
Requirements for process, resource and
compliance rules extraction from text

Deliverable D3.1

FFG – IKT der Zukunft
SHAPE Project
2014 – 845638



Table 1 Document Information

Project acronym: SHAPE
Project full title: Safety-critical Human- & dAta-centric Process management

in Engineering projects

Work package: 3
Document number: 3.1
Document title: Requirements for process, resource and compliance rules

extraction from text
Version: 1

Delivery date: 01 April 2015 (M1)
Actual publication date: —————–
Dissemination level: Public
Nature: Report

Editor(s) / lead beneficiary: WU Vienna
Author(s): Saimir Bala, Cristina Cabanillas, Jan Mendling, Axel Polleres
Reviewer(s): Claudio Di Ciccio, Alois Haselboeck



Contents

1 Introduction 1

2 Text Mining 1

2.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.1.1 Information extraction . . . . . . . . . . . . . . . . . . . . . . . 2

2.1.2 Topic detection and tracking . . . . . . . . . . . . . . . . . . . 3

2.1.3 Summarization . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.4 Categorization . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.5 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.6 Concept Linkage . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.7 Information visualization . . . . . . . . . . . . . . . . . . . . . 4

2.1.8 Question answering . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.9 Association rule mining . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Text mining in SHAPE . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Process Mining from Event Logs 6

3.1 From event logs to process models . . . . . . . . . . . . . . . . . . . . 8

3.2 Process discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.1 The α-algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.2 Advanced mining algorithms . . . . . . . . . . . . . . . . . . . 12

3.3 Process conformance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4 Process enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.5 Resources and constraints . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.5.1 Selection of a Suitable Modeling Language . . . . . . . . . . . 16

3.5.2 Approach for Mining Resource-Aware Declarative Process
Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Mining Project-Oriented Business Processes 23

4.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Project-oriented processes discovery method . . . . . . . . . . . . . . 25

4.2.1 Step 1: Preprocessing . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.2 Step 2: Aggregating events to activities . . . . . . . . . . . . . 28

4.2.3 Steps 3 and 4: Mapping activities to work packages and ag-
gregating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.4 Step 5: Computing work package characteristics. . . . . . . . 30

4.3 Project visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4 Coverage tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



4.5 Comparison with approaches that use classical process mining . . . 33

5 Summary 33

References 35



SHAPE FFG-2014-845638 1

1 Introduction

Text mining is a broad field of study that allows for the extraction of information
for the generation of knowledge from natural language text. Process mining is a
relatively newer field, even though rapidly growing, that aims at extracting pro-
cess descriptions from past process executions stored in event logs. The goal of
work package 3 (WP3) is to combine methods from these two fields to derive rich
process models by analyzing information from structured and unstructured data
sources. The outcoming process models can then be used for compliance checking
purposes, which constitute the primary goals of the SHAPE project.

In this view, the content of this deliverable is structured as follows: Section 2
presents a literature overview on text mining introducing the main vocabulary as
well as potential applicabilities of this research field in SHAPE. Section 3 focuses
on process mining and provides insights of the three types of process mining
along with a new approach for mining the organizational perspective of busi-
ness processes, which is one of the issues to be addressed in SHAPE, as seen in
the list of requirements from the domain presented in Deliverable 4.1 Cabanillas
et al. [2015a]. Section 4 introduces a new method for discovering project-oriented
business processes, a class of business processes that are executed only once with
well-defined goals, budget, resources, and time. Finally, Section 5 concludes the
deliverable.

2 Text Mining

This section provides a literature overview on text mining, followed by considera-
tions on how text mining can be used to address the goals of WP3.

2.1 Literature review

Text mining refers to the process of deriving information from natural language
text. It relates to data mining in that both strive to extract meaningful information
from raw data. However, data mining is characterized as the extraction of implicit,
previously unknown, and potentially useful information from data, whereas with
text mining the information to be extracted is clearly and explicitly stated in the
text [Witten et al., 1999].

Text mining can be regarded as going beyond information access to further
help users analyze and digest information and facilitate decision making. There
are also many applications of text mining where the primary goal is to analyze

D3.1



2 Public Document

Figure 1 Extraction of structured information from unstructured sources

and discover any interesting patterns, including trends and outliers, in text data,
and the notion of a query is not essential or even relevant.

Although text mining is mostly about Natural Language Processing (NLP) [Ju-
rafsky and Martin, 2014], it embraces also applications that go beyond, such as
analysis of linkage structures such as citations in the academic literature and hy-
perlinks in the Web literature, both useful sources of information that lie outside
the traditional domain of natural language processing.

This literature review aims to bring an overview on the broad field of text
mining with the purpose of covering the main aspects. It is further organized in
subsections that consider the different applications of text mining.

2.1.1 Information extraction

Information extraction is used to refer to the task of filling in templates from
natural language text. The goal is to extract from the documents (which may be in
a variety of languages) salient facts about prespecified types of events, entities or
relationships. These facts are then usually entered automatically into a database,
which may then be used to analyze the data for trends, to give a natural language
summary, or simply to serve for on-line access.

Traditional information extraction techniques (Cowie and Lehnert [1996], Mooney
[1999]) leverage on rule-based systems that match predefined linguistic patterns.
More recently, work on named entity recognition uses statistical machine learning
methods (Seymore et al. [1999]). A tool that uses unsupervised learning can be
found in Banko et al. [2007].



SHAPE FFG-2014-845638 3

2.1.2 Topic detection and tracking

Topic Detection and Tracking (TDT) was a DARPA-sponsored initiative to inves-
tigate on finding and following new events in a stream of broadcast news stories.
The TDT problem consists of three major tasks: (1) segmenting a stream of data,
especially recognized speech, into distinct stories; (2) identifying those news sto-
ries that are the first to discuss a new event occurring in the news; and (3) given a
small number of sample news stories about an event, finding all following stories
in the stream. The work of Allan et al. [1998] has formally defined this problem
and proposed the initial set of algorithms for the task. Main subtasks of TDT, as
identified in Wayne [2000] are (i) finding topically homogeneous regions (segmen-
tation); (ii) finding additional stories about a given topic (tracking); (iii) detecting
and threading together new topics (detection); (iv) Detecting new topics (first story
detection); and (v) Deciding whether stories are on the same topic (linking). An
example of a real-world TDT system is Google Alerts1.

2.1.3 Summarization

Summarization is the task of reducing the content obtained from text documents,
still keeping a brief overview on a topic that they treat. Summarization techniques
generally fall into two categories (Aggarwal and Zhai [2012]). In extractive sum-
marization, a summary consists of information units extracted from the original
text; in contrast, in abstractive summarization, a summary may contain “synthe-
sized” information units that may not necessarily occur in the text document.
An automatic summarization process can be divided into three steps (Gupta and
Lehal [2009]): (1) In the preprocessing step a structured representation of the orig-
inal text is obtained; (2) In the processing step an algorithm must transform the
text structure into a summary structure; and (3) In the generation step the final
summary is obtained from the summary structure. A plethora of text summariza-
tion tools can be found online. A few examples are the open source libraries such
Open Text Summarizer2 and MEAD3, as well as the free online tools Sumplify4 or
Online summarize tool5.

1 https://www.google.com/alerts
2 http://libots.sourceforge.net/
3 http://www.summarization.com/mead/
4 http://sumplify.com/
5 http://www.tools4noobs.com/summarize/

D3.1

https://www.google.com/alerts
http://libots.sourceforge.net/
http://www.summarization.com/mead/
http://sumplify.com/
http://www.tools4noobs.com/summarize/


4 Public Document

2.1.4 Categorization

Categorization involves identifying the main themes of a document. This trans-
lates into assigning natural language documents to predefined categories accord-
ing to their content (Sebastiani [2002]). Categorization often relies on a the-
saurus for which topics are predefined, and relationships are identified by looking
for broad terms, narrower terms, synonyms, and related terms. Support Vector
Machines (SVM)s are used to automatically learn text classifiers from examples
(Joachims [1998]). Categorization tools usually rank documents according to how
much of their content fits in a particular topic.

2.1.5 Clustering

Clustering is a technique used to group similar documents, but it differs from
categorization in that documents are clustered on the fly instead of through pre-
defined topics. Documents can also appear in multiple subtopics, ensuring that
useful documents are not omitted from the search results. A basic clustering al-
gorithm creates a vector of topics for each document and measures the weights of
how the document fits into each cluster. A survey of clustering algorithms can be
found in [Aggarwal and Zhai, 2012, Chap. 4]

2.1.6 Concept Linkage

Concept-linkage tools connect related documents by identifying their shared con-
cepts, helping users find information they perhaps wouldn’t have found through
traditional search methods (Gupta and Lehal [2009]). It promotes browsing for
information rather than searching for it. For example, a text mining software so-
lution may easily identify a transitive closure in a set of topics {X, Y, Z}, i.e., a link
between X and Y, a link between Y and Z, and a link between X and Z. With large
sets of data, such a relationship could be disregarded by humans.

2.1.7 Information visualization

Information visualization aims at visualizing large textual sources in such a way
that the content can be displayed in a hierarchy or map and provides browsing
features, in addition to simple search. For instance, governments or police can
identify terrorist networks in a map and identify crimes that were previously un-
connected (Gupta and Lehal [2009]).



SHAPE FFG-2014-845638 5

2.1.8 Question answering
Another application area of developed text-mining technologies, along with the
natural language processing, is natural language features Question Answering
(QA). QA is concerned with building systems that automatically answer questions
posed by humans in a natural language. One of the first Query Answering tools
has been START6, developed in the work of Katz [1997]. Question answering has
been extensively used in Biomedical domain for aiding researchers and health care
professionals in managing the continuous growth of information.

2.1.9 Association rule mining
The focus of association rules mining is to study the relationships and implica-
tions among topics, or descriptive concepts, that are used to characterize a corpus.
The work of ? shows how it is possible to discover association rules from massive
data from databases, referred to as basket data. The same approach can be fol-
lowed by constructing a database of rules using information extraction methods
and subsequently applying techniques (e.g. ?) to uncover hidden associations in
the database. For instance, a rule might be that 98% of customers that purchase
tires and auto accessories also get automotive services done. This suggests that
association rules can be captured as if/then patterns. Criteria such as support and
confidence (Agrawal et al. [1993]) are used to identify the most important relation-
ships. Support is an indication of how frequently the items appear in the database.
Confidence indicates the number of times the if/then statements has been found
to be true.

2.2 Text mining in SHAPE
The goal of WP3 is to create structured information from unstructured data. In
the railway domain, processes are often described in natural language in free-
formatted documents, or implicitly in the communication channels between project
participants (customers, engineers, managers), such as emails exchanged during
process execution (?). Electronic logs of task executions, known as event logs, also
store information about how processes were executed in the past. All that data
shall be transformed and organized in structured process models.

The aforementioned information is available in SHAPE in the form of hand-
books and logbooks that were manually compiled by railway engineers. Further

6 http://start.csail.mit.edu/index.php

D3.1

http://start.csail.mit.edu/index.php


6 Public Document

Process 
discovery

Process 
identification

Process
analysis

Process
implementation

Process
monitoring and 

controlling

Process
redesign

Process architectureProcess architecture

As-is process
model

As-is process
model

Insights on
weaknesses and 

their impact

Insights on
weaknesses and 

their impact

To-be process 
model

To-be process 
model

Executable 
process
model

Executable 
process
model

Conformance and 
performance insights

Conformance and 
performance insights

Figure 2 The BPM life cycle as shown in [Dumas et al., 2013]

data are Version Control System (VCS) logs that come from several tools and prior
projects. These documents may generally reflect the processes that were followed
by the engineers.

Text mining techniques can be used to gather entities and relations from the
handbooks. Furthermore, NLP (Jurafsky and Martin [2014]) techniques can be
used for extracting, parsing and removing ambiguity on the text. It is then possible
to use semantic annotations to unambiguously associate meanings to words that
relate to activities of the processes. In this way, the process workflow can be
reconstructed based on the temporal and semantic relations that can be found on
the text.

3 Process Mining from Event Logs

Before describing process mining, let us introduce the BPM life cycle (cf. Figure 2)
in order to see where process mining is positioned.

The BPM life cycle describes the different phases of managing a particular busi-
ness process. The life cycle begins with the process identification, where processes
are defined for the first time. In the process discovery phase, existing processes
are discovered that may be relevant for pursuing defined objectives. The output
of this phase is a process model. Process analysis deals with the goodness of
processes both from qualitative and quantitative perspectives. Process implemen-
tation transforms a processes model into an executable model that can be run in
a Business Process Management System (BPMS). Process monitoring and control-



SHAPE FFG-2014-845638 7

Figure 3 The process mining framework

ling is the phase in which a process is already running. The process still needs to
be monitored and supervised for possible changes. When a change is required, a
new iteration or the BPM life cycle starts over again.

Only severe problems or major external changes will trigger another iteration
of the life cycle, and factual information about the current process is not actively
used in redesign decisions. Process mining offers the possibility to truly “close”
the BPM life cycle (van der Aalst [2011a]). In fact, data stored in information
systems can be used to give an clearer overview on the actual process, in such a
way that it can be easily monitored.

Process mining is an affirmed research field that lies between machine learning
and data mining on one side and process modeling and analysis on the other
side. The goal of process mining is to use event data to extract process-related
information, e.g., to automatically discover a process model by observing events
recorded by some enterprise system.

Figure 3 illustrates the process mining framework. Relying on the event logs,
process mining allows for three main tasks: (i) discovery; (ii) conformance check-
ing; and (iii) process enhancement.

Process mining techniques can also be used in an online setting. We refer to
this as operational support. An example is the detection of non-conformance at the
moment the deviation actually takes place. Another example is time prediction for
running cases, i.e., given a partially executed case the remaining processing time
is estimated based on historic information of similar cases. This illustrates that
the “process mining spectrum” is broad and not limited to process discovery. In
fact, today’s process mining techniques are indeed able to support the whole BPM
life cycle shown in Figure 2. Process mining is not only relevant for the design

D3.1



8 Public Document

and diagnosis/requirements phases, but also for the enactment/monitoring and
adjustment phases.

Processes can be mined from several aspects, such as control-flow perspective,
organizational perspective, case perspective or time perspective. This deliverable
will focus on mining the control flow and the resources of a process. The next four
sections will deal with how event logs are processed before process models are ex-
tracted out of them. Furthermore, the three types of mining will be discussed.
Afterward, an approach to mine the organizational perspective of business pro-
cesses (cf. Deliverable 2.1 Cabanillas et al. [2015b]) is described.

3.1 From event logs to process models

Figure 4 illustrates the typical information present in an event log used for process
mining. The table shows events related to the handling of requests for an order
fulfillment process. We assume that an event log contains data related to a single
process. Moreover, each event in the log needs to refer to a single process instance,
often referred to as case. In event logs, process instance executions are recorded as
sequences of events, namely traces. Each trace, in turn contains a record of events.
In Figure 4, each request corresponds to a case, e.g., Case 1, Case 2, etc. We
also assume that events can be related to some activity. In Figure 4, events refer
to activities like "Check stock availability", "Retrieve product from warehouse",
etc. These assumptions are quite natural in the context of process mining. All
mainstream process modeling notations, such as BPMN2 (OMG [2011]) or Petri
Nets (Petri [1966]), specify a process as a collection of activities such that the
life cycle of a single instance is described. Hence, the “case id” and “activity”
columns in Figure 4 represent the bare minimum for process mining. Moreover,
events within a case need to be ordered. For example, event "Ch-4680555556-1"
(the execution of activity "Check stock availability" for Case 1) occurs before event
"Re-5972222222-1" (the execution of activity "Retrieve product from warehouse"
for the same case). Without ordering information, it is of course impossible to
discover causal dependencies in process models.

Figure 4 also shows additional information per event. For example, all events
have a timestamp (i.e., date and time information such as "2012-07-30 11:14"). This
information is useful when analyzing performance related properties, e.g., the
waiting time between two activities. The events in Figure 4 also refer to resources,
i.e., the persons executing the activities. Also costs are associated to events. In the
context of process mining, these properties are referred to as attributes.

Following up from Figure 4 the assumptions about an event logs are listed



SHAPE FFG-2014-845638 9

Case ID Event ID  Timestamp Activity Resource
1 Ch-4680555556-1 2012‐07‐30 11:14 Check stock availability SYS1

1 Re-5972222222-1 2012‐07‐30 14:20 Retrieve product from warehouse Rick

1 Co-6319444444-1 2012‐07‐30 15:10 Confirm order Chuck

1 Ge-6402777778-1 2012‐07‐30 15:22 Get shipping address SYS2

1 Em-6555555556-1 2012‐07‐30 15:44 Emit invoice SYS2

1 Re-4180555556-1 2012‐08‐04 10:02 Receive payment SYS2

1 Sh-4659722222-1 2012‐08‐05 11:11 Ship product Susi

1 Ar-3833333333-1 2012‐08‐06 09:12 Archive order DMS

2 Ch-4055555556-2 2012‐08‐01 09:44 Check stock availability SYS1

2 Ch-4208333333-2 2012‐08‐01 10:06 Check materials availability SYS1

2 Re-4666666667-2 2012‐08‐01 11:12 Request raw materials Ringo

2 Ob-3263888889-2 2012‐08‐03 07:50 Obtain raw materials Olaf

2 Ma-6131944444-2 2012‐08‐04 14:43 Manufacture product SYS1

2 Co-6187615741-2 2012‐08‐04 14:51 Confirm order Conny

2 Em-6388888889-2 2012‐08‐04 15:20 Emit invoice SYS2

2 Ge-6439814815-2 2012‐08‐04 15:27 Get shipping address SYS2

2 Sh-7277777778-2 2012‐08‐04 17:28 Ship product Sara

2 Re-3611111111-2 2012‐08‐07 08:40 Receive payment SYS2

2 Ar-3680555556-2 2012‐08‐07 08:50 Archive order DMS

3 Ch-4208333333-3 2012‐08‐02 10:06 Check stock availability SYS1

3 Ch-4243055556-3 2012‐08‐02 10:11 Check materials availability SYS1

3 Ma-6694444444-3 2012‐08‐02 16:04 Manufacture product SYS1

3 Co-6751157407-3 2012‐08‐02 16:12 Confirm order Chuck

3 Em-6895833333-3 2012‐08‐02 16:33 Emit invoice SYS2

3 Sh-7013888889-3 2012‐08‐02 16:50 Get shipping address SYS2

3 Ge-7069444444-3 2012‐08‐02 16:58 Ship product Emil

3 Re-4305555556-3 2012‐08‐06 10:20 Receive payment SYS2

3 Ar-4340277778-3 2012‐08‐06 10:25 Archive order DMS

4 Ch-3409722222-4 2012‐08‐04 08:11 Check stock availability SYS1

4 Re-5000115741-4 2012‐08‐04 12:00 Retrieve product from warehouse SYS1

4 Co-5041898148-4 2012‐08‐04 12:06 Confirm order Hans

4 Ge-5223148148-4 2012‐08‐04 12:32 Get shipping address SYS2

4 Em-4034837963-4 2012‐08‐08 09:41 Emit invoice SYS2

4 Re-4180555556-4 2012‐08‐08 10:02 Receive payment SYS2

4 Sh-5715277778-4 2012‐08‐08 13:43 Ship product Susi

4 Ar-5888888889-4 2012‐08‐08 14:08 Archive order DMS

Figure 4 Example of an event log taken from Dumas et al. [2013]

D3.1



10 Public Document

Log

Trace

Event

Attribute

Classifier

String

Date

Int

Float

Boolean

Extension

key

value

name

prefix

URI

declares

defines defines

trace-global

event-global

contains

contains

contains

contains

defines

Figure 5 Example of the XES meta-model for logs as defined in Xes-standard.org
[2015]. Picture taken from Dumas et al. [2013]

below.

An event log consists of traces, each representing the execution of a process
(case)

A trace consists of events such that each event relates to precisely one case.

Events within a case are ordered.

Events can have attributes. Examples of typical attribute names are activity,
time, costs, and resource

The de facto standard for storing and exchanging events logs is the XES format
as defined in Xes-standard.org [2015].

XES may declare particular attributes to be mandatory. For example, it may
be stated that any trace should have a name or that any event should have a
timestamp. For this purpose, a log holds two lists of global attributes: one for the
traces and one for the events. Users and organizations can add new extensions and
share these with others. For example, general extensions referring to costs, risks,
context, etc. can be added. However, extensions may also be domain specific (e.g.,
healthcare, customs, or retail) or organization specific. Currently, XES is supported
by tools such as ProM (van Dongen et al. [2005]) and Disco7.

7 https://fluxicon.com/disco/



SHAPE FFG-2014-845638 11

3.2 Process discovery
The first type of process mining is discovery. A discovery technique typically takes
an event log and produces a model without using any a-priori information. An
example is the α-algorithm (Van der Aalst et al. [2004]). This algorithm takes an
event log and produces a Petri net explaining the behavior recorded in the log.

For example, given sufficient example executions of the process shown in Fig-
ure 4, the α-algorithm is able to automatically construct the Petri net without using
any additional knowledge. If the event log contains information about resources, it
is also possible to discover resource-related models, e.g., a social network showing
how people work together in an organization.

3.2.1 The α-algorithm
Let us have a closer look at the α-algorithm. A detailed version of the algorithm
can be found in Van der Aalst et al. [2004]. The α-algorithm is based on the
following causality relations.

a >L b if and only if there is a trace σ = t1, t2, t3, .., tn and i ∈ {1, ..., n− 1}
a⇒L b if and only if a >L b and b >L a
a #L b if and only if a >L b and b >L a
a ‖L b if and only if a >L b and b >L a

The above log-based ordering relations can be used to discover patterns in the
corresponding process model as is illustrated in Figure 6.

The steps of the algorithm can be summarized as follows.

1. Identify the set of activities in the log as TL

2. Identify starting activity as the first activity in each case TI

3. Identify ending activity as the last activity in each case TO

4. Identify the set of all connections to be potentially represented in the process
model as a set XL. Add the following elements to XL.

a. Pattern (a): all pairs for which hold a⇒ b.

b. Pattern (b): all triples for which hold a⇒ (b # c).
c. Pattern (c): all triples for which hold (b # c)⇒ d. Note that triples for which

Pattern (d) or Pattern (e) hold are not included in XL.

5. Construct the set YL as a subset of XL by:

a. Eliminating a⇒ b and a⇒ c if there exists some a⇒ (b # c).
b. Eliminating b⇒ c and b⇒ d if there exists some (b # c)⇒ d.

6. Connect start and end events in the following way:

D3.1



12 Public Document

a b

a

b

c

b

c

d

a

b

c

b

c

d

(a)

(b) (c)

(d) (e)

Figure 6 Patterns that can be discovered from the causality relations that are defined
in the α-algorithm. Picture taken from Dumas et al. [2013]

a. If there are multiple tasks in the set TI of first tasks, then draw a start event
leading to an XOR-split, which connects to every task in TI . Otherwise,
directly connect the start event with the only first task.

b. For each task in the set TO of last tasks, add an end event and draw an arc
from the task to the end event.

Figure 7 shows the outcome of the α-algorithm on the log of Figure 4.

3.2.2 Advanced mining algorithms
The α-algorithm presented above is a nice introduction to process mining. It has
scientific relevance, as it can be formalized in a compact way and some properties
can be proofed. However, the α-algorithm can not deal with noise and incomplete-
ness, and is not much used in practice. The following sections briefly overviews
more advanced process discovery techniques.

3.2.2.1 Heuristic mining

Heuristic mining algorithms (?), take frequencies of events and sequences into ac-
count when constructing a process model. The basic idea is that infrequent paths
should not be incorporated into the model. This applies normally to logs from
real-world data, which are affected by noise and incompleteness. The output of a
heuristic miner is a so-called Causal-net, which is a graph where nodes represent



SHAPE FFG-2014-845638 13
Order Fulfillment Alpha

g) Confirm
order

j) Emit
invoice

k) Receive
payment

l) Archive
order

a) Check
stock

availability

c) Check raw
materials

availability

b) Retrieve
product from

warehouse

d) Request
raw materials

i) Ship
product

e) Obtain
raw materials

h) Get
shipping
address

f)
Manufacture

product

Jan Mendling 1 von 1 22.10.2012

Figure 7 Result of the α-algorithm applied to the log of Figure 4. Picture taken from
Dumas et al. [2013]

activities and arcs represent causal dependencies. Each activity has a set of possi-
ble input bindings and a set of possible output bindings. Causal nets produced by
the heuristic miner are generally labeled with frequency values for each binding,
that allow for identifying the mainstream behavior of the process.

3.2.2.2 Genetic process mining

Genetic process mining (?) adopts an evolutionary approach to mine processes
out of data logs. The idea is to mimic the process of natural evolution. This
approach is therefore not deterministic and depends on randomization to find
new alternatives that fit best to some defined quality criteria. The algorithms
consists of four main steps:

1. Initialization - The initial population, with process models as individuals, is
randomly created and may only have a little to do with the data in the log.

2. Selection - The fitness value is computed for every individual. A fitness func-
tion takes into account the relation of the individual to the log, as well as
criteria of log-fitness (i.e. ability to replay the log), simplicity, generalization
and precision. Only the most fit individuals can move on from this stage to the
following.

3. Reproduction - In this phase, parent individuals are selected to generate new
processes. Two genetic operators are used: crossover and mutation. Crossover
takes two individuals and creates new child process models that share genetic

D3.1



14 Public Document

material with their parents. These children are then modified through muta-
tion. That is, random causal dependencies are added or removed from them.
Mutation guarantees the evolution processes to go on beyond the initial genetic
material.

4. Termination - The evolution process terminates when a satisfactory solution is
found, i.e., a model having at least the desired fitness.

3.2.2.3 Region-based mining

Region-based mining algorithms allow to build up a Petri net from a transition
system. First, events logs are transformed into transition systems where every
position in each trace (i.e before the first event, in-between two events, or after
the last event) is mapped into a state of a transition system. States can then be
grouped together into Petri net places. Possible approaches for inducting places
are based on:

State-based regions - States from the transitions systems are grouped together
based on regions with entering, leaving and non-crossing activities (?).

Language-based regions - Regions are defined through behavioral observations
on the log that correspond to a specified behavior. ? use a linear programming
reduction approach to identify minimal regions.

3.2.2.4 Fuzzy mining

? introduced fuzzy mining in order to deal with strongly unstructured real-world
processes. While other process mining algorithms come out with models that
show every relation they discover from the log, fuzzy miners able to abstract this
data by preserving highly significant behavior, aggregating into clusters highly
correlated behavior, and abstracting insignificant and lowly correlated behavior.
This turns out very useful when it comes to analyzing complex spaghetti-like
processes.

3.3 Process conformance

The second type of process mining is conformance. Here, an existing process
model is compared with an event log of the same process. Conformance checking
can be used to check if reality, as recorded in the log, conforms to the model and
vice-versa. For instance, there may be a process model indicating that purchase
orders of more than one million Euro require two checks. The analysis of the
event log can show whether this rule is followed or not. Another example is



SHAPE FFG-2014-845638 15

the checking of the so-called "four-eyes" principle stating that particular activities
should not be executed by one and the same person. By scanning the event log
using a model specifying these requirements, one can discover potential cases of
fraud. Hence, conformance checking may be used to detect, locate and explain
deviations, and to measure the severity of these deviations. An example is the
conformance checking algorithm described in Rozinat and van der Aalst [2008].
Given a process model and a corresponding event log, this algorithm can quantify
and diagnose deviations.

3.4 Process enhancement
The third type of process mining is enhancement. Here, the idea is to extend
or improve an existing process model using information about the actual pro-
cess recorded in some event log. Whereas conformance checking measures the
alignment between model and reality, this third type of process mining aims at
changing or extending the a-priori model. One type of enhancement is repair,
i.e., modifying the model to better reflect reality. For example, if two activities
are modeled sequentially but in reality can happen in any order, then the model
may be corrected to reflect this. Another type of enhancement is extension, i.e.,
adding a new perspective to the process model by cross-correlating it with the
log (van der Aalst [2011a]). An example is the extension of a process model with
performance data. For instance, by using timestamps in the event log of the "or-
der fulfillment" process (see Figure 4), one can extend a log to show bottlenecks,
service levels, throughput times, and frequencies. Similarly, logs can be extended
with information about resources, decision rules, quality metrics, etc.

When extending process models, additional perspectives are added. More-
over, discovery and conformance techniques are not limited to control-flow. For
example, one can discover a social network and check the validity of some or-
ganizational model using an event log. Hence, orthogonal to the three types of
mining (discovery, conformance, and enhancement), different perspectives can be
identified.

3.5 Resources and constraints
Two different types of processes can be distinguished Jablonski [1994]: well-structured
routine processes with exactly predescribed control flow and agile processes with
control flow that evolves at run time without being fully predefined a priori. Agile
processes are common in healthcare where, e.g., patient diagnosis and treatment
processes require flexibility to cope with unanticipated circumstances.

D3.1



16 Public Document

In a similar way, two different representational paradigms can be distinguished:
procedural models describe which activities can be executed next and declarative
models define execution constraints that the process has to satisfy. The more con-
straints are added to the model, the less possible execution alternatives remain.
As agile processes may not be completely known a priori, they can often be cap-
tured more easily using a declarative rather than a procedural modeling approach
van der Aalst et al. [2009], Pichler et al. [2012], Vaculín et al. [2011]. Agile pro-
cesses need to explicitly integrate the organizational perspective in addition to the
control flow perspective due to the importance of human decision-making and
expert knowledge Marin et al.. Recent research has identified the potential of role
mining Leitner et al. [2013], Baumgrass and Strembeck [2013] and process mining
of the organizational perspective Zhao and Zhao [2014]. However, these results
have not yet been integrated with declarative process models.

In the following we summarize a process mining approach to discover resource-
aware, declarative process models that has been fully described in Schönig et al.
[2015].

3.5.1 Selection of a Suitable Modeling Language

We choose Declarative Process Intermediate Language (DPIL) Zeising et al. [2014] for
this purpose due to several reasons. First, it is multi-perspective, i.e., it allows
representing several business process perspectives, namely, control flow, data and
resources. Since we want to extract resource-aware process models, the model-
ing language needs to support the modeling of rules related to the organizational
perspective. The expressiveness of DPIL and its suitability for business process
modeling have been evaluated Zeising et al. [2014] with respect to the well-known
Workflow Patterns Russell et al. [2005]. Second, it is multi-modal, meaning that
it allows defining two different types of rules: rules representing mandatory rela-
tions (called ensure in DPIL) and rules representing recommended relations (called
advice in DPIL). The latter are useful, e.g., to reflect good practices.

In order to express organisational relations, DPIL builds upon a generic or-
ganisational meta model that has been described in Bussler [1998] and is depicted
in Figure 8a. It comprises the following elements: Identity represents agents that
can be directly assigned to activities, i.e., both human and non-human resources.
Group represents abstract agents that may describe several identities as a whole,
e.g., roles or groups. Relation represents the different relations (RelationType) that
may exist between these elements. It is suitable to define, e.g., that an identity has
a specific role, that a person is the boss of another person, or that a person belongs



SHAPE FFG-2014-845638 17

predicate

object

subject

hasRole hasRole

supervisor
supervisor

Relation

RelationType IdentityGroup

Entity Professor

BV

Student

SS BRSJ

(a) Organisational meta model

predicate

object

subject

hasRole hasRole

supervisor
supervisor

Relation

RelationType IdentityGroup

Entity Professor Student

SS BRSJ

(b) Organisational model

Figure 8 Organizational meta model and example organizational model, taken
from Schönig et al. [2015]

use group Professor

process BusinessTrip {
task Book flight
task Approve Application

advice role(Approve Application, Professor)
ensure sequence(Approve Application, Book flight)

}

Figure 9 Process for trip management modeled with DPIL

to a certain department. Figure 8b illustrates an exemplary organisational model
of a university research group. It is composed of two roles (Professor, Student) as-
signed to three people (SJ, SS, BR) and several relations between them indicating
who is supervised by whom.

DPIL provides a textual notation based on the use of macros to define reusable
rules. For instance, the sequence macro (sequence(a, b)) states that the existence
of a start event of task b implies the previous occurrence of a complete event of
task a; and the role macro (role(a, r)) states that an activity a is assigned to a role
r. Figure 9 shows an example of a process for trip management modelled with
DPIL that uses the organizational model defined in Figure 8b. It states that it is
mandatory to approve a business trip before a flight can be booked. Moreover, it
is recommended but not necessary that the approval be carried out by a resource
with the role Professor.

By applying process mining techniques, it is possible to generate process mod-
els like the one depicted in Figure 9, as long as the event logs contain the required
information. Each event in a log refers to an activity, i.e., a well-defined step in the
process, and is related to a particular process instance. Event logs usually come

D3.1



18 Public Document

with attribute that store information about the resource performing an activity
van der Aalst [2011a], as well as additional information that may be useful for
subsequent analysis purposes, such as start and/or completion time of activities
for detailed temporal analyses. For instance, the following excerpt of a business
trip process event log encoded in the XES logging format Verbeek et al. [2011a]
shows the recorded information of the start event of an activity Apply for trip per-
formed by a resource SS.

<event>
<string key="org:resource" value="SS"/>
<date key="time:timestamp" value="2013-08-06T14:58:00.000+01:00"/>
<string key="concept:name" value="Apply for trip"/>
<string key="lifecycle:transition" value="start"/>

</event>

3.5.2 Approach for Mining Resource-Aware Declarative
Process Models

The approach will be described in four steps, namely, the generation and checking
of rule candidates, a framework for the classification of rules, the definition of rule
templates for mining the organisational perspective, and mechanisms for pre- and
post-processing the data. It has been implemented and evaluated as described
in Schönig et al. [2015].

3.5.2.1 Generation and Checking of Rule Candidates

Declarative process modelling languages like DPIL are based on so-called rule
templates. A rule template captures frequently needed relations and defines a
particular type of rules. Templates have formal semantics specified through logi-
cal formulae and are equipped either with user-friendly graphical representations
(e.g., in Declare) or with macros in textual languages (e.g., in DPIL) that make
the model easier to understand. In contrast to concrete rules, a rule template con-
sists of placeholders, i.e., typed variables. It is instantiated by providing concrete
values for these placeholders. For instance, the model described in Section 3.5.1
makes use of two rule templates represented by the macros sequence(T1,T2) and
role(T,G). These templates comprise placeholders of type Task T as well as Group
G. In all well-known declarative process mining approaches, rule templates are
used for querying the provided event log and to find solutions to the placeholders.
A solution to the query is any combination of concrete values for the placehold-
ers that yields a concrete rule that is satisfied in the event log. First, all possible



SHAPE FFG-2014-845638 19

rules need to be constructed by instantiating the given set of rule templates with
all possible combinations of occurring process elements provided in the event log.
The sequence template, e.g., consists of 2 placeholders of type Task. Assuming that
|T| different tasks occur in the event log, |T|2 rule candidates are generated. All the
resulting rule candidates are subsequently checked w.r.t. the event log.

In many cases, a rule candidate can be trivially valid. Consider, e.g., the rule
candidate direct(t1,i1), i.e., start(of t1) implies start(of t1 by i1), which holds when
task t1 is performed by an identity i1, and the example event log of Table 2. The
provided event log notation (first column) encodes the recorded start and complete
events of a specific task t performed by an identity i with s(t,i) and c(t,i), respec-
tively. The given events are ordered temporally so that timestamps are not en-
coded explicitly. In the first trace the rule holds trivially because t1 never happens.
Using the terminology of Maggi et al. [2012], we say that the rule is vacuously sat-
isfied. It is necessary to discriminate between traces where a rule is trivially true
and traces in which the rule is non-vacuously satisfied. Only traces in which a rule
candidate non-trivially holds are considered interesting Maggi et al. [2011]. For
first order logic rules that depict implications of the form A→ B like in DPIL, triv-
ially and non-vacuously valid rules can be discriminated by additionally checking
the condition A of the rule separately.

Table 2 also shows the results of checking the non-vacuous satisfaction of the
direct(t1,i1) rule (third column) as well as its condition (second column) for each
trace of the example event log. In the first trace the rule is not (non-vacuously)
satisfied because t1 is never started, i.e., the condition is f alse. The rule holds
non-vacously in the traces two to four while it is violated in trace five.

3.5.2.2 Support and Confidence Framework to Classify Rules

Checking rule candidates as described above provides for every candidate the
number of instances, i.e., traces in the event log where it non-vacously holds.
Based on these values it is possible to classify rules and to separate non-valid
from valid ones. Therefore, Maggi et al. [2012] adopted a support and confidence

Trace start(of t1) direct(t1,i1)

{s(t2,i1), c(t2,i2), s(t3,i1), c(t3,i1)} false false
{s(t1,i1), c(t1,i1), s(t2,i2), c(t2,i2), s(t3,i1), c(t3,i1)} true true
{s(t1,i1), c(t1,i1), s(t3,i3), c(t3,i3), s(t2,i2), c(t2,i2)} true true
{s(t1,i1), c(t1,i1), s(t3,i3), c(t3,i3), s(t2,i2), c(t2,i2)} true true
{s(t1,i4), c(t1,i4), s(t3,i1), c(t3,i1)} true false

Table 2 Event log and satisfaction of exemplary rule and its condition

D3.1



20 Public Document

THRESHOLD (minConfS)
RECOMMENDED RULE

THRESHOLD (minConfH)
MANDATORY RULE

ADVICE ENSURENOT VALID (NOT PART OF THE RESULTING MODEL)

Figure 10 Classification of rule candidates based on the confidence value, taken
from Schönig et al. [2015]

framework proposed by association rule mining methods to evaluate the relevance
of rule candidates.

I Definition 1 (Support and Confidence). Let |Φ| be the number of traces in an
event log Φ. Let |σnv(r)| be the number of traces in which a rule r : A → B is
non-vacously satisfied. The support supp(r) and confidence con f (r)8 values of a
rule r are defined as:

supp(r) :=
|σnv(r)|
|Φ| , con f (r) :=

supp(r)
supp(A)

(1)

Considering the event log of Table 2 and the direct(t1,i1) rule, its support
evaluates to supp(r) = 0.6 and its confidence to con f (r) = 0.75. The support
value is used for pre-processing, as described in Section 3.5.2.4. We make use
of the confidence value in order to classify a rule candidate r as (i) a manda-
tory rule, i.e., satisfied in almost all traces; (ii) a recommended rule, i.e., not al-
ways satisfied but with a tendency to be satisfied; or (iii) a non-valid rule, i.e.,
violated in most of the recorded traces. As visualized in Figure 10, two thresh-
olds minCon fS and minCon fH are introduced to classify rule candidates. Can-
didates r with con f (r) > minCon fH are classified as mandatory (ensure) and
minCon fS < con f (r) < minCon fH as recommended (advice). All rule candidates r
with con f (r) < minCon fS are non-valid rules and are not part of the resulting pro-
cess model. Using the confidence values of rule candidates it is directly possible
to generate a DPIL process model reflecting the recorded behavior.

3.5.2.3 Rule Templates for Analysing the Organisational Perspective

The previous section showed how it is possible to automatically generate a multi-
modal, declarative process model by checking a set of rule candidates whose struc-
ture is defined by rule templates w.r.t. a given event log. Since DPIL builds upon a
flexible organizational meta model, it is possible to define rule templates that de-
fine the structure of organizational relations. By instantiating these resource-aware

8 In case of rules that do not depict implications, the condition is satisfied in every trace. Here
supp(A) = 1 and con f (r) = supp(r).



SHAPE FFG-2014-845638 21

rule templates with all possible parameter combinations of defined resources,
groups and relation types, it is possible to generate rule candidates that focus on
the organizational perspective of the process to be analyzed. These candidates can
then be checked under consideration of the corresponding organizational model.
Based on the resulting confidence values, a resource-aware process model can be
generated automatically.

We now define rule templates and their macros that can be used to mine the
organizational perspective and to generate a resource-aware, declarative process
model. We identified three different groups of organizational rule templates: re-
source allocation templates related to a single task, resource allocation templates
related to more than one task, and cross-perspective rule templates, i.e., tem-
plates that express the influence of resources on the execution order of tasks.
For every group we provide at least two representative examples that cover fre-
quently needed organizational relations, according to the Workflow Resource Pat-
terns Russell et al. [2005]. Nonetheless, further rule templates can be defined
individually according to the analyst’s needs.

We first focus on rule templates that define resource allocation patterns, i.e.,
rules that specify the resources which are allowed to perform a certain task. The
direct allocation of resources to a task can be extracted by analyzing the direct(T,I)
template. Given the free variables T and I and an event log with |T| distinct tasks
and |I| distinct resources, there are |T| · |I| candidates to be checked.

direct(T,I) iff start(of T) implies start(of T by I)

Role-based allocation of resources can be identified with the role(T,G) template.
Here, rule candidates for every task and group combination are generated, i.e.,
|T| · |G| rule candidates need to be checked.

role(T,G) iff start(of T by :p) implies
relation(subject p predicate hasRole object G)

Organizational patterns can also relate to more than one task at the same
time. The binding(T1,T2) template, e.g., can be used to discover if a task is al-
ways (mandatory) or should (recommended) be performed by the same resource
as another task. With the separate(T1,T2) template, on the contrary, it is possible to
discover task combinations that need to be or should be performed by different
resources. For both templates, |T|2 candidates need to be checked.

binding(T1,T2) iff start(of T1 by :p) and start(of T2) implies
start(of T2 by p)

D3.1



22 Public Document

separate(T1,T2) iff start(of T1 by :p) and start(of T2) implies
start(of T2 by not p)

The orgDist(T1,T2,RT) template is used to discover relations that are defined
in the organizational model between the resources that performed two different
tasks. This template incorporates a variable RT for the different relation types in
the considered organizational model. Like this, |T|2 · |RT| rule candidates exist.

orgDist(T1,T2,RT) iff start(of T1 by :p1) and start(of T2 by :p2) implies
relation(subject p1 predicate RT object p2)

Moreover, the organizational perspective can affect the execution order of tasks,
i.e., the control flow of the process. There may be processes in which a se-
quence between tasks only holds for specific resources or for resources with a
specific role. These patterns can be discovered by the roleSequence(T1,T2,G) and the
resourceSequence(T1,T2,I) templates, respectively. For these templates, |T|2 · |G| and
|T|2 · |I| candidates need to be checked.

roleSequence(T1,T2,G) iff start(of T2 by :p at :t) and
relation(subject p predicate hasRole object G)
implies complete(of T1 at < t)

resourceSequence(T1,T2,I) iff start(of T2 by I at :t) implies
complete(of T1 at < t)

3.5.2.4 Pre- and Post-processing

Real-life event logs and organizational models potentially contain a big set of dis-
tinct tasks, resources and groups. For instance, the BPI challenge 2011 event log
of a hospital information system used by Bose and van der Aalst [2011] contains
623 different tasks and 42 organizational groups. By only considering the role
template, this already leads to 623 · 42 = 26166 candidates to be checked. Al-
though many of these parameter combinations never occur together in the same
trace, the corresponding rules need to be checked. This problem also becomes
obvious when considering task/resource combinations of the event log in Table
2. The resource i4 only occurs together with task t1. Hence, candidates of the
direct template where I = i4 and T 6= t1 are trivially true in all traces and can
be neglected without checking. The method proposed by Maggi et al. [2012] uses
the well-known Apriori algorithm to pre-process the log and to extract task com-
binations that frequently occur together. A task combination is considered to be
relevant if it occurs in a sufficient number of traces, i.e., above a given threshold
minSupp. A minSupp of 5%, e.g., claims that only rule candidates are considered



SHAPE FFG-2014-845638 23

whose parameter combinations occur in at least 5% of the recorded traces. We
extended this method in Schönig et al. [2014] to also extract task/resource and task/-
group combinations that frequently occur together. This way, it is also possible to
dramatically reduce the number of organizational rule candidates by abstracting
from infrequent parameter combinations. Hence, for the example log, only 1 out
of 3 direct(T,i4) candidates are generated and checked.

Furthermore, when automatically generating a declarative process model, there
are potentially extracted rules that are redundant. Consider, e.g., that a specific
task t1 has always been performed by a resource i1 who has a role g1 according to
the organizational model. Then, the proposed method will (inevitably) discover a
role(t1,g1) rule. This rule is redundant, since a direct allocation rule direct(t1,i1) will
also be discovered. In case of i1 hasRole g1 the role rule is already implied in the di-
rect rule. Redundant rules complicate the understandability of discovered models.
Maggi et al. [2013] proposed a technique to post-process a discovered model and
to remove redundant, weaker rules if they are already implied in stronger rules only
focusing on the hierarchy of control flow perspective templates. We extended this
method to also consider the rule hierarchies of organizational rules. Redundancy
may also be caused by the interplay of three or more organizational rules. Con-
sider, e.g., a set of discovered binding rules, such as binding(t1,t2), binding(t2,t3) and
binding(t1,t3). Here, the rule between t1 and t3 is redundant because it belongs to
the transitive closure of the other rules. In other words, if task t1 has always been
performed by the same resource as t2, and t3 has always been performed by the
same resource as t2, then also t1 and t3 have been performed by the same resource.
Not all rule types can be reduced using transitive reduction. Separate rules, e.g.,
are not transitive, i.e., if t1 is not performed by the same resource as t2, and t2 is
not executed by the same resource as t3, then we cannot conclude automatically
that t1 is also not performed by the same resource as t3.

4 Mining Project-Oriented Business Processes

SHAPE aims to provide ICT support for more rigorous and verifiable process
management in such recurring and adaptive engineering processes: SHAPE shall
support monitoring and conformance checking in safety-critical engineering pro-
cesses. Process monitoring can be supported through existing documentation that
can be found in project repositories. Data includes manually compiled handbooks,
emails, diagrams and several files that are used by specific purpose tools. These
data are typically stored in VCS. Such systems are an essential means for large col-
laborative projects that requires for data safety, version tracking and coordination

D3.1



24 Public Document

among teams.

A requirement in the railway domain is to monitor if processes are executed
according to existing norms and regulations. Processes need to be documented
in all their steps, in order to allow for backtracking. However, when no process
engine to support execution is used, process history can be obtained from VCS
logs. Such logs can reflect the work history that was done in the work packages.
Assuming that projects are organized according to a meaningful structure in the
VCS, i.e. directories are subdivided into folders data and contribution from each
work package is stored in a corresponding folder, it is possible to mine the logs to
get relevant information about the progress of the work stream over time.

A relevant class of business processes in the railway domain are ad-hoc planned
ones from expert engineers to respond to domain necessities. They are executed
only once with limited resources and budget to attain a predetermined goal. We
refer to this class as project-oriented business processes. In this work we want to ex-
tract these type of processes from VCS log data and display them as Gantt charts.

The following sections give a background on what already exists in literature
to tackle this problem. Then we present a method to extract such processes.

4.1 Literature review

Two main directions have been adopted so far in literature to address the afore-
mentioned problem. The first class strives to transform VCS log data into logs
that comply to the XES meta model for process mining as defined in Verbeek et al.
[2011a]. Several approaches have been developed to preprocess VCS data such
that process mining techniques can be applied, and hence, a business process can
be derived from the log data. In this group, Kindler et al. [2006a,b] developed an
algorithm for extracting software processes that are mapped to Petri Nets. Activi-
ties, which are not explicit in the logs, are discovered from their input and output
artifacts. However, strong assumptions are made on the filenames as well as on the
software process lifecycle. Rubin et al. [2007] addressed the problem of engineer-
ing processes that are not well documented and are usually unstructured. They
provided a bridge from Kindler et al. [2006a,b]’s approach to ProM (van Dongen
et al. [2005]) in order to mine different process perspectives, such as performance
social network analyzes. Rubin et al. [2014] applied process mining to the touristic
industry and obtained user processes from web client logs pursuing the goal of
improving the software system by analyzing the underlying process. Poncin et al.
[2011] developed the FRASR framework for preprocessing software repositories
to transform the VCS data to logs that conform to the process mining event log



SHAPE FFG-2014-845638 25

meta model (van Dongen and Van der Aalst [2005]) as utilized in ProM. However,
these approaches disregard the single-instance nature of project-oriented business
processes and treat them as procedures that can be repeated over time.

The second category of related work focuses on the visualization of VCS data
for different purposes.

Several approaches study the interaction among developers over time from a
visualization point of view. For instance, Ogawa and Ma [2010] drew storyline
pathways to show the story of each developer’s contribution. Other approaches
analyze and visualize VCS data at file level in order to discover file version evo-
lution. Voinea and Telea [2006] introduced an interactive navigation method to
surf file version evolution as well as two methods to cluster versions of the same
file in an abstraction layer. Wu et al. [2004] also visualized the evolutions of en-
tire projects at file level, emphasizing the evolution moments. Finally, several
approaches study change prediction with the aim of discovering prediction pat-
terns that can help in the process of software development (Zimmermann et al.
[2004], Ying et al. [2004]). The approaches mentioned in this category as well
as others that apply similar techniques (Feldt et al. [2013], Kagdi et al. [2006],
D’Ambros and Lanza [2008]) focus on studying software evolution from different
standpoints. However, the goal pursued differs in all cases from our goal in that
they are not interested in discovering projects tasks out of the log data, and hence,
they lack an explicit notion of work structure that we need to consider for our
purpose.

4.2 Project-oriented processes discovery method

This section presents a discovery methods for project-oriented business processes.
Formalisms will be omitted in order to have a better overview of the technique. 9

Figure 11 shows the context of our project mining technique. At the top level
there are people that work together in a project. These people commit their work
progress using Version Control Systems (VCSs) like Subversion (Pilato et al. [2008])
or Git (Torvalds and Hamano [2010]). Each resource can work on multiple files.
Thus, each commit contains an undefined number of events. Events are defined
as atomic changes on a file or directory.

9 For full details on the defined formalisms about mining project-oriented processes, please re-
fer to Mining Project-Oriented Business Processes paper that was submitted to BMP15. The
paper can be found on https://ai.wu.ac.at/svn/SHAPE_FFG_845638/WP3/Papers/project%
20mining/project%20mining-submitted-v3.pdf

D3.1

https://ai.wu.ac.at/svn/SHAPE_FFG_845638/WP3/Papers/project%20mining/project%20mining-submitted-v3.pdf
https://ai.wu.ac.at/svn/SHAPE_FFG_845638/WP3/Papers/project%20mining/project%20mining-submitted-v3.pdf


26 Public Document

P1

R
ES

O
U

R
C

E
S

P1 P2P2

t1 t2

D
A

T
A

PR
O

JE
C

T

ACTIVITY 1

ACTIVITY 2

t

{P1,P2}

{P2}

... tn

... ACTIVITY n {Pn}

PROJECT MINING

Figure 11 Project mining scenario

Projects are decomposed into work packages. We assume a hierarchical work
package structure of a project, such that a work package can have sub work pack-
ages. Further, the amount of work in a single work package need not be done
in one single time span, but it can be split into several activities. Activities have
a start and end time, and subsequent activities can have idle periods in between.
Thus, we define projects as follows.

I Definition 2 (Project). A project P is a tuple (W, S, A, α, ω, β), where
W is the set of work packages in the project.
S ⊆ W ×W is the relation that hierarchically decomposes work packages into
a tree structure.
A is the set of activities that are conducted in the work packages.
α : A → TS is the function that assigns a start time to activities. Activities are
ordered by their start times.
ω : A→ TS is the function that assigns an end time to activities.
β : A→W is the mapping function that maps activities to their corresponding
work packages.

Project mining is defined as the technique that discovers a project P from event
log data.

For project discovery from the VCS commit history, we need to identify activi-
ties that are performed, associate the activities to work packages and recreate the
work package structure of the project. Our aim is to create a hierarchical model
that provides an overview of the project work. Therefore, we have to identify the



SHAPE FFG-2014-845638 27

discovery started

Preprocess log
into a set of

events

VCS log events E

Aggregate
events to
activities

activities A

Identify work
packages for

activities

work
packages W

Aggregate
work packages

work
package

structure S

Compute work
package

characteristics

project P

Figure 12 Project discovery technique overview as BPMN process model.

start and end times of activities and of work packages before we can visualize
the project work. The input to the technique is the log that is stored in the VCS.
The challenge is that the raw log only records commits on the file system level
and information on activity level is missing. However, we can deduce activity
information from events based on the following assumptions.

A1: Meaningful file tree structure. The file tree structure in a project represents
its work package structure. That is, the knowledge workers organize their
work in a file hierarchy that reflects the project structure.

A2: Local changes. Activities in a work package affect only files of the work
package folder, or in the corresponding sub-tree in the file tree structure.

A3: Frequent commits. Commits to the VCS are regularly performed, when con-
ducting work in an activity.

Note that assumption A1 can be seen as a strong assumption on the file tree
structure. Nevertheless, we argue that even if A1 is not entirely met, the aggre-
gation of work information on the file tree hierarchy provides a valuable view on
the project.

Figure 12 illustrates the different steps of the technique. We describe each of
them in detail.

4.2.1 Step 1: Preprocessing

The first step is to transform raw logs of the VCS (which might be grouped by
commits) into a list of events. This is done by replicating the information on com-
mit level to be contained in the events. At the same time, the directory structure is
reconstructed from the logs. This is done by extracting all the changed file paths
that are stored in the different entries of the log. The output of this step is a set E
of events associated to each object of the directory structure.

D3.1



28 Public Document

time

c1 c2 c4

tc2 tc3

?

a3

observed
active 
time

a3'
adjusted

active 
time

c3

tc4

tc

tc1

Figure 13 Adjustment of activity start time by the expected time before commit.

4.2.2 Step 2: Aggregating events to activities

Given the set of events that we gathered in Step 1 from a VCS, the next step is to
identify the activities to which the events belong. Note that we do not know the
activities of the project in advance, but need to infer them based on the events.
Each event affects a single file in the file hierarchy.

Based on assumption A2, we are interested in activities conducted in a work
package, that is, we filter for the events that are contained in the given file or
its children files in the hierarchy. For every file of interest, we select the set of
events affecting the file or its children. The next step is then to find the activities
which emitted the set of events of the file. We rely on assumption A3, which states
that during an activity, we expect multiple commits. Assumption A3 allows us to
conclude that if we do not observe commits for a longer period of time, there is
no activity being performed in the work package.

We adopt the abstraction technique by [Baier et al., 2014] and allow the domain
expert to formulate rules for aggregating events to activities based on boundary
conditions. Assuming that people frequently commit their progress (A3), we can
specify a boundary condition based on the temporal distance to previous events.
For example, we can specify that a time period of seven days without a commit
is a boundary condition. As a result, we obtain the mapping from events to these
activities. The set of discovered activities identified for the work package based on
given boundary conditions is then made of groups of events that happened within
seven days from each other.

With the events mapped to activities, we need to find the temporal boundaries
of the target activities. The challenge here is that we do not know when an activity
actually started, because the start of the activity is not recorded in the VCS. We
can only observe the time of the first commit in that activity, but commits usually
mark progress of an already running activity.

To address the challenge of missing start times, we impute the missing start
time by prepending the expected active time t̂c before a commit, as illustrated



SHAPE FFG-2014-845638 29

by Figure 13. This notion assumes that project participants commit their work
progress after a certain amount of time. However, we cannot compute t̂c by looking
at the average commit rate in a work package, because this average is based on
busy periods and idle periods. We need to factor out the idle periods in the
computation of this measure.

We know the end time of the activities, as the last commit marks the completion
of work. Therefore, each activity a based on given boundary conditions has the
associated end time equal to the highest time value of its events. We call it ω (a).
Further, we write the lowest timestamp value of the events of a as α’(a). Let c (a)
be the number of commits in a. Let A f be the set of activities that correspond to
file f ∈ F, the expected active time between commits t̂c is given as follows.

t̂c =
∑a∈A f

(ω(a)− α′(a))

∑a∈A f
(c(a)− 1)

(2)

The assumption is that is at least one activity spanning over at least two com-
mits. Translated to our boundary condition, this assumption is that there is at
least one week in each work package, in which there were at least two commits
made. Otherwise, we set t̂c to 0 for the current file due to lack of information.

Given the expected active time between commits t̂c, we can finally adjust the
start time of each activity. Therefore, we set the associated start time for each
activity as α(a) = α′(a)− t̂c. That is, we subtract the expected active time from the
first commit’s timestamp.

We apply Step 2 to all files in the file tree to get the activities per file. The
activities A of the project are obtained as the union of the activity sets per file⋃

f∈F A f .

4.2.3 Steps 3 and 4: Mapping activities to work packages
and aggregating.

Once activities have been identified, we want to climb to the next abstraction layer:
the work packages. Assumption A1 allows us to specify a one-to-one mapping κ :
F → W between files in the file tree structure and work packages. More precisely,
we construct the set of work packages W isomorphic to the set of files F, such that
the Parent relation is preserved in the work package structure S relationship.

The mapping β of activities to work packages is simply β(a) = κ(ψ(a)), where
ψ(a) is defined as the function ψ : A → F that contains the mapping information
of the discovered activities to their originating files. In this way, we provide an

D3.1



30 Public Document

activity based view on work packages, and we can aggregate on each level in the
file system to see active periods of the corresponding hierarchy level.

4.2.4 Step 5: Computing work package characteristics.

In this final step, we compute measures of interest for the discovered work pack-
ages. First, we obtain the temporal boundaries of a work package by the functions
α and ω of the associated activities.

The start and end time of a work package (αW and ωW) are functions from work
packages to timestamps. The start time is defined as a the least timestamp of the
set of activities’ starting times α(a) that compose the workpackage w. Analogously,
the end time function of work packages is defined as the maximum of the end
times ω(a) of the activities of w. The duration of a work package τ is the difference
between ωW and αW .

We want to estimate the average work intensity in a work package. Therefore
we define the following concept of coverage in Definition 3.

I Definition 3 (Coverage). The coverage χ of work packages by activities is a
function χ : W → [0, 1] and is defined as follows.

χ(w) =
∑a∈β−1(w) (ω(a)− α(a))

τ(w)
(3)

With this final step, we lifted the information hidden in low level events to a
high-level Gantt chart perspective, with which project managers are familiar.

4.3 Project visualization

This section shows how the tool visualizes the projects. We apply our algorithm
to an example case from Table 3 and check how it helps to identify work pack-
ages. The data is aggregated according to our threshold of seven days. We can
observe three groups of events being temporally close to each other according to
our threshold. That is, we expect the event data to be grouped into three activities.

The second step of our algorithm takes care of adjusting the starting time of the
activities. Furthermore, we vertically order the events and activities in the Gantt
chart according to the directory structure to show the mapping from the objects
on the Gantt chart to each work package in the tree structure. The last step,
computing work package characteristics, is done automatically when we collapse
a node on of tree.



SHAPE FFG-2014-845638 31

Table 3 Excerpt from the Toy Example VCS log data taken from SHAPE

CID Resource Date List of changes

1 Y 2014-11-12 11:57:46
A /example
A /example/SHAPE/ToyStation-Ex
ample.docx

. . . . . . . . . . . .

3 X 2014-11-14 16:34:07 M /example/ToyStation.bpmn
M /example/ToyStation.png

4 W 2014-12-15 13:49:11 D /example/Download
5 W 2015-01-08 16:06:41 A /example/Download2

6 X 2015-01-13 11:47:09 M /example/ToyStation_0Loop.bpmn
M /example/ToyStation_nLoop.bpmn

7 Z 2015-01-16 16:50:29 A /example/ToyStation_0Loop.pdf
A /example/ToyStation-feedbackZ.pdf

Figure 14 Visualizing events and activities

4.4 Coverage tests

Table 4 shows coverage tests for open source projects and projects from SHAPE.
We are interested in exploring how the coverage factor varies in different existing
projects. Hence, we take the work package w as our controlled variable and set
it to the highest level of aggregation. Then, we analyze each project of the data
set and observe the dependent variable χ(w). Another variable of interest is the t̂c

since it gives an idea of the average work speed (commit frequency) during active
times.

The data we used stems from the following projects. MiningVCS is our tool.
It consists of daily commits and was developed over 24 days. Whitehall is the
code name for the Inside Government project, which aims to bring Government
departments online in a consistent and user-friendly manner. Petitions is a Drupal
7 code base used to build an application on "We The People", the platform to create
and sign petitions of the White House. Study is an SVN log about Healthcare
domain, taken from SHAPE. The guardian is the log data from the Git repository
of the well-known British national daily newspaper. Book is the log data that

D3.1



32 Public Document

Table 4 Coverage results for different open source projects

Log Duration Idle periods Files Commits t̂c χ(w)

File name Days Number Number Number Hours %

MiningCVS 24 0 89 63 9 100
Whitehall 1279 6 6539 15566 2 95
Petitions 834 17 1562 914 13 59

Study 624 13 7501 736 11 58
The Guardian 1667 59 12889 621 30 44

Book 414 15 154 592 5 32
Papers 1859 55 1791 649 20 30

Requirements 771 22 505 231 17 21
Yelp 206 6 24 54 20 20

Adobe 1076 13 356 237 24 15

describes the writing of the book Crypto 101 by Laurens Van Houtven, taken from
Git. Papers is taken from SHAPE project for building a paper archive. Requirements
log data is taken from the the Git repository of OpenETCS and belongs to the
railway domain. Yelp is the main Github page of Yelp were they showcase all their
projects. Adobe is the Adobe Github Homepage v2.0, which is a central hub for
Adobe Open sources projects.

Table 4 shows our experiments on the above-mentioned logs and the corre-
sponding coverage factors. Projects that score a high coverage factor are charac-
terized by continuous work. This can be further seen by looking at their average
idle times tIdle. Let nc be the number of commits per work package. We compute
the average idle time as follows.

tIdle =
τ − nc · t̂c

n
, n > 0 (4)

where n is the number of idle times in the work package. If n = 0, then we trivially
assign tIdle = 0, because there were no break periods over time.

Applying the formula to the above projects, we can observe how projects with
a higher coverage factor have actually low values of tIdle. For instance, Whitehall
scores a tIdle of 11 days, whereas Adobe scores a tIdle of 36 days. This supports the
usage of the coverage factor χ as an indicator for work package time utilization.



SHAPE FFG-2014-845638 33

4.5 Comparison with approaches that use classical process
mining

In this section we compare our method to other alternatives for mining data out
of logs and interpret our results.

Well known tools that are used in academia and practice include ProM [van
Dongen et al., 2005] and Disco10. Both tools require input data to be in the
XES [Verbeek et al., 2011a] format. Thus, we convert our data from the Define example
case into XES. To show events per objects of the project structure, we choose the
file path as the caseId. To flatten the logs we extract all the file paths and build a
mapping from each file to the set of changes done to it.

Figure 15 depicts the results of the Dotted chart plugin of ProM applied to our
log data. Also here, we observe different changes of each file of the repository.
While the files and their corresponding events are shown, the plugin does not
allow to rearrange the data in order to understand the file structure, nor does it
allow to perform any kind of aggregation or connection between data, to observe
them from a higher level perspective.

Figure 16 shows the results from mining our log data with the Disco tool. Here
we can see a plot that displays the events that happen over time. The plot has
some peeks in correspondence to active times of the example work package. They
can be grouped in three clusters: an initial cluster with a few amount work, an
intermediate cluster with the most significant part of the work, and a final cluster
that again is not very active. In this way, clusters can be associated to activities.
As a drawback, when the number of work packages and activities increase, the
number of peeks grows and generate identifying clusters of activities by look at
active (or idle) times becomes unworkable.

Our approach to mining the work progress of project-oriented business pro-
cesses complements these techniques with metrics and a corresponding visualiza-
tion that is informative to managers.

5 Summary

As the goal of WP3 is to discover existing processes with the final objective of sup-
porting conformance checking, in this deliverable we introduced the fields of text
mining and process mining. We showed what problems they allow addressing.
Text mining is useful when dealing with unstructured data. Using information ex-

10 http://fluxicon.com/disco/

D3.1



34 Public Document

Figure 15 Dotted chart from ProM

Figure 16 Chart from Disco plotting the events over time.

traction techniques it is possible to understand entities and relations from textual
documents that are filled out by engineers. Using NLP techniques it is possible
to get a more precise understanding of the semantics of the textual content of the
documents.

On the other hand, process mining can be used with more structured doc-
uments, specifically with logs that store data according to the process mining
meta-model as defined in van Dongen and Van der Aalst [2005]. In such cases,
it is possible to transform the logs into the XES format and apply well-known
process mining techniques to gather information on the control flow. Agile pro-
cesses make an intense use of resources. In this case, mining the organizational
perspective with declarative modeling languages provides valuable information.

Furthermore, we showed a work that mines a particular type of processes,
referred to as project-oriented business processes. These processes come from logs
that do not adhere to the process mining meta-model. Our method allows for
visualizing and navigating the processes as GANTT charts and it also provides
information about the work effort.

We intend to combine the methods described in this deliverable in order to
analyze and use information from both structured and unstructured data sources.
In the near future we aim at extending our algorithm for mining project-oriented
business processes to take into account the comments that may be present in the



SHAPE FFG-2014-845638 35

VCS logs in order to improve the discovery of activities.

D3.1



36 REFERENCES

References

C.C. Aggarwal and C.X. Zhai. Mining Text Data. Springer, 2012. ISBN
9781461432234. URL http://books.google.at/books?id=vFHOx8wfSU0C.

Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining association rules
between sets of items in large databases. In ACM SIGMOD Record, volume 22,
pages 207–216. ACM, 1993.

James Allan, Jaime G Carbonell, George Doddington, Jonathan Yamron, and Yim-
ing Yang. Topic detection and tracking pilot study final report. 1998.

Thomas Baier, Jan Mendling, and Mathias Weske. Bridging abstraction layers in
process mining. Information Systems, 46:123–139, 2014.

Michele Banko, Michael J Cafarella, Stephen Soderland, Matthew Broadhead, and
Oren Etzioni. Open information extraction for the web. In IJCAI, volume 7,
pages 2670–2676, 2007.

Anne Baumgrass and Mark Strembeck. Bridging the gap between role mining and
role engineering via migration guides. Inf. Sec. Techn. Report, 17(4):148–172, 2013.
10.1016/j.istr.2013.03.003. URL http://dx.doi.org/10.1016/j.istr.2013.03.

003.

RP Jagadeesh Chandra Bose and Wil MP van der Aalst. Analysis of Patient Treat-
ment Procedures. In Business Process Management Workshops, pages 165–166,
2011.

Christoph Bussler. Organisationsverwaltung in Workflow-Management-Systemen. Dt.
Univ.-Verlag, 1998.

Cristina Cabanillas, Alois Haselböck, Jan Mendling, Axel Polleres, Simon Sperl,
and Simon Steyskal. Engineering Domain Ontology: Base Regulations and Re-
quirements Description. Project deliverable, Vienna University of Economics
and Business, Austria, 2015a.

Cristina Cabanillas, Giray Havur, Jan Mendling, Axel Polleres, and Alexander
Wurl. State-of-the art on existing models for processes, resources, constraints
and security, and their underlying formalisms. Project deliverable, Vienna Uni-
versity of Economics and Business, Austria, 2015b.

Jim Cowie and Wendy Lehnert. Information extraction. Communications of the
ACM, 39(1):80–91, 1996.

M. D’Ambros and M. Lanza. A Flexible Framework to Support Collaborative Soft-
ware Evolution Analysis. In Software Maintenance and Reengineering (CSMR’08),
pages 3–12, April 2008. 10.1109/CSMR.2008.4493295.

Marlon Dumas, Marcello La Rosa, Jan Mendling, and Hajo A Reijers. Fundamentals
of business process management. Springer, 2013.

http://books.google.at/books?id=vFHOx8wfSU0C
http://dx.doi.org/10.1016/j.istr.2013.03.003
http://dx.doi.org/10.1016/j.istr.2013.03.003
http://dx.doi.org/10.1016/j.istr.2013.03.003
http://dx.doi.org/10.1109/CSMR.2008.4493295


REFERENCES 37

Robert Feldt, Miroslaw Staron, Erika Hult, and Thomas Liljegren. Supporting soft-
ware decision meetings: Heatmaps for visualising test and code measurements.
In Software Engineering and Advanced Applications (SEAA), 2013 39th EUROMI-
CRO Conference on, pages 62–69. IEEE, 2013.

Vishal Gupta and Gurpreet S Lehal. A survey of text mining techniques and
applications. Journal of emerging technologies in web intelligence, 1(1):60–76, 2009.

Stefan Jablonski. MOBILE: A modular workflow model and architecture. In Work-
ing Conference on Dynamic Modelling and Information Systems, 1994.

Thorsten Joachims. Text categorization with support vector machines: Learning with
many relevant features. Springer, 1998.

Dan Jurafsky and James H Martin. Speech and language processing. Pearson, 2014.

Huzefa Kagdi, Shehnaaz Yusuf, and Jonathan I. Maletic. Mining Sequences of
Changed-files from Version Histories. In Workshop on Mining Software Repositories
(MSR ’06), pages 47–53. ACM, 2006. 10.1145/1137983.1137996.

Boris Katz. From sentence processing to information access on the world wide
web. In AAAI Spring Symposium on Natural Language Processing for the World
Wide Web, volume 1, page 997. Stanford University Stanford, CA, 1997.

Ekkart Kindler, Vladimir Rubin, and Wilhelm Schäfer. Activity Mining for Dis-
covering Software Process Models. Software Engineering, 79:175–180, 2006a.

Ekkart Kindler, Vladimir Rubin, and Wilhelm Schäfer. Incremental Workflow
Mining Based on Document Versioning Information. In Mingshu Li, Barry
Boehm, and LeonJ. Osterweil, editors, Unifying the Software Process Spectrum,
volume 3840 of Lecture Notes in Computer Science, pages 287–301. Springer
Berlin Heidelberg, 2006b. ISBN 978-3-540-31112-6. 10.1007/11608035_25. URL
http://dx.doi.org/10.1007/11608035_25.

Maria Leitner, Anne Baumgrass, Sigrid Schefer-Wenzl, Stefanie Rinderle-Ma, and
Mark Strembeck. A case study on the suitability of process mining to produce
current-state rbac models. In Business Process Management Workshops, pages 719–
724, 2013.

Fabrizio Maria Maggi, Arjan Mooij, and Wil van der Aalst. User-Guided Discovery
of Declarative Process Models. In Computational Intelligence and Data Mining,
pages 192–199, 2011.

Fabrizio Maria Maggi, Jagadeesh Chandra Bose, and Wil van der Aalst. Efficient
Discovery of Understandable Declarative Process Models from Event Logs. In
Advanced Information Systems Engineering, pages 270–285, 2012.

Fabrizio Maria Maggi, Jagadeesh Chandra Bose, and Wil van der Aalst. A
Knowledge-Based Integrated Approach for Discovering and Repairing Declare

D3.1

http://dx.doi.org/10.1145/1137983.1137996
http://dx.doi.org/10.1007/11608035_25
http://dx.doi.org/10.1007/11608035_25


38 REFERENCES

Maps. In Advanced Information Systems Engineering, pages 433–448, 2013. URL
http://link.springer.com/chapter/10.1007/978-3-642-38709-8_28.

Mike Marin, Richard Hull, and Roman Vaculín. Data Centric BPM and the Emerg-
ing Case Management Standard : A Short Survey Case Management. 257593.

R Mooney. Relational learning of pattern-match rules for information extraction.
In Proceedings of the Sixteenth National Conference on Artificial Intelligence, pages
328–334, 1999.

Michael Ogawa and Kwan-Liu Ma. Software evolution storylines. In Proceedings of
the 5th international symposium on Software visualization, pages 35–42. ACM, 2010.

OMG. BPMN 2.0. Recommendation, OMG, 2011.

Carl Adam Petri. Communication with automata. 1966.

Paul Pichler, Barbara Weber, Stefan Zugal, Jakob Pinggera, Jan Mendling, and
Hajo Reijers. Imperative versus declarative process modeling languages: An
empirical investigation. Business Process Management Workshops, pages 383–394,
2012.

C Michael Pilato, Ben Collins-Sussman, and Brian W Fitzpatrick. Version control
with subversion. "O’Reilly Media, Inc.", 2008.

Wouter Poncin, Alexander Serebrenik, and Mark van den Brand. Process mining
software repositories. In Software Maintenance and Reengineering (CSMR), 2011
15th European Conference on, pages 5–14. IEEE, 2011.

Anne Rozinat and Wil MP van der Aalst. Conformance checking of processes
based on monitoring real behavior. Information Systems, 33(1):64–95, 2008.

Vladimir Rubin, Christian W Günther, Wil MP Van Der Aalst, Ekkart Kindler,
Boudewijn F Van Dongen, and Wilhelm Schäfer. Process mining framework
for software processes. In Software Process Dynamics and Agility, pages 169–181.
Springer, 2007.

Vladimir Rubin, Irina Lomazova, and Wil MP van der Aalst. Agile development
with software process mining. In Proceedings of the 2014 International Conference
on Software and System Process, pages 70–74. ACM, 2014.

Nick Russell, Wil MP van der Aalst, Arthur HM Ter Hofstede, and David Edmond.
Workflow resource patterns: Identification, representation and tool support. In
Advanced Information Systems Engineering, pages 216–232, 2005.

Stefan Schönig, Florian Gillitzer, Michael Zeising, and Stefan Jablonski. Support-
ing rule-based process mining by user-guided discovery of resource-aware fre-
quent patterns. In ICSOC 2014 Workshops, in press, 2014.

Stefan Schönig, Cristina Cabanillas, Stefan Jablonski, and Jan Mendling. Mining
the Organisational Perspective in Agile Business Processes. In BPMDS, page In
press., 2015.

http://link.springer.com/chapter/10.1007/978-3-642-38709-8_28


REFERENCES 39

Fabrizio Sebastiani. Machine learning in automated text categorization. ACM
computing surveys (CSUR), 34(1):1–47, 2002.

Kristie Seymore, Andrew McCallum, and Roni Rosenfeld. Learning hidden
markov model structure for information extraction. In AAAI-99 Workshop on
Machine Learning for Information Extraction, pages 37–42, 1999.

Linus Torvalds and Junio Hamano. Git: Fast version control system. URL http://git-
scm. com, 2010.

Roman Vaculín, Richard Hull, Terry Heath, Craig Cochran, Anil Nigam, and
Piyawadee Sukaviriya. Declarative business artifact centric modeling of deci-
sion and knowledge intensive business processes. In EDOC, pages 151–160,
2011.

Wil van der Aalst. Process mining: discovery, conformance and enhancement of business
processes. 2011a.

Wil Van der Aalst, Ton Weijters, and Laura Maruster. Workflow mining: Discov-
ering process models from event logs. Knowledge and Data Engineering, IEEE
Transactions on, 16(9):1128–1142, 2004.

Wil van der Aalst, Maja Pesic, and Helen Schonenberg. Declarative workflows:
Balancing between flexibility and support. Computer Science - Research and De-
velopment, 23(2):99–113, 2009.

Wil M. P. van der Aalst. Process Mining - Discovery, Conformance and Enhancement
of Business Processes. Springer, 2011b. ISBN 978-3-642-19344-6.

Boudewijn F van Dongen and Wil MP Van der Aalst. A Meta Model for Process
Mining Data. EMOI-INTEROP, 160:30, 2005.

Boudewijn F van Dongen, Ana Karla A de Medeiros, HMW Verbeek, AJMM Wei-
jters, and Wil MP Van Der Aalst. The ProM framework: A new era in process
mining tool support. In Applications and Theory of Petri Nets 2005, pages 444–454.
Springer, 2005.

Eric Verbeek, Joos Buijs, Boudewijn van Dongen, and Wil van der Aalst. XES,
xESame, and ProM 6. In Information Systems Evolution, pages 60–75, 2011a.

HMW Verbeek, Joos CAM Buijs, Boudewijn F Van Dongen, and Wil MP Van
Der Aalst. Xes, xesame, and prom 6. In Information Systems Evolution, pages
60–75. Springer, 2011b.

Lucian Voinea and Alexandru Telea. Multiscale and Multivariate Visualizations
of Software Evolution. In Symposium on Software Visualization (SoftVis’06), pages
115–124. ACM, 2006. 10.1145/1148493.1148510.

Charles L Wayne. Multilingual topic detection and tracking: Successful research
enabled by corpora and evaluation. In LREC, 2000.

D3.1

http://dx.doi.org/10.1145/1148493.1148510


40 REFERENCES

Ian H. Witten, Zane Bray, Malika Mahoui, and Bill Teahan. Text mining: A new
frontier for lossless compression. In Proceedings of the Conference on Data Compres-
sion, DCC ’99, pages 198–, Washington, DC, USA, 1999. IEEE Computer Soci-
ety. ISBN 0-7695-0096-X. URL http://dl.acm.org/citation.cfm?id=789086.

789617.
Jingwei Wu, C.W. Spitzer, A.E. Hassan, and R.C. Holt. Evolution Spectrographs:

visualizing punctuated change in software evolution. In Workshop on Principles
of Software Evolution, pages 57–66, Sept 2004. 10.1109/IWPSE.2004.1334769.

Xes-standard.org. openxes:start | xes, 2015. URL http://www.xes-standard.

org/openxes/start.
Annie T. T. Ying, Gail C. Murphy, Raymond Ng, and Mark C. Chu-Carroll. Pre-

dicting Source Code Changes by Mining Change History. IEEE Trans. Softw.
Eng., 30(9):574–586, September 2004. 10.1109/TSE.2004.52.

Michael Zeising, Stefan Schönig, and Stefan Jablonski. Towards a Common Plat-
form for the Support of Routine and Agile Business Processes. In Collaborative
Computing: Networking, Applications and Worksharing, 2014.

Weidong Zhao and Xudong Zhao. Process Mining from the Organizational Per-
spective. In Foundations of Intelligent Systems, pages 701–708. 2014.

Thomas Zimmermann, Peter Weisgerber, Stephan Diehl, and Andreas Zeller. Min-
ing Version Histories to Guide Software Changes. In International Conference on
Software Engineering (ICSE ’04), pages 563–572. IEEE Computer Society, 2004.

http://dl.acm.org/citation.cfm?id=789086.789617
http://dl.acm.org/citation.cfm?id=789086.789617
http://dx.doi.org/10.1109/IWPSE.2004.1334769
http://www.xes-standard.org/openxes/start
http://www.xes-standard.org/openxes/start
http://dx.doi.org/10.1109/TSE.2004.52

	Introduction
	Text Mining
	Literature review
	Information extraction
	Topic detection and tracking
	Summarization
	Categorization
	Clustering
	Concept Linkage
	Information visualization
	Question answering
	Association rule mining

	Text mining in SHAPE

	Process Mining from Event Logs
	From event logs to process models
	Process discovery
	The -algorithm
	Advanced mining algorithms

	Process conformance
	Process enhancement
	Resources and constraints
	Selection of a Suitable Modeling Language
	Approach for Mining Resource-Aware Declarative Process Models


	Mining Project-Oriented Business Processes
	Literature review
	Project-oriented processes discovery method
	Step 1: Preprocessing
	Step 2: Aggregating events to activities
	Steps 3 and 4: Mapping activities to work packages and aggregating.
	Step 5: Computing work package characteristics.

	Project visualization
	Coverage tests
	Comparison with approaches that use classical process mining

	Summary
	References

