish_book [outPlace (send_press_release)->{pg }].
publish_book [outPlace (and_split)->{p3 ,p5 }].
publish_book [outPlace (revise_text)->{p4 }].
publish_book [outPlace (revise_visual)->{p6 }].
publish_book [outPlace (and_join)->{p1 }].

publish_book [duration (proofread)->4].
publish_book [duration (revise_text)->1].
publish_book [duration (revise_visual)->5].
publish_book [duration (send_press_release)->1].

// organizational model

publisher_om : organisational_model .

publisher_om [role(publisher)->{amy }].
publisher_om [role(copy_editor)->{amy ,glen ,drew }].
publisher_om [role(graphic_artist)->{ oliver }].
publisher_om [role(admin_asst)->{ evan }].

In the next step, we will encode the resource assignment rules in FLORA-2.

4.4 Resource Allocation in CLP-FD

The CLP-FD solver is an instance of the general Constraint Logic Programming
scheme introduced in [28]. This approach is useful for modeling discrete optimiza-
tion and verification problems such as scheduling, planning, packing, timetabling
etc. where the values for certain variables are picked from some pre-defined do-
mains so that the given constraints on the variables are all satisfied. We refer
to [11] for further details of CLP-FD.

The solver is available as a library module and can be loaded with a query
:- use_module(library(clpfd)).

4.4.1 Problem Encoding in CLP-FD

In the next step, we will provide the resource assignment rules in CLP-FD.

12 Public Document

4.5 Elicitation of a Unified Formalism to Solve the
Reasoning Tasks in SHAPE

In SHAPE project we formalize process models and regulations on safety-critical
systems by developing semantic models for processes, resources and compliance
rules (cf. Deliverable 4.1 and 4.2). These semantic models combined with the
process-relevant data mined from process logs (cf. Deliverable 3.1 and 3.2) allow
us to perform automated reasoning tasks such as resource allocation and recovery
planning. We plan to use ASP for these reasoning tasks after our comparison to
other two formalisms that we investigate in this section. These advantages are
mainly as follows

Compact, declarative and intuitive problem encoding
Rapid prototyping and easy maintenance (e.g., no need to define heuristics)
Complex reasoning modes (e.g., weight optimization)
Ability to model effectively incomplete specifications
Efficient solvers (e.g., clingo)

In the literature, ASP is preferable when the size of the problem does not ex-
plode the grounding of the program [16, 2, 20]. The experiments in Section 5
show that our resource allocation encoding in ASP is applicable to the problems
of business processes at a real-world scale. We will further investigate options for
enhancing the performance of our ASP programs by applying symmetry break-
ing [17] and configuring clingo.

5 Performance Evaluation of Formalisms

This section investigates the performance comparisons of our automated resource
allocation encodings in iASP, Transaction Logic and CLP-FD. The problems are
encoded in Section 4.

5.1 Benchmark Design for Resource Allocation Task
We design a benchmark for evaluating time and memory requirements of our
automated resource allocation encoding in ASP [24] with respect to the size of
given problems. The benchmark consists of 3 steps:

Steps:
1. Translation of PNML files into the input language of the ASP solver

2. Creating problem instances for the benchmark

3. Running the generated problem instances and collecting statistics

SHAPE FFG-2014-845638 13

5.1.1 Translating PNML into Predicates
We translated PNML files representing a Petri net in XML (i.e. Listing 2), into
predicates. In order to achieve this, we used Python programming language by
taking advantage of its ElementTree module for parsing the PNML file and its
regular expression module for isolating structured strings.

Listing 2 PNML file example

<?xml version ="1.0" encoding ="UTF -8" standalone ="no"?>
<pnml >

<net id="Net -One" type="Petri net">
<place id="2_in"/>
<transition id="a2">
<name >

<value >bill of exchange payable posted </ value >
<text >bill of exchange payable posted </text >

</name >
</transition >
<arc id=" from_2_in_to_a2 " source ="2_in" target ="a2">

<inscription >
<value >1 </value >
<text >1</text >

</ inscription >
</arc >
<arc id=" from_a2_to_2_out " source ="a2" target ="2_out">

<inscription >
<value >1 </value >
<text >1</text >

</ inscription >
</arc >
</net >

</pnml >

Output of the Listing 2 through the python script:

activity (a2).
inPlace (a2_in ,a2).
outPlace (a2_out ,a2).

5.1.2 Creating Problem Instances
The variables identified for creating the problem instances for the benchmark are
as follows:

A business process

14 Public Document

An organizational model
nl : number of roles

nr : number of persons

Constraints related to the organizational model

Constraints related to time
ntc : number of activities that have duration

nmtc : maximum value for estimated duration of an activity

nml : number of roles with temporal constraints

nmlc : maximum value for a role-activity time constraint

nmr : number of resources with temporal constraints

nmrc : maximum value for a resource-activity time constraint

Benchmark parameters
nrep : number of repetitions of each problem instance

n f : number of firings for the shortest solution in the given business process

nri : number of running instances in each problem instance

istart, i2start,... : starting time for each running instance
First, we need to invent an organizational model for each problem instance (re-
sources and their roles). Then, temporal constraints are generated by complying
with the given minimum and maximum values. Afterwards, activity-role and
activity-time constraints should be assigned with respect to the following rules:

Each activity can be executed by the members of one role
Using the predicate canExecute(Role,Resource)

Each resource must have at least one role
Using the predicate hasRole(Resource,Role)

Activities may have default execution times
Using the predicate timeActivity(Activity,Duration)

Roles estimated execution times of activities
Using the predicate timeActivityRole(Activity,Role,Duration)

Resources may have estimated execution times of activities
Using the predicate timeActivityResource(Activity,Resource,Duration)

Then, resources, roles, and temporal constraints are generated according to given
parameters. An example problem instance is as follows:

person (r_UCUV).
person (r_OTNK).
hasRole (r_UCUV , l_TVNA).
hasRole (r_OTNK , l_MQFG).
canExecute (l_MQFG ,a2).
timeActivity (a2 ,3).
timeActivityRole (a2 ,l_MQFG ,6).

SHAPE FFG-2014-845638 15

timeActivityResource (a2 ,r_OTNK ,6).

The parameters can be provided in two different ways. If the values are given
as exact values, one problem instance is generated. An example set of parameters
for generating one problem instance is provided in Table 2.

nl nmtc nrep nml ntc nmr nmlc n f nmrc nr

5 10 3 3 3 3 10 10 10 10
Table 2 Static variables example

There is a second way for generating more than one problem instance at a
time. Each parameter can be set in a range of values when an initial value, an
incremental value and a step size is provided. For instance, the dynamic parameter
assignment to n_ri and ci by using the values in Table 3 assigns the values {2, 4, 6}
to n_ri, and the values {{0, 5}, {0, 5, 10, 15}, {0, 5, 10, 15, 20, 25}} to ci.

nri ci

initial value increment step initial value increment
2 2 3 0 5

Table 3 Dynamic variables example

5.1.3 Collecting Statistics
After generating problem instances, we run the iASP solver clingo, the Transaction
Logic program solver Flora-2 and the CLP-FD solver SWI-Prolog using the same
problem instance files. We collect the following values as output:

Performance statistics (i.e. time and memory requirement of each solution)
Solver statistics describing the problem size (i.e. number of atoms)

Using the iASP encoding in Appendix B, we ran two sets of problems. The
results of the first set is provided in Table 4. We expected that the length of the
business process has a direct effect on the difficulty of the respective allocation
problem. The two columns, the number of steps(#step) and CPUtime verifies our
prediction.

The results of the second set of experiments are provided in Table 5. These
results show that as the number of parallel instances increases, finding a solu-
tion to the problem instance gets harder. The columns the number of parallel
instances(#ins) and CPU time illustrates this phenomenon.

16 Public Document

We will provide the performance results of resource allocation encodings in
Transaction Logic and CLP-FD once we finalize the problem definitions in Sec-
tion 4.

#step #atom #rule #var #constr. CPU time real time mem
8 1068 11298 1010 7859 0.06 1.12 6.6
8 1281 14896 1634 11977 0.06 0.78 6.6
8 1461 14574 1655 11786 0.08 1.03 6.3

12 2353 37844 2402 24251 0.17 1.09 7.9
12 2435 37859 2411 24276 0.17 1.15 7.7
12 6319 255347 26604 232400 0.98 4.95 20.9
16 10156 395231 12544 225873 2.14 10.89 19.4
16 10445 663806 18449 383532 3.22 16.12 25.7
16 8461 396414 15657 248491 1.74 8.31 19.2
20 15934 2186743 19728 1147794 11.13 39.02 50.7
20 13058 730681 24984 447554 3.79 12.4 26.9
20 18939 1562029 31821 870997 10.11 32.84 41.6
24 19502 1548062 41059 913440 9.78 34.02 45.4
24 30686 6645835 115880 3820071 45.79 140.28 141.5
24 23813 1439256 65554 896135 14.95 43.77 51.2
Table 4 Process length vs solution difficulty (All times in seconds, memory usage in

MB)

6 Preprocessing Business Processes for Improving
Feasibility and Scalability

Solving NP-hard reasoning problems related to business processes, such as time-
optimal resource allocation problem, becomes computationally challenging and
time consuming when the problem size is big. For this reason, such problems
become inapplicable in real-life scenarios which require fast computation of solu-
tions, as in SHAPE project. In this section we will describe a method for dividing a
business process into sub-processes and apply our resource allocation method on
the resulting sub-processes. The expected performance gain of this novel divide-
and-conquer approach will be presented by a quantitative experiment and a qual-
itative discussion in the next version of this deliverable.

7 Summary and Future Work

In this deliverable we provided an overview on semantic models for mining and
monitoring process-relevant data (cf. Section 2) and identified possible reasoning

SHAPE FFG-2014-845638 17

#ins. #atom #rule #var #constr. cputime real time mem
1 1446 21220 2173 17190 0.09 0.63 7.4
1 1395 17986 1359 12031 0.09 0.75 6.8
1 1918 29472 2057 19595 0.12 1.04 7.6
2 4309 56182 5246 41567 0.24 1.83 9.7
2 4467 85804 4043 51039 0.36 1.73 10
2 9975 414389 10100 230077 1.95 6.13 20.9
3 11346 230521 7710 129330 0.95 3.9 15.9
3 9614 484246 10781 271238 1.74 5.49 21.6
3 13287 337662 14057 199740 1.91 6.03 20.6
4 20070 258373 15884 160442 1.67 3.79 21.6
4 32540 1029609 33796 582319 6.79 17.9 46.6
5 20876 1120307 25641 620692 6.28 17.18 43.7
5 19238 931543 23605 520943 5.02 12.93 36
5 28867 686832 24870 379018 4.96 13.22 33.5
6 52870 23499944 82876 11036880 174.94 391.43 372.4
6 66338 36491275 92908 18782619 256.1 259.47 554.6
Table 5 Number of running instances vs solution difficulty (All times in seconds,

memory usage in MB)

related tasks that can be useful in the scope of SHAPE project (cf. Section 3).
Resource allocation encodings are defined in different formalisms(cf. Section 4).
We aim at a publication on qualitative and quantitative comparison of three for-
malisms (iASP, Transaction Logic and CLP-FD), which we outlined in Section 4
and Section 5. This document also frames a novel method for increasing appli-
cability of reasoning tasks in business process-related data (cf. Section 6) which
can be considered for another publication. Some of the possible venues for these
publication are as follows:

International Conference on Automated Planning and Scheduling (ICAPS)
June 12-17, 2016, London, UK
22 November 2015 – submission deadline

International Joint Conference on Artificial Intelligence (IJCAI)
12-15 July 2016, New York, USA
2 February 2016 – submission deadline

European Conference on Artificial Intelligence (ECAI)
August 29-September 2, 2016, The Hague, Netherlands
15 April 2016 – submission deadline

International Conference on Advanced Information Systems Engineering (CAISE)
13-17 June 2016, Ljubljana, Slovenia
30 November 2015 – submission deadline

International Conference on Business Information Systems (BIS)

18

6-8 July 2016, Leipzig, Germany

8 January 2016 – submission deadline

International Conference on Business Process Management (BPM)

18-22 September 2016, Rio de Janeiro, Brazil

14 March 2016 – submission deadline

The document will be updated as we make progress on the ongoing work
defined in respective sections.

Appendices

A Visualization of Automated Resource Allocation
Solutions

In this part, we produce Gantt charts from the output of the resource allocation
program. Basically, there are two goals:

Obtaining the allocation results in a graphics format, and

Seeing the effects of changes in the allocation encoding instantly

The output of the ASP program is parsed using Python and translated into
the input language of GNUPlot, which is a free, command-driven, interactive,
function and data plotting program. The results in Table 6 are translated into
Gantt charts in Figure 4, Figure 5 and Figure 6:

In Figure 4, each lane shows the resource allocation for different instances. In
every lane, the duration of activity executions are represented by the rectangles
while the activities are encoded in colors and described in the margin.

Figure 5 shows the overall busy time of resources. Each lane corresponds to
instances while the colors represents allocated resources.

19

Resource Activity TimeStart TimeEnd Instance
amy t_m 0 0 i1
amy t_PR 0 2 i1
drew t_RT 2 4 i1
oliver t_RV 2 7 i1
drew t_PR 7 9 i1
evan t_SPR 9 10 i1
amy t_m 6 6 i2
amy t_PR 6 8 i2
amy t_RT 8 9 i2

oliver t_RV 8 13 i2
glen t_PR 13 18 i2
drew t_RT 18 20 i2
oliver t_RV 18 23 i2
amy t_PR 23 25 i2
drew t_RT 25 27 i2
oliver t_RV 25 30 i2
amy t_PR 30 32 i2
evan t_SPR 32 33 i2
amy t_m 11 11 i3
drew t_PR 11 13 i3
drew t_RT 13 15 i3
oliver t_RV 13 18 i3
amy t_PR 18 20 i3
evan t_SPR 20 21 i3

Table 6 Example output of allocation program

glen

evan

oliver

drew

amy

 0 5 10 15 20 25 30 35

time

resource-time chart

proof_read
revise_text

revise_visual
send_press_release
receive_manuscript

Figure 6 Chart summarizing the availability of resources

20

evan
oliver
drew
amy

 0 5 10 15 20 25 30 35

time

first instance chart

t_PR
t_RT
t_RV

t_SPR
t_m

evan
drew
glen

oliver
amy

 0 5 10 15 20 25 30 35

time

second instance chart

t_PR
t_RT
t_RV

t_SPR
t_m

evan
amy

oliver
drew

 0 5 10 15 20 25 30 35

time

third instance chart

t_PR
t_RT
t_RV

t_SPR
t_m

Figure 4 Chart showing the resource activity for all instances

B iASP Encoding for Automated Resource Allocation

We provide the improved and enhanced iASP encoding version for automated
resource allocation.

Listing 3 Static knowledge

program base.

% default duration of a transition
firingDelay (A,B ,0) :- not activityDuration (A,B,_),

activityTransition (A,B).
firingDelay (A,B,D) :- activityDuration (A,B,D).

% default resource - activity duration preference handling
defaultRAD (R,A,B,D) :- resourceActivityDuration (R,A,B,D).
defaultRAD (R,A,B,D) :- roleActivityDuration (L,A,B,D), hasRole (R,L),

not resourceActivityDuration (R,A,B,_),
canExecute (L,A,B).

defaultRAD (R,A,B,D) :- firingDelay (A,B,D), hasRole (R,L),
not resourceActivityDuration (R,A,B,_),
not roleActivityDuration (L,A,B,_),
canExecute (L,A,B).

21

ins3

ins2

ins1

 0 5 10 15 20 25 30 35

time

instance-time chart

amy
drew
oliver
evan
glen

Figure 5 Chart summarizing the activities in all instances

Listing 4 Cumulative knowledge

program cumulative (s).

%%% PETRI NET DYNAMINCS %%%

% generate action fire
{fire(T,s,B,I) : inPlace (P,T,B), bpInstance (B,I)}.

% fire precondition : if no token at preceding P, then can ’t fire
:- fire(T,s,B,I), bpInstance (B,I), inPlace (P,T,B),

not tokenAt (P,s,B,I).

% fire effect : if fire at s-1, token at next place
tokenAt (P,s,B,I) :- fire(T,s-1,B,I), outPlace (P,T,B), bpInstance (B,I).

% fire constraint only 1 succeeding transition can fire
:- inPlace (P,T1 ,B), inPlace (P,T2 ,B), T1!=T2 , fire(T1 ,s,B,I),

fire(T2 ,s,B,I), bpInstance (B,I).

% inertia : tokenAt (P,s): if not fire token remains at its place
consumeToken (P,s,B,I) :- inPlace (P,T,B), fire(T,s,B,I),

bpInstance (B,I).
tokenAt (P,s,B,I) :- tokenAt (P,s-1,B,I), not consumeToken (P,s-1,B,I).

%%% TIME MANAGEMENT %%%

% Max time

22

maxTimeAtInPlace (P,T,s,B,I) :- inPlace (P,T,B),
not greaterTimeExistsAtInPlace (P,T,s,B,I),
fire(T,s,B,I), bpInstance (B,I).

greaterTimeExistsAtInPlace (P1 ,T,s,B,I) :- inPlace (P1 ,T,B),
inPlace (P2 ,T,B), fire(T,s,B,I), timeAt (P1 ,C1 ,s,B,I),
timeAt (P2 ,C2 ,s,B,I), P1!=P2 , C1 <C2 , bpInstance (B,I).

% fire effect on time (T is not an activity)
timeAt (P2 ,X,s,B,I) :- not activityTransition (T,B), fire(T,s-1,B,I),

maxTimeAtInPlace (P,T,s-1,B,I), timeAt (P,X,s-1,B,I),
outPlace (P2 ,T,B), bpInstance (B,I).

% fire effect on time (T is an activity)
timeAt (P2 ,C2 ,s,B,I) :- activityTransition (T,B),

assign (R,T,C1 ,C2 ,s-1,B,I), fire(T,s-1,B,I),
outPlace (P2 ,T,B), bpInstance (B,I).

% no fire wait
timeAt (P,C,s,B,I) :- timeAt (P,C,s-1,B,I), inPlace (P,T,B),

not activityTransition (T,B),
not consumeToken (P,s-1,B,I), bpInstance (B,I).

% time relaxation : if activity : relaxation is possible
timeAt (P,C+1,s,B,I) :- timeAt (P,C,s-1,B,I), inPlace (P,T,B),

activityTransition (T,B),
not consumeToken (P,s-1,B,I), bpInstance (B,I).

%%% RESOURCE ASSIGNMENT %%%

% assign each activity to a person
{ assign (R,A,C,C+D,s,B,I): defaultRAD (R,A,B,D)} :- inPlace (P1 ,A,B),

timeAt (P1 ,C,s,B,I), activityTransition (A,B), bpInstance (B,I).

% an activity can not be fired before assigned
:- not assign (_,A,_,_,s,B,I), fire(A,s,B,I), activityTransition (A,B),

bpInstance (B,I).

% can not assign same task to another person (task identifier : T-I-S)
:- assign (R,A,C1 ,C2 ,S1 ,B,I), assign (R1 ,A,C1 ,C3 ,S2 ,B,I), R!=R1.

% can not assign same person to another activity at the same time
:- assign (R,A1 ,C1 ,C2 ,S1 ,B,I), assign (R,A2 ,C1 ,C3 ,S2 ,B,I), C1 <C2 , C1 <C3 ,

A1!=A2.
:- assign (R,A1 ,C1 ,C2 ,S1 ,B,I1), assign (R,A2 ,C1 ,C3 ,S2 ,B,I2), C1 <C2 ,

C1 <C3 , A1 !=A2 , I1!=I2.
:- assign (R,A1 ,C1 ,C2 ,S1 ,B1 ,I1), assign (R,A2 ,C1 ,C3 ,S2 ,B2 ,I2), C1 <C2 ,

C1 <C3 , B1 !=B2.

23

% can not assign same person to same activity at the same time in
% another instance
:- assign (R,A,C1 ,C2 ,S1 ,B,I1), assign (R,A,C1 ,C3 ,S2 ,B,I2), C1 <C2 , C1 <C3 ,

I1!=I2.
:- assign (R,A,C1 ,C2 ,S1 ,B1 ,I1), assign (R,A,C1 ,C3 ,S2 ,B2 ,I2), C1 <C2 ,

C1 <C3 , B1!=B2.

% can not assign when assignments overlap
:- assign (R,T,Y1 ,Y2 ,S1 ,B1 ,I1), assign (R,T2 ,X1 ,X2 ,S2 ,B2 ,I2), X1 >Y1 ,

X1 <Y2.
:- assign (R,T,Y1 ,Y2 ,S1 ,B1 ,I1), assign (R,T2 ,X1 ,X2 ,S2 ,B2 ,I2), X2 <Y2 ,

X2 >Y1.

References

1 Rakesh Agrawal, Dimitrios Gunopulos, and Frank Leymann. Mining process models from

workflow logs. Springer, 1998.

2 Markus Aschinger, Conrad Drescher, Gerhard Friedrich, Georg Gottlob, Peter Jeavons,

Anna Ryabokon, and Evgenij Thorstensen. Optimization methods for the partner units

problem. In Integration of AI and OR Techniques in Constraint Programming for Combinatorial

Optimization Problems, pages 4–19. Springer, 2011.

3 Saimir Bala, Cristina Cabanillas, Jan Mendling, and Axel Polleres. Mining processes,

resource consumption and witnesses for task completion from logs. 2015.

4 Saimir Bala, Cristina Cabanillas, Jan Mendling, and Axel Polleres. Requirements for

process, resource and compliance rules extraction from text. 2015.

5 Jörg Becker, Patrick Delfmann, Mathias Eggert, and Sebastian Schwittay. Generalizability

and applicability of model-based business process compliance-checking approaches—a

state-of-the-art analysis and research roadmap. BuR-Business Research, 5(2):221–247, 2012.

6 AJ Bonner and M Kifer. Results on reasoning about action in transaction logic. Submitted

for Publication, 1998.

7 Anthony J Bonner and Michael Kifer. A logic for programming database transactions. In

Logics for databases and information systems, pages 117–166. Springer, 1998.

8 Cristina Cabanillas, Giray Havur, Jan Mendling, and Axel Polleres. State-of-the art on

existing models for processes, resources, constraints and security, and their underlying

formalisms. 2015.

9 Cristina Cabanillas, Manuel Resinas, and Antonio Ruiz Cortés. Specification and Auto-

mated Design-Time Analysis of the Business Process Human Resource Perspective. Inf.

Syst., page In press., 2015.

10 Cristina Cabanillas, Manuel Resinas, and Antonio Ruiz-Cortés. Hints on how to face

business process compliance. Actas de los Talleres de las Jornadas de Ingeniería del Software y

Bases de Datos, 4(4):26–32, 2010.

24

11 Mats Carlsson. SICStus Prolog User’s Manual 4.3: Core reference documentation. BoD–Books

on Demand, 2014.

12 Weidong Chen, Michael Kifer, and David S Warren. Hilog: A foundation for higher-order

logic programming. The Journal of Logic Programming, 15(3):187–230, 1993.

13 Jonathan E Cook and Alexander L Wolf. Discovering models of software processes from

event-based data. ACM Transactions on Software Engineering and Methodology (TOSEM),

7(3):215–249, 1998.

14 Anindya Datta. Automating the discovery of as-is business process models: Probabilistic

and algorithmic approaches. Information Systems Research, 9(3):275–301, 1998.

15 AK Alves De Medeiros, Carlos Pedrinaci, Wil MP Van der Aalst, John Domingue, Min-

seok Song, Anne Rozinat, Barry Norton, and Liliana Cabral. An outlook on semantic

business process mining and monitoring. In On the Move to Meaningful Internet Systems

2007: OTM 2007 Workshops, pages 1244–1255. Springer, 2007.

16 Agostino Dovier, Andrea Formisano, and Enrico Pontelli. A comparison of clp (fd) and

asp solutions to np-complete problems. In Logic Programming, pages 67–82. Springer,

2005.

17 Christian Drescher, Oana Tifrea, and Toby Walsh. Symmetry-breaking answer set solving.

CoRR, abs/1008.1809, 2010.

18 Marlon Dumas, Wil M Van der Aalst, and Arthur H Ter Hofstede. Process-aware infor-

mation systems: bridging people and software through process technology. John Wiley & Sons,

2005.

19 Amal Elgammal, Oktay Turetken, Willem-Jan van den Heuvel, and Mike Papazoglou.

On the formal specification of regulatory compliance: a comparative analysis. In Service-

Oriented Computing, pages 27–38. Springer, 2011.

20 Marco Gavanelli, Maddalena Nonato, Andrea Peano, Stefano Alvisi, and Marco Fran-

chini. An asp approach for the valves positioning optimization in a water distribution

system. In CILC, pages 134–148, 2012.

21 Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max Ostrowski, Torsten Schaub,

and Sven Thiele. Engineering an incremental ASP solver. In Logic Programming, pages

190–205. Springer, 2008.

22 Armin Haller, Mateusz Marmolowski, Eyal Oren, and Walid Gaaloul. oxpdl: a process

model exchange ontology. Technical report, Citeseer, 2007.

23 Mustafa Hashmi and Guido Governatori. A methodological evaluation of business pro-

cess compliance management frameworks. In Asia Pacific Business Process Management,

pages 106–115. Springer, 2013.

24 Giray Havur, Cristina Cabanillas, Axel Polleres, and Jan Mendling. Automated Resource

Allocation in Business Processes with Answer Set Programming. Business Process Man-

agement, submitted to BPM 2015 (on 2015.03.22).

25 Thorsten Humberg, Christian Wessel, Daniel Poggenpohl, Sven Wenzel, Thomas

Ruhroth, and Jan Jürjens. Ontology-based analysis of compliance and regulatory re-

quirements of business processes. In CLOSER, pages 553–561, 2013.

25

26 Thorsten Humberg, Christian Wessel, Daniel Poggenpohl, Sven Wenzel, Thomas

Ruhroth, and Jan Jürjens. Using ontologies to analyze compliance requirements of cloud-

based processes. In Cloud Computing and Services Science, pages 36–51. Springer, 2014.

27 Jon Espen Ingvaldsen and Jon Atle Gulla. Industrial application of semantic process

mining. Enterprise Information Systems, 6(2):139–163, 2012.

28 Joxan Jaffar and Michael J Maher. Constraint logic programming: A survey. The journal

of logic programming, 19:503–581, 1994.

29 Michael Kifer. Deductive and object data languages: a quest for integration. In Deductive

and Object-Oriented Databases, pages 187–212. Springer, 1995.

30 Michael Kifer. Nonmonotonic reasoning in flora-2. In Logic Programming and Nonmono-

tonic Reasoning, pages 1–12. Springer, 2005.

31 Michael Kifer, Georg Lausen, and James Wu. Logical foundations of object-oriented and

frame-based languages. Journal of the ACM (JACM), 42(4):741–843, 1995.

32 Linh Thao Ly, Stefanie Rinderle-Ma, David Knuplesch, and Peter Dadam. Monitoring

business process compliance using compliance rule graphs. In On the move to meaningful

internet systems: OTM 2011, pages 82–99. Springer, 2011.

33 Carlos Pedrinaci and John Domingue. Towards an ontology for process monitoring and

mining. In CEUR Workshop Proceedings, volume 251, pages 76–87, 2007.

34 Carlos Pedrinaci, John Domingue, and Ana Karla Alves de Medeiros. A core ontology for

business process analysis. Springer, 2008.

35 Bill Tsoumas and Dimitris Gritzalis. Towards an ontology-based security management.

In Advanced Information Networking and Applications, 2006. AINA 2006. 20th International

Conference on, volume 1, pages 985–992. IEEE, 2006.

36 Branimir Wetzstein, Zhilei Ma, Agata Filipowska, Monika Kaczmarek, Sami Bhiri, Sil-

vestre Losada, Jose-Manuel Lopez-Cob, and Laurent Cicurel. Semantic business process

management: A lifecycle based requirements analysis. In SBPM, 2007.

37 Guizhen Yang, Michael Kifer, and Chang Zhao. Flora-2: A rule-based knowledge repre-

sentation and inference infrastructure for the semantic web. In On The Move to Meaningful

Internet Systems 2003: CoopIS, DOA, and ODBASE, pages 671–688. Springer, 2003.

38 Michael Zur Muehlen. Process-driven management information systems combining data

warehouses and workflow technology. In Proceedings of the International Conference on

Electronic Commerce Research (ICECR-4), pages 550–566. Citeseer, 2001.

	Introduction
	Semantic Models for Mining and Monitoring Process-Relevant Data
	Reasoning over Process-related Data for Compliance, Safety and Security
	Reasoning over Business Processes and Constraints
	Resource Allocation Problem
	Resource Allocation in iASP
	Resource Allocation in Transaction Logic
	Resource Allocation in CLP-FD
	Elicitation of a Unified Formalism to Solve the Reasoning Tasks in SHAPE

	Performance Evaluation of Formalisms
	Benchmark Design for Resource Allocation Task

	Preprocessing Business Processes for Improving Feasibility and Scalability
	Summary and Future Work
	Appendices
	Visualization of Automated Resource Allocation Solutions
	iASP Encoding for Automated Resource Allocation
	Bibliography

