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1 Introduction

Deliverable 3.3 version 1 of the SHAPE project1 reports work performed under
Task 3.3 Combined method for mining and extracting processes, related events and com-
pliance rules from unstructured data. This document meets milestone (M3) Combined
method for mining and extracting processes, related events and compliance rules from
unstructured data.

In previous deliverable D3.2 Cabanillas et al. [2015a], we studied the applica-
bility of possible techniques for mining projects. This deliverable builds upon the
work presented in the previous one in the following contents.

We have developed a data model to access and analyze projects. We have iden-
tified the main entities and their relationships that are typical in version control
systems (VCS) and have constructed a schema. This allows for storing data
into a database and enables interesting queries. This approach is more scalable
since it allows for more flexibility in getting insights into projects without the
burden of encoding new approaches from scratch.

We have studied possible text mining techniques in order to enrich the infor-
mation provided by the mining algorithm in Cabanillas et al. [2015c]. Text
mining can help to assign labels to the activities of a Gantt chart. In this deliv-
erable we have tested a) topic modeling from emails; and b) semantic analysis
of VCS comments.

We have developed and tested an algorithm that combines both statistical in-
formation and commit-comments from VCS repositories to classify users ac-
cording to roles.

We are currently implementing a mining technique in Camunda that is aware
of resource scheduling.

We are developing a query language to access Camunda history logs through
an SQL-like console.

This document is organized as follows. Section 2 presents the model we use to
capture VCS data. Section 3 introduces shows how we intend to use text mining to
support for better insights on projects. Section 4 presents a combined techniques
for mining roles from VCS comments. Section 5 discusses an architecture and a
prototype development that implements features from different work packages of
SHAPE. Section 6 concludes the deliverable.

1 https://ai.wu.ac.at/shape-project/
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Figure 1 Entity-Relationship Diagram from a VCS

2 Mining VCS for project-oriented processes and
resources

In this section we analyze how we can mine useful insights from processes that
use VCS. Engineering projects like the ones in SHAPE make use of version control
systems to keep track of their documents. While the project evolves, the amount
of information in these systems increases. New needs may emerge during the
project lifetime or post completion. For instance, new rules and regulations may
come into play, which have to be obeyed immediately; or a posteriori checks may
be required from an auditor to manually check for unsafe patterns in the work that
was done. Storing project data into a database allows to systematically access those
data. Furthermore, it gives the flexibility to respond to new requirements without
necessarily developing new algorithmic approaches to mine the data. For instance,
new requirements can be checked by issuing a proper query to the database. In
this section we will discuss our data model and show how we can use queries to
analyze projects.

2.1 Data model
Here we give an overview of our data model. VCS are captured through the data
model in Figure 1 using the Entity-Relationship notation from Chen [1976]. The
entities and their relationships are described as follows.

Commit stores information about a checkout in the repository. Each checkout has
an id or revision number, a timestamp and may have a comment. Comments
are used from project members to describe their contribution. A commit can
be of different types, e.g. it can store a merge between two commits or it can
store file changes. Files, users, and edits on files are considered as separate
entities in our model.
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File represents a file that is present in the repository. A file is typically changed
by a commit. We take into account also renames that are made to the file as a
triple relation among two files and one commit.

Edit stores a modification of a part of the file. We use this entity to record where
and how much a file was changed. This allows for fine grained analysis as we
will see later in Section 2.2.

User is the resource who commits on the repository. A user has an id, a name and
an email. Users of a project may issue an arbitrary number of commits.

Project is used to keep track of the project to which the set of commits belongs.

2.2 Querying data
With the data modeled as in Figure 1 it is possible to plan for several types of
queries. We have used this model to store data into a MySQL2 database. Database
users are hence enable to issue suitable queries for their requirements. As an
example, we show three possible queries. To this end we fed into our model the
Camunda BPM3 repository. We make the following queries.

1. Which are the contributions to the project of a particular user X? (Listing 1)
2. What changes have been made to a particular file over time? (Listing 2)
3. Who are the users that have worked on feature development? (Listing 3)

The queries have been written in SQL as follows.

SELECT name , Commit .id as CommitId , timeStamp , comment ,

linesAdded , linesRemoved , linesAdded - linesRemoved

FROM User , Commit , Edit

WHERE User.id = Commit . user_id

AND User.id = 1

AND Edit. commit_id = Commit .id

GROUP BY Commit .id

ORDER BY timeStamp ASC

Listing 1 Timeline of a user’s contributions

SELECT sum(‘linesAdded ‘),sum(‘ linesRemoved ‘), sum(

linesAdded )-sum( linesRemoved ) as delta ,‘timeStamp ‘,‘

comment ‘,‘Commit ‘.‘id ‘,‘file_path ‘

2 https://www.mysql.com/
3 https://github.com/camunda/camunda-bpm-platform

D3.3 v1
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FROM ‘Edit ‘,‘Commit ‘

WHERE ‘Edit ‘.‘ commit_id ‘=‘ Commit ‘.‘id ‘

AND ‘file_path ‘=" engine /pom.xml"

group by timeStamp

order by ‘timeStamp ‘ ASC

Listing 2 Changes to the camunda engine configuration file

SELECT name , Commit .id as CommitId , timeStamp , comment ,

sum( linesAdded ), sum( linesRemoved ), sum(linesAdded -

linesRemoved ) as Delta

FROM User , Commit , Edit

WHERE User.id = Commit . user_id AND Edit. commit_id =

Commit .id AND Commit . comment LIKE ’%fix%’

GROUP BY Commit .id

order by timeStamp ASC

Listing 3 Users who worked on feature development

Listing 1 returns all the changes made to the repository from the user who has
id = 1. Such user might have made multiple edits in one single commit. Thus,
we aggregate by commit the numbers of lines added, lines removed and their
difference which is also referred to as delta. Lastly we order these edit event from
the oldest to the most recent.

Listing 2 shows the changes to a particular file. We chose the file named
"engine/pom.xml" which is a configuration file that is supposed to change fre-
quently due to updates, new releases (alpha, beta, etc) or tests. Here we want
to see how the file changes over time. This can help to identify patterns that
might exist in the development. For instance, we expect that when certain task is
approaching completion, then the file changes become stable. This also why we
order the results chronologically.

Listing 3 returns a list of user who have been working on a specific task. Here
we exploit the commit-comments of the Camunda history log. Camunda com-
ments include special tags like fix(engine), fix(platform), etc, for indicating
what the changes were about. In this query we select all commit where the users
have mentioned the word fix somewhere in the comment. Furthermore, we select
the amount of changes and order the users chronologically.
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2.2.1 Using timelines for project analysis

The queries of previous Section 2.2 can be exploited further to obtain more in-
formation. The extracted results can be exported and fed into other tools or data
mining algorithms can be applied on top of them. As a showcase, we have ana-
lyzed our data with R4 and have plotted the results for different queries.
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Figure 2 Profile of the changes made by one user. In the Y-Axis is reported the total
amount of change that has been done by the selected user

Figure 2 shows the changes of a specific user over time on the repository. The
Y-Axis is the amount of change delta, which is the difference between lines added
and the lines removed from all files changed by the selected user. The data comes
from the results of the query in Listing 1. It is now easy to see that user with id

= 1 has been generally not very active with two high peeks around his/her first
appearance.

Figure 3 shows how we can use the query in Listing 2 to distinguish different
types of work reflected by file changes. As an example, we run the query for
two different types of files where the distinction is evident. Figure 3a reports
the change over time of a file that belongs to the core development of Camunda.

4 https://www.r-project.org/

D3.3 v1
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(b) Database configuration file

Figure 3 An example of two different file-change patterns

Figure 3b plots changes of a database configuration file of Camunda. The graphs
make it clear to see such change patterns.

We can use this kind of data to classify the type of work, the users and also
gather further insights about the extent to which rules and regulations may be
followed. Irregular patterns or artifacts that should be created, such as for instance
validation reports, or comments about extensive testing that are not reflected by
the changes in the VCS logs may be indicators of deviations. In Section 2.3 we
give an example of rules and guidelines in software development projects that use
VCSs.

2.3 Rules and guidelines

Rules and regulations have to be taken into account when it comes to check for
process compliance. European Standards such as the EN 50128 software develop-
ment process mus be followed in order ensure safety and reliability. Developer
teams typically rely on VCS to manage their workflow. Thus, these systems can
help to discover possible deviation from the desired flow. In the following, we
will describe practical ways of using VCS for development. For details we point
to online resources such as Driessen [2010] and Atlassian [2016].
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2.3.1 Typical Workflows in VCS
Let us see an overview of four typical workflows on Git and discuss how they can
be a) identified in a repository b) used to support mining.

2.3.1.1 Centralized Workflow

The centralized workflow uses a central point-of-entry for all the changes to the
project. It works as follows. Each user has a local copy of the repository. All
their edits to files get stored locally when they commit. To make a change visible
in the main project streamline, users have to publish their changes (e.g. through
commands git push or svn commit). Conflicts can occur when users try to push
content that is already present in the main repository under another version. In
such a case, users need to first pull the possible changes from the main trunk and
resolve possible conflicts. Afterwards users can upload their edits. This workflow
maintains a linear history.

2.3.1.2 Feature Branch Workflow

The feature branch workflow is based on the idea that the main repository, also
called master branch, should contain only clean artifacts. In case of software de-
velopment, it means that the features are developed in a dedicated branch and
later merged into the main codebase. When a feature is ready, it is possible to
issue a pull request. This triggers user review and conversation on the possible
improvements of the feature before it gets accepted. The feature branch workflow
is very flexible, allowing users to create as many branches as they want. How-
ever, sometimes this has the drawback that a common way of work is difficult to
identify. The Gitflow Workflow discussed below provides a common pattern for
managing feature development, release preparation, and maintenance.

2.3.1.3 Gitflow Workflow

The Gitflow Workflow defines a strict branching model designed around the project
release. It assigns very specific roles to different branches and defines how and
when they should interact. It uses individual branches for preparing, maintain-
ing, and recording releases. Like in other models, Gitflow still uses a main master

branch for developers to publish their local changes. The difference lies in the
branch structure.

Figure 4 shows how dedicated branches are created for a specific use. The
main branch master tracks the official software releases. The most important

D3.3 v1
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Figure 4 The Gitflow branches. Each branch serves to a specific purpose. Picture from
Atlassian [2016]

branch after master is develop. develop serves as an integration branch for new
features. Each feature is developed in its own branch that forks off develop.
When a number of features are merged again into develop, the users may want to
prepare a new release. To this end, they fork off a release branch from develop.
A pull request to master may then trigger code review and discussions among
developers. If the new release is accepted, it can then be published on the master

branch and tagged with a version number. In case the end user discovers a bug
and a quick fix becomes necessary, then a hotfix branch is created directly from
master. As soon as the issue is solved, a new version is committed both in master

and develop. In this way urgent problems are solved without going through the
whole release cycle.

2.3.1.4 Forking workflow

In the workflows introduced above, users had a local copy of a central repository,
namely a clone. Here, instead of a single server-side repository, each user has
its own server-side copy of the official repository, namely a fork. Users have also
a local copy derived from cloning their own server-side copies. The advantage
here is that each user is concerned only with publishing on its own repository.
A project maintainer can then pull from different projects into the official one,
without having to give write permissions to the users. It works as follows.
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The project maintainer initializes the official repository

Developers fork the official repository

Developers clone their forked repositories

Developers work on their features

Developers publish their features

The project maintainer integrates their features

Developers synchronize with the official repository

Forking workflow implements a totally distributed workflow where developers
are not tied to one team but they can share code with any other developers and
any change can be merged into a project at any time.

3 Text mining projects

This deliverable uses text mining to exploit unstructured data that may give evi-
dence on compliance deviation or gather new insights into the engineering projects
of SHAPE. This is the case of e-mails and commit messages from VCS logs. In this
section we consider two different approaches to text mining i) topic modeling;
and ii) semantic annotation. We have evaluated both approaches with our data in
order to better understand the possible future improvements of these techniques
that fit our goals.

3.1 Topic models
Topic models are a set of methods that aim to discover a common theme in docu-
ment collections. These document collections may talk about several topics. Topics
are a set of words which are distributed over a vocabulary. Topic modeling algo-
rithms are able to find topics and group them together into clusters. A simple yet
extensively used topic model is given by latent Dirichlet allocation (LDA), pub-
lished in Blei et al. [2003].

3.1.1 Topic modeling on SHAPE emails
In this section we show an application of LDA to the email collection from SHAPE.
We have downloaded all the emails from the SHAPE mailing list and applied the
approach described in Feinerer et al. [2008]. To this end we have created a single
text file for each email. The data have then been imported into R. The proce-
dure involves classic text-mining preprocessing steps such as stop-words removal,
tokenization, etc, which are already provided by the tm and topicmodels libraries.

D3.3 v1
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Table 2 Four topics extracted from SHAPE emails

Topic 1 Topic 2 Topic 3 Topic 4

axel cristina shape saimir
saimir cristinacabanillas axel deliverable
shape shape polleres bala
polleres next information tudor
stefan information simon shape
week claudio business architecture
cristina meeting meeting review
will deliverable date please
giray agenda steyskal alois
paper site missing project

Table 2 shows the topics for the emails of SHAPE. We cluster our documents
into k = 4 topics of which the ten most popular words are reported. Topics rep-
resents words which are highly correlated. For instance, in this case, people who
have more closely worked together have exchanged more emails with each other.
Hence, they get clustered under the same topic.

An advantage of topic models is that no annotation on the text is required as a
prior step. However, sometimes topics alone are not very informative. Moreover,
choosing the right number of topics is not straightforward. This work-package
plans to investigate further on combining topic models with the approach from
Bala et al. [2015] that mines Gantt charts. Topics can be mined only on the emails
that where exchanged during active times slots that our found by process mining
VCS logs. Then, such topics may be used to label the activities on the Gantt chart.

3.2 Semantic model

Here we present another text mining approach to learn from unstructured data.
While topic models are statistical methods that do not take into account the re-
lations among words or the structure of a sentence, semantic models allow us to
exploit words hierarchies or similarities. Text from software repositories or emails
can be semantically annotated and analyzed using such semantic approach. One
interesting task that allows us to learn more about comments that people write
in VCSs is to categorize their commits. We take inspiration from Leopold et al.
[2012], who classify process labels into categories, to classify commit-styles. In this
section we investigate to what extent it is possible to understand the commit-styles
by analyzing them as possible labels of business process activities. We adapt the
label-styles to commit-styles as shown in Table 3.
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Table 3 Commit styles

Commit style Structure Example

Verb-Object VO

VP

NP

NN

bo

VB

a

update README.md

Action-Noun AN (np)

NP

VP

VB

a

NN

bo

jar update

Action-Noun AN (of)

NP

PP

NP

NN

bo

IN

of

NP

NN

a

Creation of launchers

Action-Noun AN (ing)

VP

NP

NN

bo

VBG

a

reviewing code
Action-Noun AN (irregular) <irregular structure> (CAM-A14) bugfix#11

Descriptive DES

NP

VB

NN

bo

VBZ

a

NP

NN

A left-over is removed now.

Only-Action OA

VP

VB

a fix

Only-Object OO

NP

NN

bo feature

D3.3 v1



12 Public Document

Table 4 Commit styles in Camunda and ProM

Property ProM Camunda

VO 28.00% 48.38%
AN 10.09% 4.66%
DES .02% .02%
OO .91% .64%
OA .09% .02%
N/A 60.89% 46.27%

Number of comments 19675 4208
Number of revisions 27574 5149
Avg No. of Sentences per Commit 0.71 0.82
Avg No. of Words per Comment 10.71 6.91

VCS SVN Git

Given the diversity of projects that can be retrieved from open source reposito-
ries and the fact that comments may have worse wording with respect to activity-
labels, we expect the results to change from a repository to another.

We applied the rules in Table 3 to two different repositories.

ProM - from academia

Camunda - from industry

Table 4 shows the results of our classification of user comments. We can see
that there are many comments that are not classified. This is due to their sentence
structure. One big difference between activity labels VCS and comments is their
length. As suggested by Table 4, in order to classify more comment-styles we
need to take into account an average sentence size of at least ten words. However,
the results still show how Camunda uses a better commit-style with respect to
ProM, which gives more freedom to its users. In future work we plan to improve
our classification method to be able to deal with the length of the commits from
VCSs. It will be then possible to use commit-styles to classify users, work, or
possible deviation (e.g. ambiguous description of work that may lead to process
deviations).

4 Combined methods for mining user roles from VCS logs

This sections shows an approach to mine resource-roles combining information
from both text and quantitative data from Version control system (VCS).
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4.1 Background

Here we discuss the problem and related work.

4.1.1 Problem description

The problem we address in this section is the discovery of the roles that members
of a software project may actually play in a collaborative setting. Each member
plays a particular role in the project. Roles are decided in the project planning
phase. This phase also involves the definition of project tasks and the assignment
of suitable tasks to the various roles.

Projects follow clear guidelines. Guidelines may come from internal policies
or from rules and regulations of the working domain. For example, software
systems in the railway domain must make sure that their development process
and resources comply to safety requirements imposed by the European standard
EN50128. This is why project managers need to track how they distribute work to
different people and whether the project members effectively contribute according
to their role and their task.

Software configuration management (SCM) systems are a valuable source of
information to investigate on the behavior of project members. There systems are
used for tracking and controlling changes in the software. If a change produces
a wrong or undesired outcome, it is always possible to revert to an older config-
uration of the system. Artifacts’ versions are automatically managed by VCSs. It
is always possible to follow the evolution of each artifact, along with information
about the resources who changed it and their comments, by looking into the VCS
logs.

Figure 5 illustrates how people work in a project. They are assigned to defined
tasks to which they contribute. Their contributions are part of generated artifacts.
As time goes by, the number and the content of the artifacts on a project grows.
Changes in the artifacts themselves and in the structure of the project reflect the
development process that project workers follow. The evolution of the repository
goes along with the progress of the project.

VCS logs provide rich and fine grained information about the changes in the
project. A change may consist of a file being modified or new files being added
in or removed from the repository. When changes are complete, it is possible to
store them in the repository through a commit. Each commit contains a unique
revision number, the identity of the resource who issued the commit, a timestamp,
statistical information about the changes for each affected file, and a comment
from the person who committed.

D3.3 v1
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Figure 5 Software project and resources

Let us now see an example of how people use a VCS to collaborate in a project.
Bob is a software engineer at Abc. ltd. He is working on the collaborative ‘Project
1’ with his colleagues. He adds a new module to ‘demo’ file, updates the file
‘rule’ and leaves respective comment. After performing the commit, the VCS log
entry for this instance would look like the first log entry in the table with log ID
‘abc123’. Alice is the UX designer working on the same project. Her job is to
look after the user satisfaction from a design perspective. She makes changes in
the ‘setup’ interface file and leaves the respective comment. After committing, the
VCS log for this entry is represented in table with log ID ‘jsh567’. Consequently,
Bob had to make changes in the ‘setup’ programming module represented by the
log ID ‘aof082’. Some important insights into the VCS logs are: a) log ID is a
unique id generated by VCS and changes each time a commit is performed by the
user; b) user ID in VCS is universal and remains the same; c) comments, though
useful for classification of users, are optional and committers might avoid it or
write just a single word. We can clearly see here how VCS gives us granular
information which can help us classify the users. However, it should be kept in
mind that this is a very simple example of a VCS, and as the projects grow both
in size and numbers VCS can get very complex.

Table 5 illustrates our running example. A unique log ID for each commit
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performed by the user. Furthermore we can see the information on which repos-
itory the commit was performed, at what time and date, and which files were
subsequently updated. User comments are dependant on many variables like per-
sonality, requirements etc and therefore sometimes they can be blank or contain
all sorts of irrelevant information user might mention.

4.1.2 Related Work
Role discovery has been addressed by literature in different settings and from
several points of view. Here we classify existing efforts from a data perspective.

4.1.2.1 Structured data approaches

This class of methods includes algorithms that make use of quantifiable data.
We divide them into: a) mining software repositories (MSR) approaches; and
b) process mining (PM) approaches.

Mining software repositories approaches. In the area of MSR, Yu and Ramaswamy
[2007] use a hierarchical clustering based on user interactions to identify two cat-
egories of users: core member and associate member. Core members are those users
whose interaction frequency is higher than a given threshold. Associate mem-
bers are instead users whose interaction frequency is below the threshold. Alonso
et al. [2008] use a rule-based classifier that maps file types onto categories and
hence each author who modified a file is linked to the files’ category. Gousios
et al. [2008] classify developers contribution based on lines of code (LOC) changes
and map infer activities from them. Begel et al. [2010] developed the Codeboook
software tool a utility for fining experts. They use a social network approach that
combines sources from people, artifacts, and textual allusions to other people.
Ying and Robillard [2014] study developer profiles in terms of their interaction
with the software artifacts to understand how they modify files and to further rec-
ommend changes based on history from VCS logs. Füller et al. [2014] investigate
user roles in innovation-contest communities. They use quantitative methods to
analyze user activity logs and interpretative to categorize qualitative comments
into classes.

Process mining approaches. Efforts have been done to analyze software repos-
itories with process mining techniques. Rubin et al. [2007] implement a multi-
perspective incremental mining that is able to continuously integrate sources of
evidence and improve the software engineering process as the user interacts with
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the documents in the repository. Their approach allows for mining other perspec-
tive, such as roles, by applying social network analysis. However, only statistical
methods can be applied to their output, since it lacks the comments that are asso-
ciated to file changes. In the same setting, Poncin et al. [2011] developed frasr,
a framework for analyzing software repositories. frasr can be used in order to
transform VCS logs data into the XES (Verbeek et al. [2010]) data format that can
be further analyzed with process mining tools like ProM5. Song and van der Aalst
[2008] focus on three types of organizational mining i) organizational model min-
ing, ii) social network analysis, and iii) information flows between organizational
entities. Schönig et al. [2015a] propose a mining technique to discover resource-
aware declarative processes.

4.1.2.2 Unstructured data

Maalej and Happel [2010] use natural language processing (NLP) for automating
descriptions of work sessions by analyzing developers’ informal text notes about
their tasks. Developers are then classified into two classes based on their behav-
ior: developers who use problem information to refer to their current activity and
developers who refer to task and requirements. Kouters et al. [2012] developed an
identity merging algorithm based on Latent Semantic Analysis (LSA) to disam-
biguate user emails. Licorish and MacDonell [2014] mined developer comments
to understand their attitudes.

4.1.2.3 Other related work

The term role mining often points to role mining algorithms based on role-based-
access-control (RBAC) systems. These algorithms takes as input predefined roles
that are given as a matrix, where each users are assigned to access permissions.
A number of algorithms have been developed to mine roles from RBAC systems
alone (Lu et al. [2015], Frank et al. [2013]) or combining their data with process
history logs (Baumgrass et al. [2012]). A survey of existing techniques and algo-
rithms can be found in Mitra et al. [2016]. Our work is disjoint from this class of
algorithms as VCS does not contain access control information. Bhattacharya et al.
[2014] propose a contributor graph-based model. By constructing both a source-
based profile and a bug-based profile, they are able to identify seven roles: patch
tester, assist, triager, bug analyst, core developer, bug fixer, and patch-quality improver.
Hoda et al. [2013] use a grounded theory (GT) approach to study agile teams.

5 http://www.promtools.org/doku.php
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Their work unfolds the roles of mentor, coordinator, translator, champion, promoter,
and terminator.

This work builds upon existing literature in that it gather insights on organi-
zational level like in Rubin et al. [2007] and Song and van der Aalst [2008] but it
takes into account unstructured data. Differently from the literature that works
with unstructured data, we explicitly consider the problem of role discovery, i.e.
attribute roles to resources. Lastly, this approach differs from Bhattacharya et al.
[2014] and Hoda et al. [2013] since we further adopt NLP techniques.

4.1.3 Research Questions
As mentioned in the previous section, the focus of this work lies on mining and
analyzing properties of the users of VCS. The users belong to certain classes and
these classes have different commit message styles. Based on this assumption, the
following research questions are defined:

RQ1 What classes can be assigned to users of VCS? The first research question scru-
tinizes if a classification of the users of a VCS is possible only based on the
information provided by the log files. The classification separates the users
into clusters. To this extent the most expressive features and combinations of
these features have to be identified. These clusters are then further analyzed
by means of the next research question.

RQ2 How can we map users types to classes? Based on the created clusters mean-
ingful classes are derived. The chosen features influence the types of classes
that can be created and there has to be an intelligible distinction between those
classes. This research question also answers how detailed this distinction can
become and it creates behavioral profiles for the class members, based on the
analyzed features.

RQ3 What are the main differences found for these classes? The last research question
examines the differences between the created classes. It compares the results of
the log files and identifies the reasons for dissimilarities. Therefore, it evaluates
the quality of the classification and its applicability for different version control
systems.

4.2 Approach
Commit messages contain metadata and content. For analysis of users and roles
both parts are important. Metadata includes the author, which is essential for
gaining a unique identifier of the committer. The content gives some indications



SHAPE FFG-2014-845638 19

on roles. Even if data is fetched already in the right format, it is still not ready
to be analyzed. Information cleaning is as important as the extraction. Changed
roles, one time committers, or several identities for the same use, are some of the
challenges that need to be handled.

Once data is prepared, the analysis can start with a direct approach of connect-
ing one commitment message to one user and his/her corresponding role. While
this 1:1 relationship is not always available, there are other possible analyses like
the commit based approach. It is an indirect approach because in it a list of roles
to every commit message. By linking the lists of roles to the authors the role of
the user is predicted.

Resource
classification

started

Preprocess log
data

User-based
approach?

Filter Users Evaluate Users

Cluster Data

Filter Commits
Evaluate
Commits

Reources
classified

yes

no

Figure 6 Approach to role classification from VCS logs

Figure 6 illustrates the steps of our approach through a BPMN diagram. In
the first step we preprocess the data and parse the SVN log file. Then we account
for two different types of classification: user-based and commit-based. These ap-
proaches require a prior step where we filter the data according to user or to
commits. Both the approaches include an evaluation step where we map key-
words and information on file types to users or commits, respectively. The last
step is the data classification. Section 4.3 describes both the approaches in detail.

4.3 Implementation and evaluation
One solution for the outlined problem is an algorithmic approach in form of build-
ing a script using Python. This script automatically fetches, processes and analyzes
the log files and creates a classification model that is based on the extracted infor-
mation. The following tools are used for implementation:

Technology. Python is a general-purpose, high-level programming language. It is
open source, easy to use and offers various third party modules6.

6 https://www.python.org/

D3.3 v1



20 Public Document

Machine Learning. The Scikit Learn module is utilized for machine learning. It is
built on matplotlib, numpy and scipy. It offers algorithms and graphical rep-
resentations for classification, regression, clustering, dimensionality reduction,
model selection and preprocessing7. We used decision treess (DTs) for classi-
fication and regression. DTs are supervised learning method whose goal is to
create a model that predicts of a target feature of variable by inferring existing
rules from the data.

Natural Language Processing. For natural language processing the Natural Lan-
guage Toolkit (NTLK) offers methods to extract additional information out
of everyday communication. The “Bag of words“ technique analyzes word
occurrences, but also more sophisticated methods, which develop a human
understanding of communicated messages, can be utilized 8.

After choosing the tools, a very important step required prior to the actual im-
plementation is the selection of data. While the number of accessible code repos-
itories available via repository hosting services is quite huge, picking a dataset of
appropriate size and quality proves rather challenging. There have to be some
considerations to be made for choosing the right repositories:

Number of repositories: Classification on a single repository might not pro-
duce a generally applicable result, whereas using more repositories increases
complexity.

Size of individual repositories

Role information: This is important for certain steps in the classification task
and for verification of results.

Differences in organisational aspects of the projects: The type of the devel-
opment team (professional or hobby) type of software (proprietary or open-
source) and type of platform (private server or public repository hosting ser-
vice) might have influences on the way repositories are used.

Differences in version control systems

For this project three repositories are analyzed, each with multiple thousand
commits:

1. Main code repository of the company Infinica. Proprietary software. VCS:
Mercurial

2. ProM Sourceforge project repository. Open source software. VCS: SVN

7 http://scikit-learn.org/stable/
8 http://www.nltk.org/book/ch00.html



SHAPE FFG-2014-845638 21

3. Camunda GitHub project repository. Open source software. VCS: Git

These three are chosen to cover a broad range of the above mentioned differ-
ences. The necessary role information was reviewed by interviews with the main
contributors for these projects. While two repositories were publically available,
the third was granted a direct access from within the company.

First of all, browsing through the commit messages created an understanding
of the structure of the log files, the type of information available for extraction and
the way VCS commits are typically used in the different projects. They contain the
most useful information but are also the least predictable factor, because there are
no general rules on how to formulate such a message. From the messages certain
words and phrases can be extracted, which can be linked to a specific class. In a
next step, the log files were preprocessed removing commits and/or users with
faulty information, merging users with several accounts and anonymizing the data
if required.

The first step of creating the algorithm, once the the log files were obtained and
their basic structure was known, is to transform them into a common in-memory
object model. Three different functions, providing the same output for different
input formats, were required to cover all three systems (Git, Svn, Mercurial). This
model consists of one object for each commit in the log, consisting of an id, an
author, a message, a timestamp and lists of all added, modified and deleted files.
From this it is possible to derive an additional model consisting of the users, by
aggregating the information for each author name occurring in the commits.

For further analysis and classification steps, efforts have been split up into
two approaches. The first one focuses purely on the users and the features de-
ductible for them. We soon realized though that this method, while providing
some promising insights, had certain limitations and left out some potentially
valuable information. Therefore a second approach was incorporated taking a
closer look at the individual commits. The two approaches are outlined in more
detail in the following sections.

4.3.1 User-based Approach
The main idea of this approach is to use clustering in order to find potential user
classes and build a classification model based on those clusters, which represent a
comprehensible, existing class of users. As a clustering method we used k-means.

The first step is finding and calculating features for the users where useful dif-
ferences between classes might be occurring. An explorative approach is required
to find the meaningful ones. The calculated and analyzed features are:
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Total number of commits

Timeframe: The time between the first and last commit of the user (approxi-
mates the time a user has been working on a project)

Commit frequency: Total number of commits divided by the time frame. Rep-
resents the number of commits a user makes within a certain period of time
(e.g. day, month)

Commits message length: Average length of commit messages in number of
words or characters

Occurrence numbers of certain keywords: How often a certain word (e.g. "test",
"fixed", etc) is used by a user, relative to the total number of commits.

Number of added/modified/deleted files

Occurrence number of file formats: How often a file with a certain format
(e.g. .java, .py, .html...) are modified by a user, relative to the total number of
modified files.

In order to find useful clusters, an experimentation with different combina-
tions of features is necessary. For each of these combinations the optimal cluster
number has to be found. While the clustering and optimizing tasks can be done
programmatically, the clusters have to be evaluated manually. This makes it im-
possible to test all possible combinations of features, especially when including
the keyword occurrence numbers, as the list of keywords with potential value was
far too large. Combinations that promise useful results are selected. Evaluation is
done using plots as well as looking at the raw data to find connections between
the identified clusters and the existing classes in the sample data.

From the clusters generated with this method classification models are built
using the decision tree classification method. The decision tree models are trained
for the three data sets individually. For verification of their quality, the models are
cross validated with the other data sets respectively.

4.3.2 Commit-based Approach

There are multiple reasons leading to the decision of adopting a second approach
in addition to the user clustering. As already mentioned above, the research led
to the conclusion that in many cases a user can have multiple roles or executes
many tasks not belonging to his primary role. This kind of use case is hard to
cover using only the simple clustering method. Another reason is that a lot of
information is lost when aggregating the commit information for users. This lead
to the idea of classifying individual commits.
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The algorithm iterates over commits and tries to assign types to them. The
types are assigned based both on the analysis of the commit message, and the file
extensions. The message is searched for certain keywords and phrases which are
connected to types. The file extensions are searched for known file types fitting
to a commit type. There are certain overlaps between commit types, for example
the type addition can be a development or test commit. In those cases where one
identified type is a more specific description for another, only the more specific
one is included into the further analysis. The identified commits and the related
keywords and file types are listed in Table 6.
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After assigning the commit types, the commits can be aggregated for the indi-
vidual users resulting in the absolute occurrence numbers of each type for each
user. Dividing each of these values by the total number of commits of the user,
we get percentages for each type. These percentages tell how the work of a user is
distributed among the different kinds of tasks which appear in a VCS. These user
profiles are a form of classification, which is not as simple and concise as assign-
ing one definite class for each user, but has the advantage of covering secondary
roles and minor tasks. They can be useful for analyzing smaller project teams with
multiple roles for one user.

The classification task is done on user profiles. A table of user profiles is cre-
ated and a role for each user manually inserted, based on the role information of
the data sets. For this part the Infinica data set is used, because it is the one with
the most extensive information base and it has the most diverse and comprehen-
sive set of roles. Four roles are assigned to the Infinica users: Web developers,
other developers, testers and support. The last one is an aggregation of users who
have different oficial roles but contribute in the VCS mainly in form of minor,
supportive tasks.

The classification task was done in two ways: 1. Manual analysis of the table
and derivation of rules by looking for similarities between users with the same
role. 2. Automated classification in line with our original concept. For the latter
the decision tree method is used. In this case the commit type percentages are used
as features and the manually assigned roles as classes. The resulting decision tree
model was cross validated against the ProM and Camunda data sets.

The final algorithm including retrieval, processing and analysis of data as well
as classification and verification, consists of roughly 700 lines of code. The results
for the two approaches are discussed below.

4.3.3 Results

In the first step of the user-based approach, the most expressive features of the
Infinica data set were identified. The solution was tested on the Infinica data set
due to the immediate availability of detailed information about the log file. The
best results were achieved with the combination of the commit frequency and the
occurrence numbers of test related keywords.

The commit frequency is a strong indicator of developers. Moreover, it also
differentiates between the working preferences of the developers. The group with
the lower frequencies tends to work locally on their machines and pushes their
work when it is finished. Whereas, the other developers group pushes every small
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(a) User profile for a backend developer (b) User profile for a tester

Figure 7 Commit distributions of the Infinica dataset

change into the repository separately so that everybody is updated and works
with the latest code.

Test-related keywords can not only identify testers, but also differentiate be-
tween their expertise. The sum of the words "test", "tested", "testing", "tests" is
already enough to make a distinction between testers and developers. Addition-
ally, manual testers use these words less often than their technical counterparts,
who are more focused on automation.

The first part of the commit-based algorithm implementation, i.e., the commit
classification, was successfully tested on all three data sets combined. For all
three sets we achieved a similar coverage (percentage of commits which could be
assigned some type). For Infinica the coverage was 88,94%, for Camunda it was
90,25% and for ProM 86,65%.

While the user profiles were originally intended as an intermediary step and a
means to verify and improve the quality of our approach, they proved to be a quite
useful perspective on user roles, beyond the simple categorisation using a single
class. Especially when using a graphical representation such as the pie charts
which can be seen in Figure 7a and Figure 7b, the commit distribution provides
an interesting insight in the actual roles and tasks of users.

The Infinica dataset is divided successfully into expressive classes with k-
means clustering with a k=4 shown in Figure 8. The developers (red and dark
blue) are split off based on their higher frequency in the first step of the decision
tree and the following classes are derived:

Developers - frequent committers: The red cluster is comprised of developers
which push every change to the repository.
Developers - heavy commits: The dark blue cluster contains developers who
work on their local machine and push less frequently. However, they have
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Figure 8 Scatterplot with colorcoded clusters (Infinica data set)

bigger commits containing more changes.

Testers - technical: Testers focused on automating the testing process are in
the light blue cluster. They are solely senior developers but not all of them are
situated in this group.

Testers - non technical: The yellow cluster is comprised of less technical testers
which tend to do more manual testing. Additionally, it includes the special
service team.

Table 7 shows an excerpt of the user profiles and role assignments for the In-
finica data set. The commit types development, backend, maintenance and refac-
tor have been merged to a single type development, as the other, more specific
types provided no additional value in this case. Also the types addition, removal
and merge have been left out here due to a lack of meaningfulness. The data vis-
ible in the table was used for the manual classification as well as the creation of
the decision tree model.

We identified 4 role-based classes which were visible from the Infinica data.
Those were testers, with more than 20% of their commits being of type test and
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between 30% and 50% of type development developers with above 50% develop-
ment commits, web developers with more than 40% of type web and 20% of other
development and non-technical users with less than 20% development. In addi-
tion to those, we found some less obvious hints for additional classes, represented
by minor, secondary roles of users. These were not represented as actual existing
roles in our data, so we could not verify our assumptions. The corresponding
classes we suggest for those are technical writer with more than 40% documen-
tation commits, designers with above 30% design commits, users with various
administration tasks, represented by high numbers of the types build, vcsManag-
ment and toolManagement and database experts with a large percentage of data
commits.

When applying the optimal features and clusters deduced from the Infinica
data set on the ProM data set, different but still meaningful user classes are de-
rived. This is due to the fact, that the Infinica data set represents the development
process within a company, whereas ProM is an academic project where researchers
continuously join and leave. However, it still required to get invited for working
on the project which creates an entry barrier. All members are developers without
any designated testers. The ProM data set can be divided into the following four
classes as shown in Figure 9.

Core developers: The employed users of the ProM project are situated in the
light blue cluster to the right. Their commit frequency and absolute number
commits is far above the others. There is also a system user in this class. Its
main task is building the project.

Engaged developers: The dark blue cluster contains developers which also
write tests. They are more committed and they put more effort into the devel-
opment.

One-time developers: The enagement of this group ends with the addition of
their required functionality. The majority of the users falls into this class and
it is represented by the red cluster at the bottom left.

Testers: Despite the lack of testers in the ProM data set two have been identi-
fied as such.

For the ProM data set which consisted of 42 users, 35 (83%) were classified
as developers. This is not surprising as we knew before that the contributors
of open source projects are mostly developers, which was also confirmed by our
contact persons for ProM and Camunda. Six users (14%) were regarded as testers,
which fits to our results in the user-based approach. One (2%) remaining user
was classified as a web developer. As the ProM project has no web component,
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Figure 9 Scatterplot with color-coded clusters, ProM data set

it makes sense that there are no web developers identified. The one we found
has only 5 commits, 2 of them web commits so this (potential) misclassification is
ignored.

The Camunda data set was analyzed based on the optimal features and classes
derived of the Infinica data set. The majority of the users are developers just like
in the ProM data set. However, it is an open source project and users can commit
anything at any time without restrictions. There is a permanently appointed core
team which evaluates, selects and integrates commits for the product. The cluster-
ing creates similar classes like in the ProM data set and it can be divided into the
following four classes as shown in Figure 10.

Core developers: The red cluster contains the employed users of the Camunda
project. Their commit frequency and absolute number commits is far above the
others.

Engaged developers: Developers which stay longer with the project are situ-
ated in the light blue cluster. They are refining their own committed code or
they are extending the product in different areas.
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Figure 10 Scatterplot with colorcoded clusters, Camunda data set

One-time developers: Similar to the ProM data set the majority of the users
belongs to this group and it is represented by the dark blue cluster. Code
usefull or not is committed typically once and there is no lasting commitment.

Testers: Also testers have been identified in the yellow cluster. They already
have a lower frequency than developers and therefore it is difficult to make an
estimation about their commitment.

For the Camunda data the case is similar. Out of 66 total users, 49 (74%) were
regarded as developers, the high number being again explained by the type of
project and confirmed by the contact person we spoke to. Ten (15%) testers were
found, mostly in line to our knowledge the data. Contrary to ProM, there is a
web part in the analyzed Camunda project reflected by the fact that our algorithm
found 7 (11%) web developers.

For the user-based apparoach no further distinction can be made based on
expertise, time in the company, teamwork, development area, project membership,
room allocation, etc. In the case of a development from junior to a senior role in
the course of the coverage of the log file the respective persons stay within their
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Figure 11 Decision trees, all three data sets

previous clusters. The associated increase or decrease in commit frequency can
not be linked to the development.

For the commit-based approach in neither of the two validation data sets a
support user was found. This might be due to the differences in the organisational
structure between Infinica and the other two or it could stem from the classification
rule based on the vcsManagement commi type, for which we already expressed
our doubts.

The corresponding decision trees for the previous presented k-means cluster-
ing shown in Figure 11 display the boundaries of the clusters. Due to the differ-
ences in the structure of the projects, business vs open source, the data sets share
only little similarities.

The Infinca decision tree initially splits the developers and the testers apart. In
the second step these 2 classes are then divided into subclasses. On the contrary,
the other two trees start separating the subsets right away in different orders.

The decision tree model is depicted in Figure 12. When comparing its rules
with those of our manual classification there are some clear parallels. In the tree
the differentiation between web developers and other developers is done with a
border value of 36% for web commits, close to the 40% threshold of the manual
table. Testers are identified having more than 17% test commits, similar to the
20% boundary. The decision tree separates the support users from the rest using
the vcsManagement type. Looking at the data, this rule is definitely valid for the
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Figure 12 Decision tree, commit based model

Infinica data, however as we were not able to provide a definite explanation for
this class having higher percentages for that particular type, we can not say if this
rule would also apply to other data sets. One possible explanation is that all users
have a similar number of vcsManagement commits within a given timeframe, but
because the support role has on average a significantly lower number of commits,
they account for a higher percentage in the distribution, however this is just an
assumption.

In general the decision tree is more precise, but our manually created rules
capture more factors of differentiation and we were able to identify some poten-
tial classes which could not be included in the programmatic classification with
reasonable effort. A clear advantage of the automated model is of course that it
can be applied to other data sets very efficiently. Doing that with the Camunda
and ProM data sets provided some verification for our decision tree model. We
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Figure 13 Classication based on Infinica training set: Prom, Camunda

only included users with 5 or more commits into the cross validation.

When validating the model with the Infinica data set and then predicting the
ProM and Campunda data set only moderate results can be achieved with the
user-based approach as shown in Figure 13. For the Infinica data set meaningful
classes can not be conveyed to the other data sets due to the structural differences
of the projects.

For ProM (Figure 13 left) the trained classes are less representative than the
ones created when clustering on its own, especially since the ProM data set does
not include any designated testers. The prediction of Camunda (Figure 13 right)
on the other hand performs better. However, the core developer class now also
includes very committed contributors.

Because of the missing designated testers in both test data sets, the initial dif-
ferentiation between technical and non-technical testers is not possible. Due to the
moderate results of user based approach the commit based approach was initiated.

4.3.4 Discussion

Throughout this project we discovered a number of research directions to go fol-
low, methods to use and features to analyze, which made our research much more
exploratory than originally planned. For our research we picked from a vast se-
lection of potential methods and tools, a small set which seemed promising to us.
The user-based approach, which was our initial plan, provided a useful insight
into the data but fell short of providing generally applicable results in terms of
a classification algorithm. The commit-based approach seems more valuable to
us, due to its results and the much larger spectrum of information it delivers for
analyzing users. The commit classification method seems quite robust and could
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with some extensions and refinements become a useful tool for analyzing arbi-
trary VCS repositories. The user profiles created based on this classification are
definitely an interesting source of information and building a classification model
on top of them has proven to be a legitimate approach. Our first research question
can be answered with: Yes, it is possible to classify users based on the information
usually found in VCS logs. Our results prove that at least for some typical roles in
software development there can be enough information in commit messages and
file types, to make certain statements about the users who created them. However
this is not true for all users, especially because the ways commit messages are
used are very different.

The other two questions are more difficult to answer. The classes to be found
can differ between repositories. From our experience, developers can be distin-
guished from other roles quite easily due to high numbers of commits and/or
modified files as well as the usage of certain words and phrases. Testers can also
be set apart in most cases, mainly through key words. Looking at the file types
of added, modified and deleted files also reveals users in the field of web devel-
opment. Beyond that there are certainly more differences and classes to be found
but they are less obvious and require more research.

4.3.5 Limitations

While our algorithms and models work well for describing our three data sets, it
still needs to be tested for other repositories, especially from other domains. This
would require testing with more data sets, more verification information and more
manual analysis. While fetching more VCS repositories and running them through
our algorithms could be done in a short amount of time, obtaining the necessary
role information is challenging and the manual analysis time consuming.

Acquiring the right data proved to be more challenging than expected. While
there is a large selection of open source projects, acquiring useful information for
potential classes can be difficult. Furthermore we have to assume that there are
significant differences between open source and other repositories, which need to
be further investigated for making a clear statement of the general representative-
ness of our data and our results.

A definite limitation for the whole topic of analyzing VCS logs is the fact that
commit messages are used differently between users, repositories and teams. We
have to assume that it is practically infeasible to find one classification model,
which produces valid results for any VCS repository, because there can be contra-
dictions in what certain statements mean. Even worse, some users even leave the
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commit messages empty, which means no classification is possible for this case.

4.4 Future Work
The exposed approach is the preliminary stage on which we plan to build upon
a more comprehensive solution of the problem of role discovery from VCS. There
are many ways to extend our approaches as well as other potential methodolo-
gies for classification. On the technical level, different methods of clustering and
classification from the machine learning domain could be used. More concep-
tual additions would be for example the use of additional features and feature
combinations.

There is also much potential for further refining our proposed methods. For
instance, we would use more extensively the natural language toolkit for process-
ing the commit messages. So far we only used the more basic functionality of the
language processing tools. In this research we focused mainly on the user roles
for classification but there might be other classes, for example discriminated by
the experience of users. Significant improvements would be possible by analyzing
different categories of VCS repositories. Especially log files of large software com-
panies, where many different roles are formally defined and executed would be
interesting.

5 Implementation on Camunda

This section briefly describes two prototypes that are currently under develop-
ment.

5.1 Combining process mining and resource allocation
In this prototype, we aim to bring together functionality from mining and resource
allocation (Cabanillas et al. [2015b]). Figure 14 shows the architecture of the pro-
totype. Three main components play a role here.

Reasoner. The reasoner’s task is to schedule human and non human-resources.
As soon a plan is ready, the process activities as well as other resources (e.g.
laboratory) are mapped together into a schedule. The schedule is a set of
assignments like in Listing 4.

assign (amy , t_submit_equipmental_rental_request ,0,1,1, bp_buildit ,i1)
assign (tom , t_select_suitable_equipment ,1,2,2, bp_buildit ,i1)
assign (tom , t_check_availability ,2,4,3, bp_buildit ,i1)
assign (drew , t_review_rental_request ,4,5,4, bp_buildit ,i1)
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Figure 14 General architecture

assign (tom , t_create_po ,5,7,5, bp_buildit ,i1)

Listing 4 Example of a schedule

Camunda Camunda is the business process management system (BPMS) used by
SHAPE. All the process instances that run into Camunda, and data from all
the past executions of processes are stored into the Camunda logs. These logs
can be queried through APIs. Listing 5 is an example of what is returned when
querying the history using the Camunda REST APIs.

[{"id":"22 f6751b -b526 -11e5 -a242 -183 da2307e3c "," parentActivityInstanceId ":
"22 f6751a -b526 -11e5 -a242 -183 da2307e3c "," activityId ":"sid -71 A66E94 -8
B8F -4F91 -A393 -1 B52839223A1 "," activityName ":"Exa delivered ","
activityType ":" startEvent "," processDefinitionKey ":"sid -68 bc060f -be0e
-43d0 -9d23 -689 df97192c5 "," processDefinitionId ":"90 d5639b -b521 -11e5 -
bf1a -183 da2307e3c "," processInstanceId ":"22 f6751a -b526 -11e5 -a242 -183
da2307e3c "," executionId ":"22 f6751a -b526 -11e5 -a242 -183 da2307e3c ","
taskId ":null ," calledProcessInstanceId ":null ," calledCaseInstanceId ":
null ," assignee ":null ," startTime ":"2016 -01 -07 T11 :05:10 "," endTime ":"
2016 -01 -07 T11 :05:10 "," durationInMillis ":1," canceled ":false ,"
completeScope ": false },{"id":" EndEvent_1 :0 dcd7116 -8688 -11e5 -bd23 -183
da2307e3c "," parentActivityInstanceId ":"d8219f97 -8686 -11e5 -bd23 -183
da2307e3c "," activityId ":" EndEvent_1 "," activityName ":"Exam handled ","
activityType ":" noneEndEvent "," processDefinitionKey ":"exam","
processDefinitionId ":"exam :2: aeb31626 -8686 -11e5 -bd23 -183 da2307e3c ","
processInstanceId ":"d8219f97 -8686 -11e5 -bd23 -183 da2307e3c ","
executionId ":"d8219f97 -8686 -11e5 -bd23 -183 da2307e3c "," taskId ":null ,"
calledProcessInstanceId ":null ," calledCaseInstanceId ":null ," assignee ":
null ," startTime ":"2015 -11 -09 T03 :17:40 "," endTime ":"2015 -11 -09 T03 :17:40
"," durationInMillis ":0," canceled ":false ," completeScope ":true}

Listing 5 Example Camunda history data

Miner The miner is the component that implements the mining algorithm. This
component is able to communicate with Camunda by using the REST APIs. At
the same time is implemented as a service that listens to incoming schedules
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from the Reasoner. Given a schedule and data from both Camunda and VCS
logs, the Miner can trigger alerts in case of deviation from the schedule.

We plan to use this prototype as a demo at the next SIMPDA9 conference.

5.2 Querying process history
We are developing a tool that will allows for SQL-like queries on top of Camunda
logs. The approach involves mapping Camunda’s database schema to RXES (van
Dongen and Shabani [2015]). In addition to this we are also developing a tool that
can map from RXES to XES Verbeek et al. [2011] and we plan to use this tool with
the approach from Schönig et al. [2015b] in order to make it fully compatible with
the RXES standard.

6 Conclusions

In this deliverable we have studied and implemented several approaches to gather
insights from project by combining data from structured and unstructured sources.
We showed how we can capture project data through a schema. This approach
is flexible: it allows to gather different insights by simply changing the query.
We also showed that we can further elaborate the query results and get better
understanding of the project. Text mining approaches have also been evaluated.
Using semantic models for VCS seems promising. We plan to improve on this by
working on a better categorization of the comments. Combined techniques that
take into account additional data to the comments have been presented. We used
this method to classify users according to roles. The results have been validated
with experts that work on the projects under analysis. In order to integrate the
approaches from different work packages, we are developing a tool that combines
functionalities from Cabanillas et al. [2015a] and Cabanillas et al. [2015b] and use
the Camunda BPMS platform. The resulting prototype will be presented in the
next SIMPDA 2016 conference. Furthermore, we are developing two approaches
that will allow to easily query the Camunda history log for complex insights.
These methods are parts of two master theses.

9 http://simpda2016.di.unimi.it/



REFERENCES 39

References

Omar Alonso, Premkumar T. Devanbu, and Michael Gertz. Expertise identification
and visualization from CVS. Proc. 2008 Int. Work. Min. Softw. Repos. - MSR ’08,
page 125, 2008. ISSN 02705257. 10.1145/1370750.1370780. URL http://portal.

acm.org/citation.cfm?doid=1370750.1370780.

Atlassian. Comparing workflows, 2016. URL https://www.atlassian.com/git/

tutorials/comparing-workflows.

Saimir Bala, Cristina Cabanillas, Jan Mendling, Andreas Rogge-Solti, and Axel
Polleres. Mining project-oriented business processes. In Hamid Reza Motahari-
Nezhad, Jan Recker, and Matthias Weidlich, editors, Business Process Manage-
ment, volume 9253 of Lecture Notes in Computer Science, pages 425–440. Springer
International Publishing, 2015. ISBN 978-3-319-23062-7. 10.1007/978-3-319-
23063-4_28.

Anne Baumgrass, Sigrid Schefer-Wenzl, and Mark Strembeck. Deriving process-
related rbac models from process execution histories. In Computer Software and
Applications Conference Workshops (COMPSACW), 2012 IEEE 36th Annual, pages
421–426. IEEE, 2012.

Andrew Begel, Yit Phang Khoo, and Thomas Zimmermann. Codebook: discov-
ering and exploiting relationships in software repositories. In 2010 ACM/IEEE
32nd Int. Conf. Softw. Eng., volume 1, pages 125–134, 2010. ISBN 978-1-60558-
719-6. 10.1145/1806799.1806821.

Pamela Bhattacharya, Iulian Neamtiu, and Michalis Faloutsos. Determining De-
velopers’ Expertise and Role: A Graph Hierarchy-Based Approach. 2014 IEEE
Int. Conf. Softw. Maint. Evol., pages 11–20, 2014. ISSN 1063-6773. 10.1109/IC-
SME.2014.23.

David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. the
Journal of machine Learning research, 3:993–1022, 2003.

Cristina Cabanillas, Saimir Bala, Jan Mendling, and Axel Polleres. Mining pro-
cesses, resource consumption and witnesses for task completion from logs. De-
liverable D3.3 (M3), 2015a.

Cristina Cabanillas, Giray Havur, Jan Mendling, Axel Polleres, Vadim Savenkov,
and Alois Haselboeck. Unified semantic model and reasoning techniques for
mining and monitoring process-relevant data. Deliverable D3.3 (M3), 2015b.

Cristina Cabanillas, Jan Mendling, Axel Polleres, and Saimir Bala. Requirements
for process, resource and compliance rules extraction from text. Technical Re-
port 1, 2015c.

Peter Pin-Shan Chen. The entity-relationship model&mdash;toward a unified view

D3.3 v1

http://dx.doi.org/10.1145/1370750.1370780
http://portal.acm.org/citation.cfm?doid=1370750.1370780
http://portal.acm.org/citation.cfm?doid=1370750.1370780
https://www.atlassian.com/git/tutorials/comparing-workflows
https://www.atlassian.com/git/tutorials/comparing-workflows
http://dx.doi.org/10.1007/978-3-319-23063-4_28
http://dx.doi.org/10.1007/978-3-319-23063-4_28
http://dx.doi.org/10.1145/1806799.1806821
http://dx.doi.org/10.1109/ICSME.2014.23
http://dx.doi.org/10.1109/ICSME.2014.23


40 REFERENCES

of data. ACM Trans. Database Syst., 1(1):9–36, March 1976. ISSN 0362-5915.
10.1145/320434.320440. URL http://doi.acm.org/10.1145/320434.320440.

Vincent Driessen. A successful git branching model. URL http://nvie. com/posts/a-
successful-git-branching-model, 2010.

Ingo Feinerer, Kurt Hornik, and David Meyer. Text Mining Infrastructure in R. J.
Stat. Softw., 25(5):1–54, 2008. ISSN 15487660. citeulike-article-id:2842334. URL
http://www.jstatsoft.org/v25/i05.

Mario Frank, Joachim M Buhman, and David Basin. Role mining with probabilistic
models. ACM Trans. Inf. Syst. Secur., 15(4):15, 2013.

Johann Füller, Katja Hutter, Julia Hautz, and Kurt Matzler. User Roles and Contri-
butions in Innovation-Contest Communities. J. Manag. Inf. Syst., 31(1):273–308,
2014. ISSN 07421222. 10.2753/MIS0742-1222310111.

Georgios Gousios, Eirini Kalliamvakou, and Diomidis Spinellis. Measuring devel-
oper contribution from software repository data. In Proc. 2008 Int. Work. Conf.
Min. Softw. Repos., pages 129–132. ACM, 2008.

Rashina Hoda, James Noble, and Simon Marshall. Self-organizing roles on agile
software development teams. Softw. Eng. IEEE Trans., 39(3):422–444, 2013.

Erik Kouters, Bogdan Vasilescu, Alexander Serebrenik, and Mark G J Van Den
Brand. Who’s who in Gnome: Using LSA to merge software repository identi-
ties. pages 592–595, 2012. 10.1109/ICSM.2012.6405329.

Henrik Leopold, Sergey Smirnov, and Jan Mendling. On the refactoring of activity
labels in business process models. Information Systems, 37(5):443–459, 2012.

Sherlock A. Licorish and Stephen G. MacDonell. Understanding the attitudes,
knowledge sharing behaviors and task performance of core developers: A lon-
gitudinal study. Inf. Softw. Technol., 56(12):1578–1596, 2014. ISSN 09505849.
10.1016/j.infsof.2014.02.004.

Haibing Lu, Yuan Hong, Yanjiang Yang, Lian Duan, and Nazia Badar. To-
wards user-oriented RBAC model. J. Comput. Secur., 23(1):107–129, 2015. ISSN
0926227X. 10.3233/JCS-140519.

Walid Maalej and Hans-Jörg Happel. Can Development Work Describe Itself?
7th IEEE Work. Conf. Min. Softw. Repos. (MSR 2010), pages 191–200, 2010.
10.1109/MSR.2010.5463344.

Barsha Mitra, Shamik Sural, Jaideep Vaidya, and Vijayalakshmi Atluri. A Sur-
vey of Role Mining. ACM Comput. Surv., 48(4):1–37, 2016. ISSN 03600300.
10.1145/2871148.

W. Poncin, A Serebrenik, and M. van den Brand. Process Mining Software Repos-
itories. 2011 15th Eur. Conf. Softw. Maint. Reengineering, pages 5–14, 2011. ISSN
1534-5351. 10.1109/CSMR.2011.5.

http://dx.doi.org/10.1145/320434.320440
http://doi.acm.org/10.1145/320434.320440
http://dx.doi.org/citeulike-article-id:2842334
http://www.jstatsoft.org/v25/i05
http://dx.doi.org/10.2753/MIS0742-1222310111
http://dx.doi.org/10.1109/ICSM.2012.6405329
http://dx.doi.org/10.1016/j.infsof.2014.02.004
http://dx.doi.org/10.3233/JCS-140519
http://dx.doi.org/10.1109/MSR.2010.5463344
http://dx.doi.org/10.1145/2871148
http://dx.doi.org/10.1109/CSMR.2011.5


REFERENCES 41

Vladimir A. Rubin, Christian W. Günther, Wil M. P. Van Der Aalst, Ekkart Kindler,
Boudewijn F. Van Dongen, and Wilhelm Schäfer. Process mining framework for
software processes. In Softw. Process Dyn. Agil., volume 4470, pages 169–181.
Springer, 2007. ISBN 978-3-540-72425-4. 10.1007/978-3-540-72426-1_15.

Stefan Schönig, Cristina Cabanillas, Stefan Jablonski, and Jan Mendling. Mining
the Organisational Perspective in Agile Business Processes. In BPMDS, pages
37–52, 2015a. 10.1007/978-3-319-19237-6_3.

Stefan Schönig, Cristina Cabanillas, Stefan Jablonski, and Jan Mendling. Mining
the Organisational Perspective in Agile Business Processes. In BPMDS, volume
214 of LNBIP, pages 37–52. Springer, 2015b. 10.1007/978-3-319-19237-6_3.

Minseok Song and Wil M P van der Aalst. Towards comprehensive support for
organizational mining. Decis. Support Syst., 46(1):300–317, 2008. ISSN 01679236.
10.1016/j.dss.2008.07.002.

B F van Dongen and Sh Shabani. Relational XES : Data Management for Process
Mining. BPM Cent. Rep. BPM-15-02, 2015. URL BPMcenter.org.

H M W Verbeek, Joos C A M Buijs, Boudewijn F Van Dongen, and Wil M P Van
Der Aalst. Xes, xesame, and prom 6. In Inf. Syst. Evol., pages 60–75. Springer,
2010.

H. M W Verbeek, Joos C A M Buijs, Boudewijn F. Van Dongen, and Wil M P Van
Der Aalst. XES, XESame, and ProM 6. In Lect. Notes Bus. Inf. Process., volume 72
LNBIP, pages 60–75. Springer, 2011. ISBN 3642177212. 10.1007/978-3-642-17722-
4_5.

Annie T T Ying and Martin P. Robillard. Developer profiles for recommendation
systems. Recomm. Syst. Softw. Eng., pages 199–222, 2014. 10.1007/978-3-642-
45135-5_8.

Liguo Yu and Srini Ramaswamy. Mining CVS repositories to understand
open-source project developer roles. In Proc. - ICSE 2007 Work. Fourth Int.
Work. Min. Softw. Repos. MSR 2007, pages 7–10, 2007. ISBN 076952950X.
10.1109/MSR.2007.19.

D3.3 v1

http://dx.doi.org/10.1007/978-3-540-72426-1_15
http://dx.doi.org/10.1007/978-3-319-19237-6_3
http://dx.doi.org/10.1007/978-3-319-19237-6_3
http://dx.doi.org/10.1016/j.dss.2008.07.002
BPMcenter.org
http://dx.doi.org/10.1007/978-3-642-17722-4_5
http://dx.doi.org/10.1007/978-3-642-17722-4_5
http://dx.doi.org/10.1007/978-3-642-45135-5_8
http://dx.doi.org/10.1007/978-3-642-45135-5_8
http://dx.doi.org/10.1109/MSR.2007.19

	Introduction
	Mining VCS for project-oriented processes and resources
	Data model
	Querying data
	Using timelines for project analysis

	Rules and guidelines
	Typical Workflows in VCS


	Text mining projects
	Topic models
	Topic modeling on SHAPE emails

	Semantic model

	Combined methods for mining user roles from VCS logs
	Background
	Problem description
	Related Work
	Research Questions

	Approach
	Implementation and evaluation
	User-based Approach
	Commit-based Approach
	Results
	Discussion
	Limitations

	Future Work

	Implementation on Camunda
	Combining process mining and resource allocation
	Querying process history

	Conclusions
	References

