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1 Introduction

This document is part of work package 2 (WP2) on Semantic Models for Mining
& Monitoring Process Relevant Data of the SHAPE project1. It reports the work
performed under milestone 2.3 Resource and data management service architecture.
More specifically,

We investigate and report on how the reasoning service communicates with
the business process management system Camunda, and

We extend the resource allocation encoding for resource management that we
described in D2.2 and in [15] towards meeting the needs of the SHAPE project.

In particular, the content of this deliverable is structured as follows: Section 2
details the reasoning service architecture. Section 3 describes an extended version
of our resource allocation encoding in iASP [15] for supporting allocation of both
human and material resources. Section 4 concludes the deliverable by remarking
ongoing and future work.

2 Reasoning Service Architecture

In this section we detail our reasoning service architecture. Figure 1 shows the
overall framework for process management in complex engineering projects and
how our reasoning module is connected to other components in a BPMS environ-
ment. The reasoning module uses our Engineering Domain Ontology [6] as input
for reasoning tasks. The Engineering Domain Ontology consists of:

Process model,

Organizational model,

Infrastructure model, and

Regulation model.

The main task the reasoning module performs is scheduling of activities in
a business process, and allocating required resources to activities (cf. Section 3)
while taking into account the regulation data consist of the requirements, i.e. stan-
dards and norms, detailed in [16]. Therefore, the reasoning module lead to results
that are compliant to such requirements that ensures safety in engineering projects
(e.g. Compliance rules derived from EN50126 [13]).

1 https://ai.wu.ac.at/shape-project/
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Figure 1 Overall framework for process management in complex engineering projects

3 Customizable Resource Allocation in BPMS

Business Process Management Systems (BPMS) have been designed as an integral
part of the business process management (BPM) lifecycle by coordinating all re-
sources involved in a process including people, machines and systems [28]. At
design time, BPMS take as input a business process model enriched with technical
details such as role assignments, data processing and system interfaces as a spec-
ification for the execution of various process instances. In this way, they support
the efficient and effective execution of business processes [23].

It is an implicit assumption of BPMS that work items are independent from one
another. If this assumption holds, it is fine to put work items in a queue and offer
them to available resources right away. This approach of resource allocation can
be summarized as a greedy strategy. However, if there are dependencies between
work items, this strategy can easily become suboptimal. Some domains like en-
gineering or healthcare have a rich set of activities for which various resources,
human and non-human, are required at the same time. Resource conflicts have
often the consequence that working on one work item blocks resources such that
other work items cannot be worked on. This observation emphasizes the need for
techniques to make better use of existing resources in business processes [27].

In this section, we address current limitations of BPMS with respect to taking
such resource constraints into account. We extend prior research on the inte-
gration of BPMS with calendars [18] to take dependencies and resource conflicts
between work items into account. We develop a technique for specifying these
dependencies in a formal way in order to derive a globally optimal schedule for
all resources together. We define our technique using Answer Set Programming
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Figure 2 Workflow for two projects

(ASP), a formalism from logic programming that has been found to scale well
for solving problems as the one we tackle [15]. We evaluate our technique using
an industry scenario from the railway engineering domain. Our contribution to
research on BPMS is an explicit notion of dependence along with a technique to
achieve an optimal schedule.

3.1 Motivation

In the following, we describe an industry scenario from SHAPE that leads us to a
more detailed definition of the resource allocation problem and its complexity.

3.1.1 Industry Scenario

A company that provides large-scale technical infrastructure for railway automa-
tion requires rigorous testing for the systems deployed. Each system consists of
different types and number of hardware that are first set up in a laboratory. This
setup is executed by some employees specialized in different types of hardware.
Afterwards, the simulation is run under supervision.

Figure 2 depicts two process models representing the setup and run phases of
two tests. We use (timed) Petri nets [22] for representing the processes. The pro-
cess activities are represented by transitions (ai). The number within square brack-
ets next to the activities indicates their (default maximum) duration in generic
time units (TU). The numbers under process names indicate the starting times of
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the process executions: 8 TU for Test-1 and 12 TU for Test-2. The processes are
similar for all the testing projects but differ in the activities required for setting
up the hardware as well as in the resource requirements associated with them.
Certain resources can only be allocated to activities during working periods, i.e.,
we want to enforce time intervals (so called breaks where some resources are not
available. In our scenario, no resource is available between the closed intervals
[0, 7],[19, 31],[43, 55], and [67, 79].

For completing tests, the non-human resources available in the organization
include 13 units of space distributed into 2 laboratories (Table 2) and several units
of 3 types of hardware (Table 3). The human resources of the company are special-
ized in the execution of specific phases of the two testing projects, whose activities
they are able to complete in a specific time. Table 4 shows available resources in
different process phases and therefore, their ability to conduct certain activities
along with their years of experience in the company in square brackets.

The requirements on the use of such resources in the process activities are
shown in Table 5. Each process activity requires a specific set of resources for its
completion. For instance, three of the activities involved in the setup of Test-1
require 1 employee working on 1 unit of the hardware HW-1 in a laboratory; 1
setup activity requires 1 employee working on 1 unit of the hardware HW-2 in a
laboratory; and the run activity requires 4 employees. Besides, a test can only be
executed if the whole setup takes place in the same laboratory.

The aim in this scenario is to optimize the overall execution time of simultane-
ous tests and consequently, the space usage in the laboratories.

3.1.2 Insights
The resource allocation problem deals with the assignment of resources and time
intervals to the execution of activities. The complexity of resource allocation in
BPM arises from coordinating the explicit and implicit dependencies across a

LAB− 1 LAB− 2
Space 4 9

Table 2 Available space in labs

Type Units
HW1 hw1a, hw1b, hw1c
HW2 hw2a, hw2b, hw2c, hw2d
HW3 hw3a, hw3b, hw3c

Table 3 Available hardware (HW)

Test− 1 Test− 2
Setup Run Setup Run

Glen[7] X X
Drew[7] X
Evan[3] X
Mary[5] X X
Kate[6] X X
Amy[8] X X X

Table 4 Specialization of employees
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broad set of resources and activities of processes as well as from solving potential
conflicts on the use of certain resources. As we observe in our industry scenario,
such dependencies include, among others: (i) resource requirements, i.e., the char-
acteristics of the resources that are involved in an activity (e.g., roles or skills).
Table 4 is provided instead.; (ii) temporal requirements. For instance, the dura-
tion of the activities may be static or may depend on the characteristics of the set
of resources involved in it, especially for collaborative activities in which several
employees work together (such as for the activities of the run phase of a test-
ing process). Furthermore, resource availability may not be unlimited (e.g., break
calendars). In addition, resource conflicts may emerge from interdependencies
between requirements, e.g., activities might need to be executed within a specific
setting which may be associated with (or share resources with) the setting of other
activities (e.g., all the setup activities of a testing process must be performed in
the same laboratory).

A resource allocation is feasible if (1) activities are scheduled with respect to
time constraints derived from activity durations and control flow of the process
model, and (2) resources are allocated to scheduled activities in accordance with
resource availability and resource requirements of activities. This combinatorial
problem for finding a feasible resource allocation under constraints is an NP-
Complete problem [29]. However, organizations generally pursue an optimal al-
location of resources to process activities aiming at minimizing overall execution
times or costs, or maximizing the usage of the resources available. In presence of
objective functions the resource allocation problem becomes ∆P

2 [5].

3.2 Conceptualization of the Resource Allocation Problem

Fig. 3 illustrates our conceptualization of the resource allocation problem. We di-
vide it into three complexity layers related to the aforementioned dependencies

Activities Requirements

Te
st

-1

a1 − a3 1 Employee:Setup-1, 1 Hardware:HW-1, 1 Lab:a1-a4 same lab

a4 1 Employee:Setup-1, 1 Hardware:HW-2, 1 Lab:a1-a4 same lab

a5 4 Employee:Run-1, after execution(a.e.) release the lab for a1-a4

Te
st

-2

a6 − a8 1 Employee:Setup-2, 1 Hardware:HW-2, 1 Lab:a6-a11 same lab

a9 − a11 1 Employee:Setup-2, 1 Hardware:HW-3, 1 Lab:a6-a11 same lab

a12 2 Employee:Run-2 (hasExp>5), a.e. release the lab for a6-a11

Table 5 Activity requirements
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Figure 3 Resource allocation in business processes

and resource conflicts. Optimization functions can be applied to all types of allo-
cation problems. This model has been defined from the characteristics identified
in the industry scenario as well as in related literature [21]. We describe each
complexity layer in the following sections.

3.2.1 Basic Resource Allocation

Three elements are involved in a basic resource allocation, namely: a model
that stores all the information required about the resources available, information
about the expected duration of the process activities, and a language for defining
the restrictions that characterize the allocation.

3.2.1.1 Resource Ontology

In order to enable the integration with semantic technologies for an automatic
resource allocation, we suggest the use of an ontology for modeling the organi-
zational information. Fig. 4 illustrates a sample resource ontology using the RDF
schema (RDFS) [4], in which a resource is characterized by a type and can have one
or more attributes. In particular, any resource type (e.g. Employee) is a subclass of
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res:Employee res:Hardware res:Lab

xsd:string

res:hasName res:hasSpace

xsd:integer

res:hasExpres:hasRole

xsd:integerres:HW1 res:HW2 res:HW3

:glen a res: Employee ; res:name "Glen "; res: hasExp 7;
res: hasRole " Setup_Test1 ", " Run_Test1 " .

:drew a res: Employee ; res:name "Drew ";
res: hasExp 7; res: hasRole " Run_Test1 " .

...
:lab1 a res:Lab , res: hasSpace 4 .
:lab2 a res:Lab , res: hasSpace 9 .
:hw1a a res:HW1. :hw1b a res:HW1. :hw1c a res:HW1.
:hw2a a res:HW1. :hw2b a res:HW2. :hw2c a res:HW2. :hw2d a res:HW2.
:hw3a a res:HW3. :hw3b a res:HW3. :hw3c a res:HW3.

Figure 4 Resource ontology and example instantiation

rdfs:Resource. The attributes are all of type rdf:Property; domain (rdfs:domain) and
range of attributes are indicated with straight arrows labeled with the attribute
name, whereas dashed arrows indicate an rdfs:subclassOf. There are three different
types of resources: Employee, Hardware and Lab, where Hardware has three resource
subtypes. Employees have attributes for their name (hasName), role(s) (hasRole)
and experience level (hasExp) in the organization (number of years). Labs provide
a certain amount of space for experiments (hasSpace). An instantiation of the on-
tology is described at the bottom of the figure using the RDF Turtle syntax [2].
This instantiation represents Tables 2-4 of the industry scenario.

3.2.1.2 Activity Duration

Resource allocation aims at properly distributing available resources among run-
ning and coming work items. The main temporal aspect is determined by the
expected duration of the activities. The duration can be predefined according to
the type of activity or calculated from previous executions, usually taking the av-
erage duration as reference. This information can be included in the executable
process model as a property of an activity (e.g. with BPMN [20]) or can be mod-
elled externally. In either case, it has to be accessible by the allocation algorithm.

3.2.1.3 Resource Allocation

Resource allocation can be seen as a two-step definition of restrictions. First, the
so-called resource assignments must be defined, i.e., the restrictions that determine
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which resources can be involved in the activities [7] according to their properties.
The outcome of resource assignment is one or more2 resource sets with the set of
resources that can be potentially allocated to an activity at run time. The second
step assigns cardinality to the resource sets such that different settings can be
described, e.g. for the execution of activity a1, 1 employee with role setup-1, 1
hardware of type HW2, and 1 unit space of a laboratory are required.

There exist languages for assigning resource sets to process activities [7, 35,
34, 8]. However, cardinality is generally disregarded under the assumption that
only one resource will be allocated to each process activity. This is a limitation of
current BPMS that prevents the implementation of industry scenarios like the one
described in Section 3.1.1.

3.2.2 Advanced Time Management
This layer extends the temporal aspect of resource allocation by taking into ac-
count that: (i) resource availability affects allocation, and that (ii) the resource sets
allocated to an activity may affect its duration. Regarding resource availability,
calendars are an effective way of specifying different resource availability status,
such as available, unavailable, occupied/busy or blocked [21]. Such information
must be accessible by the resource allocation module. As for the variable activ-
ity durations depending of the resource allocation, three specificity levels can be
distinguished:

Resource-set-based duration, i.e., a triple (activity, resourceSet, duration) stating
the (minimum/average) amount of time that it takes to the resources within
a specific resource set (i.e., cardinality is disregarded) to execute instances of
a certain activity. For instance, (a1, technician, 6) specifies that people with
the role technician need (at least/on average) 6 TU to complete activity a1,
assuming that technician is an organisational role.
Resource-based duration, i.e., a triple (activity, resource, duration) stating the (min-
imum/average) amount of time that it takes to a concrete resource to execute
instances of a certain activity. For instance, (a1, John, 8) specifies that John
needs (at least/on average) 8 TU to complete activity a1.
Aggregation-based duration, i.e., a triple (activity, group, duration) stating the
(minimum/average) amount of time that it takes to a specific group to exe-
cute instances of a certain activity. In this paper, we use group to refer to a

2 Since several sets of restrictions can be provided, e.g. for activity a1 resources with either role r1
or skill s1 are required.
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set of human resources that work together in the completion of a work item,
i.e., cardinality is considered. Therefore, a group might be composed of re-
sources from different resource sets which may not necessarily share a specific
resource-set-based duration. An aggregation function must be implemented in
order to derive the most appropriate duration for an activity when a group is
allocated to it. The definition of that function is up to the organization. For
instance, a group might be composed of (John, Claire), where John has an as-
sociated duration of 8 TU for activity a1 and Claire does not have a specific
duration but she has role technician, with an associated duration of 6 TU for
activity a1. Strategies for allocating the group to the activity could be to con-
sider the maximum time needed for the resources involved (i.e., 8 TU), or to
consider the mean of all the durations (i.e., 7 TU) assuming that the joint work
of two people will be faster than one single resource completing all the work.

3.2.3 Advanced Resource Management
The basic resource allocation layer considers resources to be discrete, i.e. they
are either fully available or fully busy/occupied. This applies to many types of
resources, e.g. people, software or hardware. However, for certain types of non-
human resources, availability can be partial at a specific point in time. For instance,
in Fig. 3 there is a resource room 1 whose occupancy changes over time. This so
called cumulative resources are hence characterized by their dynamic attributes and
they can be allocated to more than one activity at a time.

3.2.4 Optimization Function
Searching for (the existence of) a feasible resource allocation ensures that all the
work items can eventually be completed with the available resources. However,
typically schedules should also fulfill some kind of optimality criterion, most com-
monly completion of the schedule in the shortest possible overall time. Other
optimization criteria may involve for instance costs of the allocation of certain
resources to particular activities, etc.

Given such an optimization criterion, there are greedy approaches [36] pro-
viding a substantial improvements over choosing any feasible schedule, although
such techniques depend on heuristics and may not find a globally optimal solution
for complex allocation problems.

We refer to [26] for further information on various optimization functions, but
emphasize that our approach will in principle allow arbitrary optimization func-
tions and finds optimal solutions – similar in spirit to encodings of cost optimal
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planning using ASP [11].

3.3 Implementation with ASP

Answer Set Programming (ASP) [14] is a declarative (logic-programming-style)
paradigm. Its expressive representation language, ease of use, and computational
effectiveness facilitate the implementation of combinatorial search and optimiza-
tion problems (primarily NP-hard). Modifying, refining, and extending an ASP
program is uncomplicated due to its strong declarative aspect.

An ASP program Π is a finite set of rules of the form:

A0 ← A1, . . . , Am, not Am+1, . . . , not An. (1)

where n≥m≥ 0 and each Ai ∈ σ are (function-free first-order) atoms; if A0 is
empty in a rule r, we call r a constraint, and if n = m = 0 we call r a fact.

Whenever Ai is a first-order predicate with variables within a rule of the form
(1), this rule is considered as a shortcut for its grounding ground(r), i.e., the set
of its ground instantiations obtained by replacing the variables with all possible
constants occurring in Π. Likewise, we denote by ground(Π) the set of rules ob-
tained from grounding all rules in Π. Sets of rules are evaluated in ASP under the
so-called stable-model semantics, which allows several models, so called answer
sets (cf. [3] for details).

ASP Solvers typically first compute a subset of ground(Π) and then use a
DPLL-like branch and bound algorithm to find answer sets for this ground pro-
gram. We use the ASP solver clasp [14] for our experiments as it has proved to be
one of the most efficient implementations available [9].

As syntactic extension, in place of atoms, clasp allows set-like choice expressions
of the form E = {A1, . . . , Ak} which are true for any subset of E; that is, when
used in heads of rules, E generates many answer sets, and such rules are often
referred to as choice rules. Another extension supported in clasp are optimization
statements [14] to indicate preferences between possible answer sets:

#minimize {A1 : Body1 = w1, . . . , Am : Bodym = wm@p}

associates integer weights (defaulting to 1) with atoms Ai (conditional to Bodyi be-
ing true), where such a statement expresses that we want to find only answer sets
with the smallest aggregated weight sum; again, variables in Ai : Bodyi = wi are
replaced at grounding w.r.t. all possible instantiations. Several optimization state-
ments can be introduced by assigning the statement a priority level p. Reasoning
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problems including such weak constraints are ∆P
2 -complete.

Finally, many problems conventiently modelled in ASP require a boundary
parameter k that reflects the size of the solution. However, often in problems like
planning or model checking this boundary (e.g. the plan length) is not known
upfront, and therefore such problems are addressed by considering one problem
instance after another while gradually increasing this parameter k. Re-processing
repeatedly the entire problem is a redundant approach, which is why incremental
ASP (iASP) [14] natively supports incremental computation of answer sets; the
intuition is rooted in treating programs in program slices (extensions). In each
incremental step, a successive extension of the program is considered where pre-
vious computations are re-used as far as possible.

A former version of our technique is detailed in [15]. We enhance our encoding
in three folds: (1) basic resource allocation supporting multiple business processes
with multiple running instances, (2) definition of advanced resource management
concepts, and (3) definition of advanced time management concepts. The entire ASP
encoding can be found in Appendix A.

3.3.1 Basic Resource Allocation

This program schedules the activities in business processes described as timed
Petri nets (cf. the generic formulation of 1-safe Petri Nets [15, Section 4]) and
allocates resources to activities with respect to activity-resource requirements. To
achieve this, the program finds a firing sequence between initial and goal places
of given processes, schedules the activities in between, and allocates resources by
complying with resource requirements. In our program, a firing sequence is repre-
sented as predicates fire(a,b,i,k), which means that an activity a of a business
process b in instance i is fired at step k. Starting time of each activity in the firing
sequence is derived from the time value accumulated at the activity’s input place
p. A time value at a place p is represented by the predicate timeAt(p,c,b,i,k),
where c is the time value.

A resource set is defined as a rule that derives the members of the set that satisfy
a number of properties. These properties can be class memberships or resource
attributes defined in resource ontology(cf. Section 3.2.1.1). Note that, any resource
ontology described in RDF(S) can be easily incorporated/translated into ASP [12].
A resource set is represented with the predicate resourceSet(R,id), where R is a
set of discrete resources and id is the identifier of the set. We explain the following
resource sets following our industry scenario:
All employees that can take part in the setup phase of Test-1:
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resourceSet(R,rs_set1):-employee(R), hasRole(R,setup1).

All employees that can take part in the run phase of Test-2 and have a working experience
greater than 5 years:
resourceSet(R,rs_ex2):-employee(R), hasRole(R,run2), hasExp(E), E>5.

All hardware resources of type HW2:
resourceSet(R,rs_h2):-hardware2(R).

After defining resource sets, we define resource requirements of an activity a

with the predicate requirement(a,id,n) where id refers to a specific resource
set and n is the number of resources that activity a requires from this set. For
instance, requirement(a12,rs_ex2,2) means that activity a12 requires 2 resources
from the resource set rs_ex2. The resource requirements that we support include
typical access-control constraints [7]. In particular, Separation of duties (SoD) and
binding of duties(BoD) are implemented in our program by using the predicate
separateDuties(a1,b1,a2,b2), which separates the resources allocated to the ac-
tivity a1 of process b1 from the resources allocated to a2 of b2; and bindDuties(a1,b1,a2,b2),
which binds the resources allocated to the activity a1 of process b1 with the re-
sources allocated to a2 of b2.

3.3.2 Advanced Time Management

Default durations of activities are defined in the timed Petri nets and represented
as activityDuration(T,D) in our program. This default duration can be over-
written by d when any resource r that belongs to a resource set rs is assigned to a
certain activity a of the process b by using the predicate rSetActDuration(rs,a,b,d).
In a similar fashion, the default duration can be overwritten by a new value d when
a certain resource r is assigned to a certain activity a of the process b by using the
predicate resActDuration(r,a,b,d). The order (>) preferred in activity time is
resActDuration>rSetActDuration>activityDuration.

As one activity can be allocated to a group of resources (cf. Section 3.2.2), an
aggregation method might be needed. Our default aggregation method identifies
the maximum duration within the group and uses it for allocation. This method
can be modified with different aggregation options that fit in the purpose of allo-
cation scenario.

In many real-life projects, certain resources are only available during the work-
ing periods (a.k.a. break calendars). We model this by break(rs, c1,c2) that for-
bids allocation of resources in the resource set rs between time c1 and c2, where
c1 < c2.

For business process instances and their activities, (optionally, max. or min.)
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starting or ending times can be defined using the following predicates:
actStarts(o,a,b,i,c), i.e. activity a in business process b of instance i, starts
<o> at c; actEnds(o,a,b,i,c), i.e. activity a in business process b of instance i,
ends <o> at c; bpiStarts(o,b,i,c), i.e. business process b of instance i, starts
<o> at c; bpiEnds(o,b,i,c), i.e. business process b of instance i, ends <o> at
c; where o∈ {strictly,earliest,latest}.

3.3.3 Advanced Resource Management
A cumulative resource has an integer value attribute describing the state of the
resource. This value can increase or decrease when the resource is consumed or
generated by an activity requiring it. Definition of cumulative resource sets have
one extra term for this reason: resourceSet(R,V,id), where R is the set of cu-
mulative resources, V is the set of their initial value and id is the identifier of the
resource set. For example:
Lab space set:
resourceSet(R,V,lab_space):-lab(R),hasSpace(R,V).

Resource requirements are defined like for discrete resources, where n is the
amount of resources consumed or generated. For instance, requirement(a1,lab_space,-1)

consumes 1 unit of lab space when a1 is allocated, whereas requirement(a12,rs_ex2,6)

releases 6 units of space by the time a12 is completed.
Resource blocking functionality allows us to block some resources between the

execution of two activities in a process. A blocked resource is not allowed to be
allocated by an activity in this period. block(a1,a2,id,n) blocks n amount of
resources in the resource set id from the beginning of a1 to beginning of a2.

3.3.4 Optimization Function
As aforementioned, the ASP solver clasp allows defining objectives as cost func-
tions that are expressed through a sequence of #minimize statements. In our
encoding, we ensure time optimality of our solutions using a minimization state-
ment. In a similar way, any objective that is quantified with an integer value (e.g.
cost objectives, resource leveling, etc.) could be introduced. When there is more
than one objective, they should be prioritized.

Taking into account all the aforementioned functionality, using the encoding
summarized above and detailed in Appendix A, a time optimal solution for our
industry scenario is depicted in Fig. 5. The final allocation of resources to each
activity ai is as follows:
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Figure 5 Optimal resource allocation for our industry scenario
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Figure 6 A greedy (suboptimal) resource allocation for our industry scenario

a1 {Amy,hw1a,lab-1(-1)} a7 {Mary,hw2a,lab-2(-1)}

a2 {Amy,hw1b,lab-1(-1)} a8 {Amy,hw2d,lab-2(-1)}

a3 {Glen,hw1c,lab-1(-1)} a9 {Amy,hw3c,lab-2(-1)}

a4 {Glen,hw2b,lab-1(-1)} a10 {Mary,hw3b,lab-2(-1)}

a5 {Glen,Drew,Ewan,Mary,lab-1(4)} a11 {Kate,hw3a,lab-2(-1)}

a6 {Kate,hw2c,lab-2(-1)} a12 {Kate,Amy,lab-2(6)}

3.3.5 Evaluation

Our resource allocation technique not only finds an optimal schedule for activities
in our industry scenario but also consequently optimizes the resource utilization.
We show the improvement in result quality by comparing an optimal allocation of
the scenario (cf. Fig 5) against a greedy allocation, depicted in Fig. 6. We use the
following two criteria for this comparison:

1. Total execution time (TET) corresponds to the end time of the last activity for
each process (e.g. a5 for process Test-1).

2. Average employee utilization (AEU): For any time unit c ∈ C, cstart is the start
time, cend is the end time of process execution, cstart≤c≤cend, a function s : c →
Rb returns an ordered set of billable employees Rb respecting Table 4. For each
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Optimal(Fig. 5) Greedy (Fig. 6)

TET 30 35

AEU 0.61 0.54
Table 6 Result quality comparison

element s ∈ Rb a function wc : r → {0, 1} returns whether the employee r is
working at time c. In other words, we first sum the ratio between the number of
employees allocated and the total number of employees that potentially can take
part at each time unit, and normalize this sum using the overall execution time.
AEU is calculated as described by (2).

AEU =
∑cend

i=cstart

∑r∈s(i) wc(r)

|s(i)|
cend − cstart

(2)

For instance, in Fig. 6, s(8) = {Glen, Drew, Evan, Mary, Amy}. Note that Kate
is not in the set since she only takes part in Test-2 and Test-2 instances have not
started due to the deadline constraint bpStarts(earliest,test-2,12). At time
8, only wc(Amy) and wc(Glen) have value of 1.

Table 6 summarizes the results obtained using the two aforementioned criteria
for the two allocation strategies. The execution of our industry scenario finishes
5 TU before under optimal allocation, which corresponds to 14% of time usage
improvement while AEU improves 7%. We refer the reader to [15] for scalability
of our technique, where we demonstrated that ASP performs well for resource
allocation in the BPM domain.

3.4 Related Work
Resource allocation has been extensively explored in various domains for address-
ing everyday problems, such as room, surgery or patient scheduling in hospitals,
crew-job allocation or resource leveling in organizations. Table 7 collects a set
of recent, representative approaches of three related domains: operating room
scheduling [10, 31, 25], project scheduling [32, 19, 33] and resource allocation in
business processes [36, 30, 15]. The features described in Section 3.2 are used for
comparing them3. Specifically, column Res. Type specifies the type(s) of resource(s)
considered for allocation (human, non-human or both); column A. Level indicates
the expressiveness of the restrictions that can be defined for the allocation, among:

3 We have adopted the vocabulary used in BPM for resource allocation [36, 30].
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Basic Resource Advanced Time Advanced
Allocation Management Res. Mgmt.

Approach Res. Type A. Level Calendar Aggreg. Dynamism Objective Formalism

[10] Both Low X - - Usage MIP
[31] Both Medium X - - Usage IP
[25] Both High X - - Any Ad-hoc

[32] Both Medium - X - Time&usage LIP
[19] Both Medium - X - Time&usage CP
[33] Both Medium - X - Makespan Ad-hoc

[30] Both Medium - X - - CP
[36] Both Medium - X - Makespan Petri N.
[15] Human Medium - X - Time ASP

Table 7 Representative approaches related to resource allocation

(i) low, when a small range of resource assignment requirements are considered
and only one individual of each resource type (e.g., one person and one room)
is allocated to an activity, i.e., cardinality is disregarded; (ii) medium, when a
small range of resource assignment requirements are considered or cardinality is
disregarded; and (iii) high, when flexible resource assignment and cardinality are
supported; column Calendar refers to whether information about resource avail-
ability is taken into account (a blank means it is not); column Aggreg. indicates
whether the execution time of an activity is determined by the resources involved
in it; column Advanced Res. Mgmt. shows the support for cumulative resources
that can be shared among several activities at the same time; column Objective
defines the variable to be optimized; and column Formalism specifies the method
used for resolving the problem.

The concept of process is not explicitly mentioned in the operating room schedul-
ing problem. Traditional approaches in this field tended to adopt a two-step ap-
proach which, despite reducing the problem complexity, failed to ensure optimal
or even feasible solutions [25]. It is a property of the surgery scheduling problem
that some resources, such as the operating rooms, can only be used in one project
at a time [25], so cardinality is disregarded [10, 31]. However, it is important to
take into account resource availability. The most expressive approach in this do-
main [25] is an ad-hoc algorithm, whereas integer programming (IP) stands out as
a formalism to efficiently address this problem.

Project scheduling consists of assigning resources to a set of activities that com-
pose a project, so the concept of workflow is implicit. The approaches in this do-
main support cardinality for resource allocation but they rely on only the resource
type for creating the resource sets assigned to an activity. These approaches im-
plement the so-called resource-time tradeoff, which assumes that activity completion
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is faster if two resources of the same type work together in its execution [32, 19]
(cf. Section 3.2.2). However, they assume a constant per-period availability of the
resources [33], hence calendars are overlooked. The project scheduling problem
has been repeatedly addressed with formalisms like linear integer programming
(LIP) [32] and constraint programming (CP) [19], yet ad-hoc solutions also ex-
ist [33].

Finally, in the domain of BPM, the state of the art in resource allocation does
not reach the maturity level of the other domains despite the acknowledged im-
portance of the problem [1] and the actual needs (cf. Section 3.1.1). Similar to
project scheduling, a constant availability of resources is typically assumed. In
addition, due to the computational cost associated to joint resource assignment
and scheduling problems [17], the existing techniques tend to search either for a
feasible solution without applying any optimizations [30]; or for a local optimal at
each process step using a greedy approach that might find a feasible but not nec-
essarily a globally optimal solution [36]. Nonetheless, recently it was shown that
global optimization is possible at a reasonable computational cost [15]. Moreover,
driven by the limitations of current BPMS, which tend to disregard collaborative
work for task completion, cardinality has been unconsidered for allocation, giving
rise to less realistic solutions.

In general, the optimization function depends on the problem and the objective
of the approach but it is generally based on minimizing time, makespan or cost,
or making an optimal use of the resources (a.k.a. resource leveling [24]).

4 Summary and Future Work

In this deliverable we provided an overview on reasoning architecture (cf. Sec-
tion 2) and enhanced/generalized our resource allocation technique for the scope
of SHAPE project (cf. Section 3). As future work we aim at digging into archi-
tectural details and implementing a demo that brings together functionalities of
different work packages in Camunda environment, where the reasoning tasks will
play a central role.
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Appendices

A iASP Encoding for Automated Resource Allocation

We provide the improved and enhanced iASP encoding version for automated
resource allocation.

Listing 1 Static knowledge

# program base.

% default duration of a transition
firingDelay (A,B ,0) :- not activityDuration (A,B,_),

activityTransition (A,B).
firingDelay (A,B,D) :- activityDuration (A,B,D).

% default resource - activity duration preference handling
defaultRABD (R,A,B,D) :- humanResource (R),

resourceActivityDuration (R,A,B,D).
defaultRABD (R,A,B,D) :- humanResource (R), resourceSet (R,Q),

rsActivityDuration (Q,A,B,D),
not resourceActivityDuration (R,A,B,_).

defaultRABD (R,A,B,D) :- humanResource (R), firingDelay (A,B,D),
not resourceActivityDuration (R,A,B,_),
not rsActivityDuration (_,A,B,_).

Listing 2 Cumulative knowledge

# program cumulative (s).

%%% PETRI NET DYNAMINCS %%%

% generate action fire
{fire(T,B,I,s) : inPlace (P,T,B), bpInstance (B,I)}.

% fire precondition : if no token at preceding P, then can ’t fire
:- fire(T,B,I,s), bpInstance (B,I), inPlace (P,T,B),

not tokenAt (P,B,I,s).

% fire effect : if fire at s-1, token at next place
tokenAt (P,B,I,s) :- fire(T,B,I,s-1), outPlace (P,T,B), bpInstance (B,I).

% fire constraint only 1 succeeding transition can fire
:- inPlace (P,T1 ,B), inPlace (P,T2 ,B), T1!=T2 , fire(T1 ,B,I,s),

fire(T2 ,B,I,s), bpInstance (B,I).
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% inertia : tokenAt (P,s): if not fire token remains at its place
consumeToken (P,B,I,s) :- inPlace (P,T,B), fire(T,B,I,s),

bpInstance (B,I).
tokenAt (P,B,I,s) :- tokenAt (P,B,I,s-1), not consumeToken (P,B,I,s -1).

%%% TIME MANAGEMENT %%%

% Max time
maxTimeAtInPlace (P,T,B,I,s) :- inPlace (P,T,B),

not greaterTimeExistsAtInPlace (P,T,B,I,s),
fire(T,B,I,s), bpInstance (B,I).

greaterTimeExistsAtInPlace (P1 ,T,B,I,s) :- inPlace (P1 ,T,B),
inPlace (P2 ,T,B), fire(T,B,I,s), timeAt (P1 ,C1 ,B,I,s),
timeAt (P2 ,C2 ,B,I,s), P1!=P2 , C1 <C2 , bpInstance (B,I).

% fire effect on time (T is not an activity )
timeAt (P2 ,X,B,I,s) :- not activityTransition (T,B), fire(T,B,I,s-1),

maxTimeAtInPlace (P,T,B,I,s-1), timeAt (P,X,B,I,s-1),
outPlace (P2 ,T,B), bpInstance (B,I).

% fire effect on time (T is an activity )
timeAt (P2 ,C2 ,B,I,s) :- activityTransition (T,B),

allocate (R,T,C1 ,C2 ,B,I,s-1), fire(T,B,I,s-1),
outPlace (P2 ,T,B), bpInstance (B,I).

% no fire wait
timeAt (P,C,B,I,s) :- timeAt (P,C,B,I,s-1), inPlace (P,T,B),

not activityTransition (T,B),
not consumeToken (P,B,I,s-1), bpInstance (B,I).

% time relaxation : if activity : relaxation is possible
timeAt (P,C+1,B,I,s) :- timeAt (P,C,B,I,s-1), inPlace (P,T,B),

activityTransition (T,B),
not consumeToken (P,B,I,s-1), bpInstance (B,I).

%%% RESOURCE ALLOCATION %%%

% allocate requirements to activities
N{ allocate (R,A,C,C+D,B,I,s): defaultD (A,B,D,s), resourceSet (R,Q)}N :-

requirement (A,Q,N), consumeToken (P1 ,B,I,s), inPlace (P1 ,A,B),
timeAt (P1 ,C,B,I,s), bpInstance (B,I).

% can not allocate same resource to another activity at the same time
:- allocate (R,A1 ,C1 ,C2 ,B,I,S1), allocate (R,A2 ,C1 ,C3 ,B,I,S2), C1 <C2 ,

C1 <C3 , A1!=A2.
:- allocate (R,A1 ,C1 ,C2 ,B,I1 ,S1), allocate (R,A2 ,C1 ,C3 ,B,I2 ,S2),

C1 <C2 , C1 <C3 , A1!=A2 , I1!=I2.
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:- allocate (R,A1 ,C1 ,C2 ,B1 ,I1 ,S1), allocate (R,A2 ,C1 ,C3 ,B2 ,I2 ,S2),
C1 <C2 , C1 <C3 , B1!=B2.

% can not allocate same resource to same activity at the same time in
% another instance
:- allocate (R,A,C1 ,C2 ,B,I1 ,S1), allocate (R,A,C1 ,C3 ,B,I2 ,S2), C1 <C2 ,

C1 <C3 , I1 !=I2.
:- allocate (R,A,C1 ,C2 ,B1 ,I1 ,S1), allocate (R,A,C1 ,C3 ,B2 ,I2 ,S2), C1 <C2 ,

C1 <C3 , B1 !=B2.

% can not allocate when allocatements overlap
:- allocate (R,T,Y1 ,Y2 ,B1 ,I1 ,S1), allocate (R,T2 ,X1 ,X2 ,B2 ,I2 ,S2), X1 >Y1 ,

X1 <Y2.
:- allocate (R,T,Y1 ,Y2 ,B1 ,I1 ,S1), allocate (R,T2 ,X1 ,X2 ,B2 ,I2 ,S2), X2 <Y2 ,

X2 >Y1.

% multiple allocations must start at the same time.
:- allocate (R,A,C1 ,C2 ,B,I,s), allocate (R1 ,A,C3 ,C4 ,B,I,s), R!=R1 ,

C1!=C3.

% default time is maximum time among assignments
defaultD (A,B,D,s) :- not greaterDExists (A,B,D,s),

defaultRABD (R,A,B,D).
greaterDExists (A,B,D1 ,s) :- defaultRABD (R1 ,A,B,D1), R1!=R2 , D1 <D2 ,

defaultRABD (R2 ,A,B,D2).

% consumable resources
% integer attribute changes
stepChange (Q,N,A,B,I,s) :- requirementC (A,Q,N), inPlace (P1 ,A,B),

consumeToken (P1 ,B,I,s), timeAt (P1 ,C,B,I,s),
bpInstance (B,I).

1{ valueChange (A,B,I,R,N,s): resourceValueSet (R,V,Q,s)}1 :-
stepChange (Q,N,A,B,I,s).

% sum all value cahnges and apply them
resourceValueSet (R,V+N,Q,s) :- resourceValueSet (R,V,Q,s-1),

N=#sum{M,A,R, valueChange : valueChange (A,B,I,R,M,s -1)}.

% an integer attribute can not be less than 0
:- resourceValueSet (R,V,Q,s), V <0.

% a value change can not make a resource attribute less than zero
:- resourceValueSet (R,V,Q,s), valueChange (_,B,I,R,M,s), M<0, -M>V.

% block resource
N{block(A,R,C1 ,s): resourceSet (R,Q)}N :- requirementB (A,A1 ,Q,N),
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consumeToken (P1 ,B,I,s-1), inPlace (P1 ,A,B), timeAt (P1 ,C1 ,B,I,s -1).
% unblock resource
unblock (A1 ,R,C2 ,s) :- block(A,R,C,s-1), resourceSet (R,Q),

requirementB (A,A1 ,Q,_), allocate (_,A1 ,C1 ,C2 ,B,I,s -1).

% inertia
block(A,R,C1 ,s) :- not unblock (A1 ,R,_,s-1), block(A,R,C1 ,s-1),

requirementB (A,A1 ,Q,N).
unblock (A1 ,R,C1 ,s) :- not block(A,R,_,s-1), unblock (A1 ,R,C1 ,s-1),

requirementB (A,A1 ,Q,N).

% can not block the same resource if not unblocked
:- block(A1 ,R,C1 ,s), requirementB (A1 ,A3 ,Q,N), not unblock (A3 ,R,C3 ,s),

block(A2 ,R,C2 ,s), A1!=A2 , C3=C1..C2 , C2 >=C1.

% can not allocate a resource if not unblocked
:- block(A1 ,R,C1 ,s), requirementB (A1 ,A2 ,Q,N), not unblock (A2 ,R,C2 ,s),

allocate (R,A3 ,C3 ,_,B,I,s), C2=C1..C3.

% separate /bind duties
% strict separation of duties
notallocateStrictly (R,A1 ,B1 ,C2 ,s) :- strictlySeparated (A,B,A1 ,B1),

allocate (R,A,_,C2 ,B,I,s -1).
:- allocate (R,A,C1 ,C2 ,B,I,S), notallocateStrictly (R,A,B,C,S1), C1 >=C.

% weak separation of duties
notallocateWeakly (R,A1 ,B1 ,C2 ,s) :- weaklySeparated (A,B,A1 ,B1),

allocate (R,A,_,C2 ,B,I,s -1).
notallocateWeakly (R,A,B,C,s) :- notallocateWeakly (R,A,B,C,s-1),

not allocate (_,A,_,_,B,_,s -1).
:- allocate (R,A,C1 ,C2 ,B,I,s), notallocateWeakly (R,A,B,C,s), C1 >=C.

% strict binding of duties
mustallocateStrictly (R,A1 ,B1 ,C2 ,s) :- strictlyBinded (A,B,A1 ,B1),

allocate (R,A,_,C2 ,B,I,s -1).
:- allocate (R1 ,A,C1 ,C2 ,S,B,I), mustallocateStrictly (R,A,B,C,S1),

C1 >=C, R1!=R.

% weak binding of duties
mustallocateWeakly (R,A1 ,B1 ,C2 ,s) :- weaklyBinded (A,B,A1 ,B1),

allocate (R,A,_,C2 ,B,I,s -1).
mustallocateWeakly (R,A,B,C,s) :- mustallocateWeakly (R,A,B,C,s-1),

not allocate (R,A,_,_,B,_,s -1).
:- allocate (R1 ,A,C1 ,C2 ,B,I,s), mustallocateWeakly (R,A,B,C,s), C1 >=C,

R1!=R.
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% break calendar
:- allocate (R,A,C1 ,C2 ,S,B,I), resourceSet (R,Q), break(Q,C3 ,C4),

C3 >=C1 , C3=<C2.
:- allocate (R,A,C1 ,C2 ,S,B,I), resourceSet (R,Q), break(Q,C3 ,C4),

C4 >C1 , C4 <C2.
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