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1 Introduction

Deliverable 3.3 version 2 of the SHAPE project1 reports work performed under
Task 3.4 Mine processes, resource consumption, witnesses for task completion from gath-
ered events. This document meets milestone (M3) Combined method for mining and
extracting processes, related events and compliance rules from unstructured data.

In the previous version of D3.3 Cabanillas et al. [2016b], we studied the applica-
bility of combined methods for mining projects out of unstructured and structured
data. Specifically

We presented a data model to access and analyze projects. We have identified
the main entities and their relationships that are typical in Version Control
System (VCS) and have constructed a schema. This allows for storing data
into a database and enables interesting queries. This approach is more scalable
since it allows for more flexibility in getting insights into projects without the
burden of encoding new approaches from scratch.
We studied possible text mining techniques in order to enrich the information
provided by the mining algorithm in Cabanillas et al. [2015c]. Text mining can
help to assign labels to the activities of a Gantt chart. In this deliverable we
have tested a) topic modeling from emails; and b) semantic analysis of VCS
comments.
We developed and tested an algorithm that combines both statistical informa-
tion and commit-comments from VCS repositories to classify users according
to roles.
We presented ongoing work in mining Camunda logs that is aware of resource
scheduling.
We presented ongoing work on developing a query language to access Ca-
munda history logs through an SQL-like console.

This deliverable refines the previous version by further research on text and
process mining. Specifically, we extend D3.3 version 1 with the following contents.

Mining project phases
Analyzing the language used by software engineers
Story mining from software repositories
Enabling SQL querying to Camunda logs
Implementation of a process miner component within the a comprehensive
framework for Complex Engineering Processes

1 https://ai.wu.ac.at/shape-project/
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This new version of Deliverable 3.3 is organized as follows. Section 2 presents
the model we use to capture VCS data. Section 3 introduces shows how we intend
to use text mining to support for better insights on projects. Section 4 presents
work on mining software engineering processes or projects. In particular, it shows
how to we use text comments from software repositories to discover the Rational
Unified Process (RUP) model. Section 5 presents advances for using existing pro-
cess mining techniques by converting the de facto XES standard for process mining
into a set of relational tables. This allows for process mining through SQL queries.
Section 6 presents a combined techniques for mining roles from VCS comments.
Section 7 shows the implementation of a mining and monitoring component, in
the setting of the general SHAPE framework. Section 8 concludes the deliverable.

2 Mining VCS data for project-oriented processes and
resources

In this section we analyze how we can mine useful insights from processes that
use VCS. Engineering projects like the ones in SHAPE make use of version control
systems to keep track of their documents. While the project evolves, the amount
of information in these systems increases. New needs may emerge during the
project lifetime or post completion. For instance, new rules and regulations may
come into play, which have to be obeyed immediately; or a posteriori checks may
be required from an auditor to manually check for unsafe patterns in the work that
was done. Storing project data into a database allows to systematically access those
data. Furthermore, it gives the flexibility to respond to new requirements without
necessarily developing new algorithmic approaches to mine the data. For instance,
new requirements can be checked by issuing a proper query to the database. In
this section we will discuss our data model and show how we can use queries to
analyze projects.

2.1 Data model

Here we give an overview of our data model. VCS are captured through the data
model in Figure 1 using the Entity-Relationship notation from Chen [1976]. The
entities and their relationships are described as follows.

Commit stores information about a checkout in the repository. Each checkout
has an id or revision number, a timestamp and may have a comment. Com-
ments are used from project members to describe their contribution. A commit
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Figure 1 Entity-Relationship Diagram from a VCS

can be of different types, e.g. it can store a merge between two commits or it
can store file changes. Files, users, and edits on files are considered as separate
entities in our model.

File represents a file that is present in the repository. A file is typically changed
by a commit. We take into account also renames that are made to the file as a
triple relation among two files and one commit.

Edit stores a modification of a part of the file. We use this entity to record
where and how much a file was changed. This allows for fine grained analysis
as we will see later in Section 2.2.

User is the resource who commits on the repository. A user has an id, a name
and an email. Users of a project may issue an arbitrary number of commits.

Project is used to keep track of the project to which the set of commits belongs.

2.2 Querying data
With the data modeled as in Figure 1 it is possible to plan for several types of
queries. We have used this model to store data into a MySQL2 database. Database
users are hence enable to issue suitable queries for their requirements. As an
example, we show three possible queries. To this end we fed into our model the
Camunda BPM3 repository. We make the following queries.

1. Which are the contributions to the project of a particular user X? (Listing 1)

2. What changes have been made to a particular file over time? (Listing 2)

3. Who are the users that have worked on feature development? (Listing 3)

The queries have been written in SQL as follows.

2 https://www.mysql.com/
3 https://github.com/camunda/camunda-bpm-platform

D3.3 v1
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SELECT name , Commit .id as CommitId , timeStamp , comment ,

linesAdded , linesRemoved , linesAdded - linesRemoved

FROM User , Commit , Edit

WHERE User.id = Commit . user_id

AND User.id = 1

AND Edit. commit_id = Commit .id

GROUP BY Commit .id

ORDER BY timeStamp ASC

Listing 1 Timeline of a user’s contributions

SELECT sum(‘linesAdded ‘),sum(‘ linesRemoved ‘), sum(

linesAdded )-sum( linesRemoved ) as delta ,‘timeStamp ‘,‘

comment ‘,‘Commit ‘.‘id ‘,‘file_path ‘

FROM ‘Edit ‘,‘Commit ‘

WHERE ‘Edit ‘.‘ commit_id ‘=‘ Commit ‘.‘id ‘

AND ‘file_path ‘=" engine /pom.xml"

group by timeStamp

order by ‘timeStamp ‘ ASC

Listing 2 Changes to the camunda engine configuration file

SELECT name , Commit .id as CommitId , timeStamp , comment ,

sum( linesAdded ), sum( linesRemoved ), sum(linesAdded -

linesRemoved ) as Delta

FROM User , Commit , Edit

WHERE User.id = Commit . user_id AND Edit. commit_id =

Commit .id AND Commit . comment LIKE ’%fix%’

GROUP BY Commit .id

order by timeStamp ASC

Listing 3 Users who worked on feature development

Listing 1 returns all the changes made to the repository from the user who has
id = 1. Such user might have made multiple edits in one single commit. Thus,
we aggregate by commit the numbers of lines added, lines removed and their
difference which is also referred to as delta. Lastly we order these edit event from
the oldest to the most recent.

Listing 2 shows the changes to a particular file. We chose the file named
"engine/pom.xml" which is a configuration file that is supposed to change fre-
quently due to updates, new releases (alpha, beta, etc) or tests. Here we want
to see how the file changes over time. This can help to identify patterns that
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might exist in the development. For instance, we expect that when certain task is
approaching completion, then the file changes become stable. This also why we
order the results chronologically.

Listing 3 returns a list of user who have been working on a specific task. Here
we exploit the commit-comments of the Camunda history log. Camunda com-
ments include special tags like fix(engine), fix(platform), etc, for indicating
what the changes were about. In this query we select all commit where the users
have mentioned the word fix somewhere in the comment. Furthermore, we select
the amount of changes and order the users chronologically.

2.2.1 Using timelines for project analysis

The queries of previous Section 2.2 can be exploited further to obtain more in-
formation. The extracted results can be exported and fed into other tools or data
mining algorithms can be applied on top of them. As a showcase, we have ana-
lyzed our data with R4 and have plotted the results for different queries.
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Figure 2 Profile of the changes made by one user. In the Y-Axis is reported the total
amount of change that has been done by the selected user

4 https://www.r-project.org/

D3.3 v1



6 Public Document

−200

−150

−100

−50

0

50

2013−07 2014−01 2014−07 2015−01 2015−07 2016−01
Time

D
el

ta

(a) File under development

0

50

100

150

Apr 2015 Jul 2015 Oct 2015 Jan 2016
Time

D
el

ta
(b) Database configuration file

Figure 3 An example of two different file-change patterns

Figure 2 shows the changes of a specific user over time on the repository. The
Y-Axis is the amount of change delta, which is the difference between lines added
and the lines removed from all files changed by the selected user. The data comes
from the results of the query in Listing 1. It is now easy to see that user with id

= 1 has been generally not very active with two high peeks around his/her first
appearance.

Figure 3 shows how we can use the query in Listing 2 to distinguish different
types of work reflected by file changes. As an example, we run the query for
two different types of files where the distinction is evident. Figure 3a reports
the change over time of a file that belongs to the core development of Camunda.
Figure 3b plots changes of a database configuration file of Camunda. The graphs
make it clear to see such change patterns.

We can use this kind of data to classify the type of work, the users and also
gather further insights about the extent to which rules and regulations may be
followed. Irregular patterns or artifacts that should be created, such as for instance
validation reports, or comments about extensive testing that are not reflected by
the changes in the VCS logs may be indicators of deviations. In Section 2.3 we
give an example of rules and guidelines in software development projects that use
VCSs.
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2.3 Rules and guidelines

Rules and regulations have to be taken into account when it comes to check for
process compliance. European Standards such as the EN 50128 software develop-
ment process mus be followed in order ensure safety and reliability. Developer
teams typically rely on VCS to manage their workflow. Thus, these systems can
help to discover possible deviation from the desired flow. In the following, we
will describe practical ways of using VCS for development. For details we point
to online resources such as Driessen [2010] and Atlassian [2016].

2.3.1 Typical Workflows in VCS

Let us see an overview of four typical workflows on Git and discuss how they can
be a) identified in a repository b) used to support mining.

2.3.1.1 Centralized Workflow

The centralized workflow uses a central point-of-entry for all the changes to the
project. It works as follows. Each user has a local copy of the repository. All
their edits to files get stored locally when they commit. To make a change visible
in the main project streamline, users have to publish their changes (e.g. through
commands git push or svn commit). Conflicts can occur when users try to push
content that is already present in the main repository under another version. In
such a case, users need to first pull the possible changes from the main trunk and
resolve possible conflicts. Afterwards users can upload their edits. This workflow
maintains a linear history.

2.3.1.2 Feature Branch Workflow

The feature branch workflow is based on the idea that the main repository, also
called master branch, should contain only clean artifacts. In case of software de-
velopment, it means that the features are developed in a dedicated branch and
later merged into the main codebase. When a feature is ready, it is possible to
issue a pull request. This triggers user review and conversation on the possible
improvements of the feature before it gets accepted. The feature branch workflow
is very flexible, allowing users to create as many branches as they want. How-
ever, sometimes this has the drawback that a common way of work is difficult to
identify. The Gitflow Workflow discussed below provides a common pattern for
managing feature development, release preparation, and maintenance.

D3.3 v1
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2.3.1.3 Gitflow Workflow

The Gitflow Workflow defines a strict branching model designed around the project
release. It assigns very specific roles to different branches and defines how and
when they should interact. It uses individual branches for preparing, maintain-
ing, and recording releases. Like in other models, Gitflow still uses a main master

branch for developers to publish their local changes. The difference lies in the
branch structure.

Figure 4 The Gitflow branches. Each branch serves to a specific purpose. Picture from
Atlassian [2016]

Figure 4 shows how dedicated branches are created for a specific use. The
main branch master tracks the official software releases. The most important
branch after master is develop. develop serves as an integration branch for new
features. Each feature is developed in its own branch that forks off develop.
When a number of features are merged again into develop, the users may want to
prepare a new release. To this end, they fork off a release branch from develop.
A pull request to master may then trigger code review and discussions among
developers. If the new release is accepted, it can then be published on the master

branch and tagged with a version number. In case the end user discovers a bug
and a quick fix becomes necessary, then a hotfix branch is created directly from
master. As soon as the issue is solved, a new version is committed both in master

and develop. In this way urgent problems are solved without going through the
whole release cycle.
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2.3.1.4 Forking workflow

In the workflows introduced above, users had a local copy of a central repository,
namely a clone. Here, instead of a single server-side repository, each user has
its own server-side copy of the official repository, namely a fork. Users have also
a local copy derived from cloning their own server-side copies. The advantage
here is that each user is concerned only with publishing on its own repository.
A project maintainer can then pull from different projects into the official one,
without having to give write permissions to the users. It works as follows.

The project maintainer initializes the official repository
Developers fork the official repository
Developers clone their forked repositories
Developers work on their features
Developers publish their features
The project maintainer integrates their features
Developers synchronize with the official repository

Forking workflow implements a totally distributed workflow where developers
are not tied to one team but they can share code with any other developers and
any change can be merged into a project at any time.

3 Exploiting text mining techniques for mining projects

This deliverable uses text mining to exploit unstructured data that may give evi-
dence on compliance deviation or gather new insights into the engineering projects
of SHAPE. This is the case of e-mails and commit messages from VCS logs. In this
section we consider two different approaches to text mining i) topic modeling;
and ii) semantic annotation. We have evaluated both approaches with our data in
order to better understand the possible future improvements of these techniques
that fit our goals.

3.1 Topic models
Topic models are a set of methods that aim to discover a common theme in docu-
ment collections. These document collections may talk about several topics. Topics
are a set of words which are distributed over a vocabulary. Topic modeling algo-
rithms are able to find topics and group them together into clusters. A simple
yet extensively used topic model is given by Latent Dirichlet Allocation (LDA),
published in Blei et al. [2003].

D3.3 v1
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Table 2 Four topics extracted from SHAPE emails

Topic 1 Topic 2 Topic 3 Topic 4

axel cristina shape saimir
saimir cristinacabanillas axel deliverable
shape shape polleres bala
polleres next information tudor
stefan information simon shape
week claudio business architecture
cristina meeting meeting review
will deliverable date please
giray agenda steyskal alois
paper site missing project

3.1.1 Topic modeling on SHAPE emails
In this section we show an application of LDA to the email collection from SHAPE.
We have downloaded all the emails from the SHAPE mailing list and applied the
approach described in Feinerer et al. [2008]. To this end we have created a single
text file for each email. The data have then been imported into R. The proce-
dure involves classic text-mining preprocessing steps such as stop-words removal,
tokenization, etc, which are already provided by the tm and topicmodels libraries.

Table 2 shows the topics for the emails of SHAPE. We cluster our documents
into k = 4 topics of which the ten most popular words are reported. Topics rep-
resents words which are highly correlated. For instance, in this case, people who
have more closely worked together have exchanged more emails with each other.
Hence, they get clustered under the same topic.

An advantage of topic models is that no annotation on the text is required as a
prior step. However, sometimes topics alone are not very informative. Moreover,
choosing the right number of topics is not straightforward. This work-package
plans to investigate further on combining topic models with the approach from
Bala et al. [2015] that mines Gantt charts. Topics can be mined only on the emails
that where exchanged during active times slots that our found by process mining
VCS logs. Then, such topics may be used to label the activities on the Gantt chart.

3.2 Semantic model
Here we present another text mining approach to learn from unstructured data.
While topic models are statistical methods that do not take into account the re-
lations among words or the structure of a sentence, semantic models allow us to
exploit words hierarchies or similarities. Text from software repositories or emails
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can be semantically annotated and analyzed using such semantic approach. One
interesting task that allows us to learn more about comments that people write
in VCSs is to categorize their commits. We take inspiration from Leopold et al.
[2012], who classify process labels into categories, to classify commit-styles. In this
section we investigate to what extent it is possible to understand the commit-styles
by analyzing them as possible labels of business process activities. We adapt the
label-styles to commit-styles as shown in Table 3.

Given the diversity of projects that can be retrieved from open source reposito-
ries and the fact that comments may have worse wording with respect to activity-
labels, we expect the results to change from a repository to another.

We applied the rules in Table 3 to two different repositories.

ProM - from academia
Camunda - from industry

Table 4 shows the results of our classification of user comments. We can see
that there are many comments that are not classified. This is due to their sentence
structure. One big difference between activity labels VCS and comments is their
length. As suggested by Table 4, in order to classify more comment-styles we
need to take into account an average sentence size of at least ten words. However,
the results still show how Camunda uses a better commit-style with respect to
ProM, which gives more freedom to its users. In future work we plan to improve
our classification method to be able to deal with the length of the commits from
VCSs. It will be then possible to use commit-styles to classify users, work, or
possible deviation (e.g. ambiguous description of work that may lead to process
deviations).

D3.3 v1
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Table 3 Commit styles

Commit style Structure Example

Verb-Object VO

VP

NP

NN

bo

VB

a

update README.md

Action-Noun AN (np)

NP

VP

VB

a

NN

bo

jar update

Action-Noun AN (of)

NP

PP

NP

NN

bo

IN

of

NP

NN

a

Creation of launchers

Action-Noun AN (ing)

VP

NP

NN

bo

VBG

a

reviewing code
Action-Noun AN (irregular) <irregular structure> (CAM-A14) bugfix#11

Descriptive DES

NP

VB

NN

bo

VBZ

a

NP

NN

A left-over is removed now.

Only-Action OA

VP

VB

a fix

Only-Object OO

NP

NN

bo feature
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Table 4 Commit styles in Camunda and ProM

Property ProM Camunda

VO 28.00% 48.38%
AN 10.09% 4.66%
DES .02% .02%
OO .91% .64%
OA .09% .02%
N/A 60.89% 46.27%

Number of comments 19675 4208
Number of revisions 27574 5149
Avg No. of Sentences per Commit 0.71 0.82
Avg No. of Words per Comment 10.71 6.91

VCS SVN Git

4 Mining software engineering projects from
unstructured data

Projects are common work-plans that companies use to achieve their business
goals. A project consists of an endeavor that involves several phases and disci-
plines, and is undertaken with time and resource constraints. Computer engi-
neering firms typically deal with software projects, in which the resources are
programmers and the final product is a software. In order to ensure quality and
in-time delivery for the software product, companies break down the project into
phases and its related tasks into work packages. After the work packages have
been defined and the resources have been assigned, the project should be imple-
mented according to the predefined plan.

There are a number of aspects that project managers may want to know about
their projects in order to assess their quality. For instance, managers may want
to know whether the project has been carried out according to the plan. This
is particularly useful when the project must account for safety-critical activities,
e.g. installation of a railway interlocking-system. Because these projects must
also comply with safety-rules and regulations, their phases must be clearly doc-
umented in order to provide evidence of compliance. Nevertheless, work docu-
mentation in large project is sparse among several technical reports, software code
comments, emails, and other artifacts that are produced by specific tools.

This section aims at analyzing the user comments in software repositories dur-
ing the implementation phase of the project. The goal is to verify whether the
project phases are reflected by lexical elements in the comments made by users

D3.3 v1
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when they check in parts of their tasks. Useful insights are gathered by compar-
ing a corpus of open-source projects to the common English and to the a corpus
taken from software engineering books (in particular we use the RUP corpus as it
represent the basis for software engineering terminology). Further analysis is con-
ducted by observing concordances and keywords that point to particular software
phases.

4.1 Mining project phases

This section aims at discovering which Rational Unified Process (RUP) phases and
related disciplines are reflected in software repositories. The RUP is an iterative
software development process framework. Although many alternatives exist, RUP
is still a reference when it comes to breaking down a software development project
into phases and disciplines. Here we give an overview on these concepts and show
how we can use linguistic tools to analyze these repositories.

4.1.1 The Rational Unified Process for Software
Development

Figure 5 Example of the RUP software development model.

A simple RUP model is illustrated in Figure 5. The horizontal axis represents
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the time from when the project incepted to when it is over, that is, the final product
is delivered to the customer. The vertical axis divides the disciplines that are
employed during each phase. Disciplines and phases may be divided in a more
fine-grained fashion, however, the main phases are typically four and disciplines
are six. They are described as follows.

Inception. The requirements are collected and goals are specified;
Elaboration. The collected material is analyzed and targets are formally de-
fined;
Construction. The software is implemented.
Transition. The software is migrated to the final execution environment.

During each phase one or more disciplines are employed. RUP includes the fol-
lowing disciplines.

Business modeling. The work-flow, resources and the strategy are defined.
Requirements. Requirements are identified and software features are planned.
Analysis and design. Challenges and software architecture are identified.
Implementation. The software components are written in a programming lan-
guage.
Test. Software functionalities are tested.
Deployment. The software is shipped to the customer.

4.1.2 Analyzing the GitHub corpus
This work uses corpus linguistics methods to analyze user comments about changes
in software artifacts. In particular, we use corpora comparison, keywords and col-
locations to understand whether it is possible to find references to the various
project phases. We follow the corpus-driven approach [Tognini-Bonelli, 2002] to
understand which words are actually used by software project members.

4.1.2.1 Method

The general method in this work falls into the corpus-driven approach. We use
data and tools from the mining software repositories (MSR) field in order to ex-
tract a corpus. This corpus is then analyzed with standard methods from corpus
linguistics (CL). In order to better understand the discovery of the project phases,
this approach proceeds in four steps. First, we use the GHTorrent5 from the work

5 http://ghtorrent.org/

D3.3 v1
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of Gousios [2013] to extract all the GitHub projects from 2012 to 2016. Second, we
preprocess the data by selecting only the information about user comments. Third,
we use the AntConc tool from Anthony [2014] and Leech et al. [2014] corpus to
analyze the GitHub corpus from the research questions’ point of view. Fourth, we
manually inspect the styles of typical commits that reflect the RUP phases.

4.1.2.2 Getting the corpora

GitHub has been widely studied by researchers in the MSR community. The work
of [Gousios, 2013] provides a tool, namely GHTorrent, which has been continu-
ously gathering GitHub events since 2012. The data is available for download and
it comes as a set of tables from a relational database. After the download, such
schema can be recreated on the local machine and the data stored accordingly.
We used the MySQL database management system (DMBS) to restore the down-
loaded dumps. Using the SQL language, it was possible to query for and filter out
all the user comments of all the available projects. The result was a one-column
table with as many rows as the total number of commits. Through a simple JAVA
program, the content of each row was appended into a text file. This file is the
resulting GitHub corpus.

The RUP corpus was obtained from books and guidelines on the topic. Alto-
gether eight fundamental books have been taken as a base. Each book dedicates
one chapter to each of the RUP disciplines. The content of the relevant chapter
was therefore pasted into a text file. The final result is a set of files that can be
grouped by topic. This set of files constitutes the working RUP corpus.

4.1.2.3 Data processing.

With the corpora available as texts files, we used AntConc [Anthony, 2014] corpus
software to analyze the data. The corpus methods are described as follows.

M.1: GitHub corpus vs. BNC written. In order to understand the comments
of the project participants, we first analyzed their vocabulary with respect to the
common English language. As a reference corpus for common English, we used
the BNC written corpus [Leech et al., 2014]. This choice is justified by the fact that
GitHub’s corpus is extracted from written user comments.

M.2: GitHub corpus vs. RUP corpus. The aim of this work includes under-
standing how different types of work are reflected by user text. The types of work
are described by the six RUP disciplines. Thus, a comparison between the GitHub
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and the RUP corpora is required. This allows identifying whether the words that
define the disciplines are actually used in real world projects.

M.3: Corpus analysis. Once the GitHub corpus was characterized with respect
to both the common English and the RUP corpora, we further analyzed the corpus
itself for collocations and frequently occurring patterns. This analysis further hints
on possible specialized words and terms that are used together with the RUP
keywords.

4.1.3 Results
This section presents the results and discusses the findings from the applying the
aforementioned corpus methods. The results will be presented in short tables. The
reader is referenced to the appendices for more detailed results and tables with
up to one hundred rows.

4.1.3.1 Corpora comparison

BNC written GitHub

rank freq word freq word

1 5529513 the 1936305 the
2 2820005 of 1285929 to
3 2321161 to 1212853 i
4 2316623 and? 1064976 a
5 1942423 a 916708 it
6 1772037 in 890624 this
7 877366 that 821212 is
8 858945 is 634698 in
9 795808 for 594955 you

10 788928 it 578323 and?

Table 5 Top 10 most frequent words in GitHub and BNC (common English) written

M.1: GitHub corpus vs BNC written. The BNC corpus consists of around 85 mil-
lion tokens, clustered into approximately 300 thousand word types. The GitHub
corpus consists of around 56 million tokens, clustered into around 1 million word
types. This translates into a type-token ratio of 0, 0039 (four per thousand) for
BNC written and a type-token ratio if 0, 018 (around two percent) for GitHub.
This difference in the order of magnitude between the two corpora shows that
there is actually a substantial variation in writing style of software workers. In
fact, it is often the case that comments in GitHub are simply composed of one
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or two words, e.g., "fix bug", in contrast to longer sentences used in the BNC.
Table 5 list the ten most frequent words in the GitHub and in the BNC written
corpora. The words appearing in italic (i.e., of, that, and for) occur only in the
BNC written corpus. Conversely, the word marked in bold (i.e., i, this, you) occur
only in the top ten list of GitHub. It is also interesting to see the rank distance
of the conjunction word “and”. While it ranks 4th in common texts, it ranks only
10th in GitHub (with a frequency almost 4 times lower with respect to the most
frequent word). This, together with the absence of certain words that serve as
a connector between clauses, e.g. that, may be indicators that GitHub is mainly
composed of short sentences. Putting it all together, this first comparison hints
that, differently from common English, software developers’ text contain mostly
short phrases that use a higher number lexical words. As a last observation, in
line with the words “i”,“you” and “this” point to a less formal communication
between project members.

GitHub RUP

rank freq word freq word

1 1936305 the 8400 the
2 1285929 to 3944 of
3 1212853 i 3658 a
4 1064976 a 3305 to
5 916708 it 3049 and*

6 890624 this 2511 is
7 821212 is 2462 in
8 634698 in 1598 that
9 594955 you 1267 are
10 578323 and* 1127 as

Table 6 Top 10 most frequent words in GitHub and RUP corpora

M.2: GitHub corpus vs RUP corpus. The RUP corpus consists of 130 thousand
tokens and around 8 thousand word types. This corpus contains the study mate-
rial for engineers who learn the software development process model. Therefore,
comparing this corpus to the GitHub one, we can point out differences on how
projects are supposed to be carried out and how they are actually done. Table 6
helps to see these differences more clearly6. Here, we find words like the ones

6 Note that the single letters appearing in the table are the results of a tokenizer that break the
quote (’́) character. This is informative as it hints at the type of discourse. For instance in a non
formal genre words like haven’t, don’t, isn’t, etc., appear more often than in formal writing.
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marked in bold, which give clues of a more formal type of discourse. Again, there
is a notable difference in the frequency of “and”, hinting to a higher similarity of
the RUP corpus to common English than to the GitHub corpus. Another interest-
ing fact is that the words that are present in GitHub but not in the RUP corpus are
almost the same, with Table 6 having in addition the word “in”. This reinforces
the clue about the genre, with GitHub being more informal.

4.1.3.2 Corpus inspection

This section reports the results of step M.3: Corpus analysis. In particular, we
have inspected the keywords and the collocations of symbolic words that may
represent project phases and disciplines.

Rank Freq Keyness Word

1 1212853 4745.013 i
2 238349 1106.858 https
3 235398 1093.154 github
4 256178 1064.277 http
5 419625 1022.381 t
6 916708 938.423 it
7 250139 889.463 com
8 236759 865.046 d
9 173664 761.574 org

10 163970 747.571 commit
Table 7 GitHubs’s top ten keywords using RUP as reference corpus

Keywords analysis. The goal is here to understand whether significant words
emerge that may refer to project phases or disciplines. Given that GitHub is
mostly used by software engineer and programmers, knowledge on the standard
RUP model is expected. The hypothesis is that we do not find information about
the first two disciplines of the RUP, namely Business Modeling and Requirement
Analysis, but we find evidence of the Analysis and Design, Implementation, Test,
and Deployment phases.

Using the AntConc software, we generated three keyword lists. First, we took
the BNC corpus as the reference (see Table 14 in Appendix A). As expected, words
like design, requirements, software, class, analysis, system, modeling, test, code, imple-
mentation, etc, were unusually frequent in the RUP corpus with respect to common
English. Second, we generated the keyword list from the GitHub corpus, still us-
ing BNC as the reference (see Table 15 in Appendix A). Apart from the unusually
high frequency of the words i, http, this, com, https, github, org, which are clearly
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common parts of the set of the project URLs, the words build, code, tests, file, api,
test, add, use, fix, occurred in the top 50 keywords. These words are related to
project disciplines. For instance, the words test, and fix are related to the Imple-
mentation discipline.

By comparing the two above mentioned keyword-lists, we found only partial
support to our hypothesis. In particular, not only there is no reference to the
first two RUP disciplines (Business Modeling and Requirement Analysis), but also
reference to Deployment is missing in the first one hundred. The first occurrence
of deploy is ranked in position 950. Moreover, the Analysis and Design is not
reflected by any keyword in the top 100. The first word related to this phase is the
word class (from design of classes, meaning that programmers are creating objects
to represent concepts). This word is ranked at position 172.

As a further validation step we created a keyword list for GitHub, using the
RUP corpus as a reference. This is reported in Table 7. An extended list can be
found in Appendix A in Table 16. A part from the words indicating parts of a
URL, the word commit occurs in the top ten list. This is no surprise as this word
specifies the use of a VCS. By looking at the extended table, it is possible to notice
two things. First, a big number of words pointing to a informal genre (e.g., I, think,
ok, me) appear. Second, words that were highly ranked as keywords with respect
to BNC are still highly ranked when RUP is taken as a reference. This hints at the
fact that GitHub users focus extensively on particular parts of the RUP software
development model.

Summing up, by inspecting the keywords, the following conclusions can be
drawn. First, not all the disciplines are sufficiently represented in GitHub. Key-
words suggest that the GitHub comments are mostly about the Implementation
and the Testing phase, while the Analysis and Design is present but not frequent.
The other phases are instead not directly represented in the corpus, with the De-
ployment phase being surprisingly low in the ranking. Looking further into the
difference between the GitHub and the RUP corpora, we can observe that users
most likely use GitHub for Implementation and Testing of software projects, as
particular keywords like build and check continue to be highly ranked when using
RUP as a reference.

Collocations and patterns. The keyword analysis hints at the fact that GitHub
is used mainly for Implementation and Testing, and Design, although the latter is
less frequent. Here we delve into the details on how users write when they talk
about the most represented RUP disciplines. To this end we used the collocation
method from AntConc, to inspect how project members use the words design,
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implementation and test in context. Results are reported in Appendix B in three
tables. The tables are sorted by the keyword occurrence frequency. From the tables
and from further inspection (using also other methods like clustering), it appears
that the words do refer to the same concepts as in the RUP. Design is often used
together with the word pattern. Design patterns are well-known engineering best
practices. Implement appears mostly as a verb. However, a term referring to a
software artifact (e.g. implement functionalities) is almost always present in the
context. Test is mostly used as a lexical word (in most of the cases as a noun).
It also clearly refers to the testing discipline, e.g., test output, test case, etc. An
idiomatic usage of the inspected words is almost never noticed in the corpus.

4.2 Story mining from software repositories

Story Mining aims at extracting business process activities from natural language
text Gonçalves et al. [2011]. The approach of story mining is shown in Figure 6
and comprises three main steps. First, it requires that the process participants tell
their stories, which consist of their vision of the process. This has to be done on a
daily basis. Second, once the stories have been collected for all the participants, the
mining phase starts. The mining phase includes a first step of preprocessing of the
natural language text using classic natural language processing (NLP) techniques
in a pipeline, such as tokenization, stop word removal, lemmatization, etc. Third,
it proposes a set of possible processes and choose the most appropriate on as the
result.

The method used in story mining would generate models for every textual
input given. Hence, we can use story mining also for the user comments in a
VCS. To do this, we used the data model presented in the previous version of this
deliverable Cabanillas et al. [2016b], to import processes from the real world into a
database. We then query the comments for each user, and store them into separate
files. These files represent the user stories to be fed to the story mining algorithm.

The next step is to cluster similar activities that emerge from the output of
Story mining. To do this we used semantic textual similarity (STS), drew from the
SemEval workshop series7. We chose the DLS@CU Sultan et al. [2015] that per-
formed best in the workshop. The similarity measure is based on how much parts
from two sentences can be aligned by looking them up in a so-called paraphrase
database. The method is explained in Ganitkevitch et al. [2013] and is based on the
intuition that two groups of words have the same meaning if they can be trans-

7 https://en.wikipedia.org/wiki/SemEval
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Figure 6 The story mining approach to extract business process activities from stake-
holders’ stories Gonçalves et al. [2011]

lated in the same set of words in a foreign language. For example thrown into
jail and imprisoned are both translated into the German word festgenommen. This
means that they have a high similarity.

The work is ongoing and we expect to improve the identification of activities
from project-mining approach described in Bala et al. [2015] by identifying another
view on the activities. Discovering textual activities could provide a step forward
towards labeling the activities of the Gantt chart extracted by Bala et al. [2015]
with semantics.

5 Combined methods for mining business processes

This section presents a method and tool to handle large process logs by storing
them into a relational database and allowing for the execution of process mining
algorithms. This has been developed as part of a Master Thesis Fischbach [2016].
More specifically, we designed an approach to create a common basis for imper-
ative and declarative process mining on relational databases. This approach is
based on the following four steps:

1. A database is created according to the RXES schema.

2. The database is populated with event log information.
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3. The event log information is used to calculate Support and Confidence metrics
for several declarative constraints in the DECLARE language Pesic et al. [2007]
using SQL Miner queries. The results are stored in the database.

4. Using the information we obtain by mining the declarative constraints from
process logs, we are able to create Figure 7. It shows the ordering relations
for that we can use as a basis for mining imperative models out of DECLARE
constraints.

Figure 7 Mapping between order relations and declare constraints Fischbach [2016]

The result of this approach is a database that contains event log information
stored according to the RXES schema and declarative constraints including Sup-
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port and Confidence values calculated from the event log information that can
be used to derive ordering relations used by several imperative process mining
algorithms. Those ordering relations can then be used as an input for adapted al-
gorithms to create imperative process models. Therefore, it can be concluded that
the resulting database is an infrastructure for different forms of process mining
because it is possible to extract necessary information for different process mining
algorithms from it.

We implemented this approach in a Java application called RXESuite. With this
application it is possible to create and query such an infrastructure for process
mining on relational databases. RXESuite contains features for storing event log
data in relational databases according to the RXES schema and extracting declara-
tive constraints as well as imperative ordering relations from this data. Specifically,
with RXESuite it is possible to:

Import XES files (using a special library called OpenXES [10], described in
Section 4.3) into a relational database according to the RXES schema.

Derive specific declarative constraints from the event logs stored in the database
using (adapted) SQL Miner queries and display them in a convenient way.

Derive imperative ordering relations for imperative miners using the declara-
tive constraints as a basis.

Export the derived constraints and/or ordering relations to a structured CSV-
file that can be used as an input for other tools (e.g. special mining tools that
use the created file as an input).

A summary of a possible usage procedure of RXESuite is presented in Figure 8.
The source code of RXESuite is publicly available in an online repository8. All
required libraries are already included in that repository. To run the application it
is necessary to compile it using the Java SE Development Kit 8 for the respective
underlying platform.

Figure 8 Summary of the Derivation Procedure using RXESuite Fischbach [2016]

8 Accessible at https://bitbucket.org/FroZzy18/rxesuite
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We use SQL Miner queries to derive the declarative constraints because the
approach already provides templates for mining DECLARE constraints. At the
point where the SQL Miner comes into play, the event log is already stored in a
relational database according to the RXES schema that can be queried with SQL.
Therefore, we just adapted the existing SQL Miner queries of Schönig et al. [2015]
to derive the constraints. Although in principle it would be possible to use any
declarative mining approach, these approaches would require the extraction of
the event log data from the relational database as a first step, only to be able
to extract the final constraints in a second step. With SQL Miner it is possible to
directly derive the constraints from the relational database and return the resulting
constraints.

We decided to include the feature of deriving the Indirect Successor9 rela-
tion of the Alpha++ algorithm with RXESuite, although the procedure is more
processing-intensive than the derivation of the other relations. However, we want
to prove that it is actually possible to derive the Indirect Successor relation with
the underlying RXES structure and neglect therefore performance issues. In gen-
eral, the tool is mainly designed to act as a proof-of-concept. Therefore, the focus
of this work was to create a functional infrastructure that is capable of achieving
the points presented above. Additionally, we designed RXESuite as flexible as
possible so that it can be easily adapted and reused in future projects.

6 Combined methods for mining user roles from VCS logs

This sections shows an approach to mine resource-roles combining information
from both text and quantitative data from Version control system (VCS).

6.1 Background

Here we discuss the problem and related work.

6.1.1 Problem description

The problem we address in this section is the discovery of the roles that members
of a software project may actually play in a collaborative setting. Each member
plays a particular role in the project. Roles are decided in the project planning

9 The Indirect Successor relation is defined as the existence of two events a and b such that for all
the traces of a log, b does not immediately follow a, but it follows a eventually
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phase. This phase also involves the definition of project tasks and the assignment
of suitable tasks to the various roles.

Projects follow clear guidelines. Guidelines may come from internal policies
or from rules and regulations of the working domain. For example, software
systems in the railway domain must make sure that their development process
and resources comply to safety requirements imposed by the European standard
EN50128. This is why project managers need to track how they distribute work to
different people and whether the project members effectively contribute according
to their role and their task.

Software configuration management (SCM) systems are a valuable source of
information to investigate on the behavior of project members. There systems are
used for tracking and controlling changes in the software. If a change produces
a wrong or undesired outcome, it is always possible to revert to an older config-
uration of the system. Artifacts’ versions are automatically managed by VCSs. It
is always possible to follow the evolution of each artifact, along with information
about the resources who changed it and their comments, by looking into the VCS
logs.

Figure 9 illustrates how people work in a project. They are assigned to defined
tasks to which they contribute. Their contributions are part of generated artifacts.
As time goes by, the number and the content of the artifacts on a project grows.
Changes in the artifacts themselves and in the structure of the project reflect the
development process that project workers follow. The evolution of the repository
goes along with the progress of the project.

VCS logs provide rich and fine grained information about the changes in the
project. A change may consist of a file being modified or new files being added
in or removed from the repository. When changes are complete, it is possible to
store them in the repository through a commit. Each commit contains a unique
revision number, the identity of the resource who issued the commit, a timestamp,
statistical information about the changes for each affected file, and a comment
from the person who committed.

Let us now see an example of how people use a VCS to collaborate in a project.
Bob is a software engineer at Abc. ltd. He is working on the collaborative ‘Project
1’ with his colleagues. He adds a new module to ‘demo’ file, updates the file
‘rule’ and leaves respective comment. After performing the commit, the VCS log
entry for this instance would look like the first log entry in the table with log ID
‘abc123’. Alice is the UX designer working on the same project. Her job is to
look after the user satisfaction from a design perspective. She makes changes in
the ‘setup’ interface file and leaves the respective comment. After committing, the
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Figure 9 Software project and resources

VCS log for this entry is represented in table with log ID ‘jsh567’. Consequently,
Bob had to make changes in the ‘setup’ programming module represented by the
log ID ‘aof082’. Some important insights into the VCS logs are: a) log ID is a
unique id generated by VCS and changes each time a commit is performed by the
user; b) user ID in VCS is universal and remains the same; c) comments, though
useful for classification of users, are optional and committers might avoid it or
write just a single word. We can clearly see here how VCS gives us granular
information which can help us classify the users. However, it should be kept in
mind that this is a very simple example of a VCS, and as the projects grow both
in size and numbers VCS can get very complex.

Table 8 illustrates our running example. A unique log ID for each commit
performed by the user. Furthermore we can see the information on which repos-
itory the commit was performed, at what time and date, and which files were
subsequently updated. User comments are dependant on many variables like per-
sonality, requirements etc and therefore sometimes they can be blank or contain
all sorts of irrelevant information user might mention.
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6.1.2 Related Work

Role discovery has been addressed by literature in different settings and from
several points of view. Here we classify existing efforts from a data perspective.

6.1.2.1 Structured data approaches

This class of methods includes algorithms that make use of quantifiable data. We
divide them into: a) MSR approaches; and b) process mining (PM) approaches.

Mining software repositories approaches. In the area of MSR, Yu and Ramaswamy
[2007] use a hierarchical clustering based on user interactions to identify two cat-
egories of users: core member and associate member. Core members are those users
whose interaction frequency is higher than a given threshold. Associate mem-
bers are instead users whose interaction frequency is below the threshold. Alonso
et al. [2008] use a rule-based classifier that maps file types onto categories and
hence each author who modified a file is linked to the files’ category. Gousios
et al. [2008] classify developers contribution based on lines of code (LOC) changes
and map infer activities from them. Begel et al. [2010] developed the Codeboook
software tool a utility for fining experts. They use a social network approach that
combines sources from people, artifacts, and textual allusions to other people.
Ying and Robillard [2014] study developer profiles in terms of their interaction
with the software artifacts to understand how they modify files and to further rec-
ommend changes based on history from VCS logs. Füller et al. [2014] investigate
user roles in innovation-contest communities. They use quantitative methods to
analyze user activity logs and interpretative to categorize qualitative comments
into classes.

Process mining approaches. Efforts have been done to analyze software repos-
itories with process mining techniques. Rubin et al. [2007] implement a multi-
perspective incremental mining that is able to continuously integrate sources of
evidence and improve the software engineering process as the user interacts with
the documents in the repository. Their approach allows for mining other perspec-
tive, such as roles, by applying social network analysis. However, only statistical
methods can be applied to their output, since it lacks the comments that are asso-
ciated to file changes. In the same setting, Poncin et al. [2011] developed frasr,
a framework for analyzing software repositories. frasr can be used in order to
transform VCS logs data into the XES (Verbeek et al. [2010]) data format that can
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be further analyzed with process mining tools like ProM10. Song and van der Aalst
[2008] focus on three types of organizational mining i) organizational model min-
ing, ii) social network analysis, and iii) information flows between organizational
entities. Schönig et al. [2015a] propose a mining technique to discover resource-
aware declarative processes.

6.1.2.2 Unstructured data

Maalej and Happel [2010] use NLP for automating descriptions of work sessions
by analyzing developers’ informal text notes about their tasks. Developers are then
classified into two classes based on their behavior: developers who use problem
information to refer to their current activity and developers who refer to task
and requirements. Kouters et al. [2012] developed an identity merging algorithm
based on Latent Semantic Analysis (LSA) to disambiguate user emails. Licorish
and MacDonell [2014] mined developer comments to understand their attitudes.

6.1.2.3 Other related work

The term role mining often points to role mining algorithms based on role-based
access control (RBAC) systems. These algorithms takes as input predefined roles
that are given as a matrix, where each users are assigned to access permissions.
A number of algorithms have been developed to mine roles from RBAC systems
alone (Lu et al. [2015], Frank et al. [2013]) or combining their data with process
history logs (Baumgrass et al. [2012]). A survey of existing techniques and algo-
rithms can be found in Mitra et al. [2016]. Our work is disjoint from this class of
algorithms as VCS does not contain access control information. Bhattacharya et al.
[2014] propose a contributor graph-based model. By constructing both a source-
based profile and a bug-based profile, they are able to identify seven roles: patch
tester, assist, triager, bug analyst, core developer, bug fixer, and patch-quality improver.
Hoda et al. [2013] use a grounded theory (GT) approach to study agile teams.
Their work unfolds the roles of mentor, coordinator, translator, champion, promoter,
and terminator.

This work builds upon existing literature in that it gather insights on organi-
zational level like in Rubin et al. [2007] and Song and van der Aalst [2008] but it
takes into account unstructured data. Differently from the literature that works
with unstructured data, we explicitly consider the problem of role discovery, i.e.

10 http://www.promtools.org/doku.php
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attribute roles to resources. Lastly, this approach differs from Bhattacharya et al.
[2014] and Hoda et al. [2013] since we further adopt NLP techniques.

6.1.3 Research Questions
As mentioned in the previous section, the focus of this work lies on mining and
analyzing properties of the users of VCS. The users belong to certain classes and
these classes have different commit message styles. Based on this assumption, the
following research questions are defined:

RQ1 What classes can be assigned to users of VCS? The first research question
scrutinizes if a classification of the users of a VCS is possible only based on
the information provided by the log files. The classification separates the users
into clusters. To this extent the most expressive features and combinations of
these features have to be identified. These clusters are then further analyzed
by means of the next research question.

RQ2 How can we map users types to classes? Based on the created clusters mean-
ingful classes are derived. The chosen features influence the types of classes
that can be created and there has to be an intelligible distinction between those
classes. This research question also answers how detailed this distinction can
become and it creates behavioral profiles for the class members, based on the
analyzed features.

RQ3 What are the main differences found for these classes? The last research ques-
tion examines the differences between the created classes. It compares the
results of the log files and identifies the reasons for dissimilarities. Therefore,
it evaluates the quality of the classification and its applicability for different
version control systems.

6.2 Approach
Commit messages contain metadata and content. For analysis of users and roles
both parts are important. Metadata includes the author, which is essential for
gaining a unique identifier of the committer. The content gives some indications
on roles. Even if data is fetched already in the right format, it is still not ready
to be analyzed. Information cleaning is as important as the extraction. Changed
roles, one time committers, or several identities for the same use, are some of the
challenges that need to be handled.

Once data is prepared, the analysis can start with a direct approach of connect-
ing one commitment message to one user and his/her corresponding role. While
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this 1:1 relationship is not always available, there are other possible analyses like
the commit based approach. It is an indirect approach because in it a list of roles
to every commit message. By linking the lists of roles to the authors the role of
the user is predicted.

Resource
classification

started

Preprocess log
data

User-based
approach?

Filter Users Evaluate Users

Cluster Data

Filter Commits
Evaluate
Commits

Reources
classified

yes

no

Figure 10 Approach to role classification from VCS logs

Figure 10 illustrates the steps of our approach through a BPMN diagram. In
the first step we preprocess the data and parse the SVN log file. Then we account
for two different types of classification: user-based and commit-based. These ap-
proaches require a prior step where we filter the data according to user or to
commits. Both the approaches include an evaluation step where we map key-
words and information on file types to users or commits, respectively. The last
step is the data classification. Section 6.3 describes both the approaches in detail.

6.3 Implementation and evaluation
One solution for the outlined problem is an algorithmic approach in form of build-
ing a script using Python. This script automatically fetches, processes and analyzes
the log files and creates a classification model that is based on the extracted infor-
mation. The following tools are used for implementation:

Technology. Python is a general-purpose, high-level programming language.
It is open source, easy to use and offers various third party modules11.

Machine Learning. The Scikit Learn module is utilized for machine learning.
It is built on matplotlib, numpy and scipy. It offers algorithms and graphical
representations for classification, regression, clustering, dimensionality reduc-
tion, model selection and preprocessing12. We used decision treess (DTs) for
classification and regression. DTs are supervised learning method whose goal

11 https://www.python.org/
12 http://scikit-learn.org/stable/
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is to create a model that predicts of a target feature of variable by inferring
existing rules from the data.

Natural Language Processing. For natural language processing the Natural
Language Toolkit (NTLK) offers methods to extract additional information out
of everyday communication. The “Bag of words“ technique analyzes word
occurrences, but also more sophisticated methods, which develop a human
understanding of communicated messages, can be utilized 13.

After choosing the tools, a very important step required prior to the actual im-
plementation is the selection of data. While the number of accessible code repos-
itories available via repository hosting services is quite huge, picking a dataset of
appropriate size and quality proves rather challenging. There have to be some
considerations to be made for choosing the right repositories:

Number of repositories: Classification on a single repository might not pro-
duce a generally applicable result, whereas using more repositories increases
complexity.

Size of individual repositories

Role information: This is important for certain steps in the classification task
and for verification of results.

Differences in organisational aspects of the projects: The type of the devel-
opment team (professional or hobby) type of software (proprietary or open-
source) and type of platform (private server or public repository hosting ser-
vice) might have influences on the way repositories are used.

Differences in version control systems

For this project three repositories are analyzed, each with multiple thousand
commits:

1. Main code repository of the company Infinica. Proprietary software. VCS:
Mercurial

2. ProM Sourceforge project repository. Open source software. VCS: SVN

3. Camunda GitHub project repository. Open source software. VCS: Git

These three are chosen to cover a broad range of the above mentioned differ-
ences. The necessary role information was reviewed by interviews with the main
contributors for these projects. While two repositories were publically available,
the third was granted a direct access from within the company.

13 http://www.nltk.org/book/ch00.html
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First of all, browsing through the commit messages created an understanding
of the structure of the log files, the type of information available for extraction and
the way VCS commits are typically used in the different projects. They contain the
most useful information but are also the least predictable factor, because there are
no general rules on how to formulate such a message. From the messages certain
words and phrases can be extracted, which can be linked to a specific class. In a
next step, the log files were preprocessed removing commits and/or users with
faulty information, merging users with several accounts and anonymizing the data
if required.

The first step of creating the algorithm, once the the log files were obtained and
their basic structure was known, is to transform them into a common in-memory
object model. Three different functions, providing the same output for different
input formats, were required to cover all three systems (Git, Svn, Mercurial). This
model consists of one object for each commit in the log, consisting of an id, an
author, a message, a timestamp and lists of all added, modified and deleted files.
From this it is possible to derive an additional model consisting of the users, by
aggregating the information for each author name occurring in the commits.

For further analysis and classification steps, efforts have been split up into
two approaches. The first one focuses purely on the users and the features de-
ductible for them. We soon realized though that this method, while providing
some promising insights, had certain limitations and left out some potentially
valuable information. Therefore a second approach was incorporated taking a
closer look at the individual commits. The two approaches are outlined in more
detail in the following sections.

6.3.1 User-based Approach
The main idea of this approach is to use clustering in order to find potential user
classes and build a classification model based on those clusters, which represent a
comprehensible, existing class of users. As a clustering method we used k-means.

The first step is finding and calculating features for the users where useful dif-
ferences between classes might be occurring. An explorative approach is required
to find the meaningful ones. The calculated and analyzed features are:

Total number of commits
Timeframe: The time between the first and last commit of the user (approxi-
mates the time a user has been working on a project)
Commit frequency: Total number of commits divided by the time frame. Rep-
resents the number of commits a user makes within a certain period of time
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(e.g. day, month)

Commits message length: Average length of commit messages in number of
words or characters

Occurrence numbers of certain keywords: How often a certain word (e.g. "test",
"fixed", etc) is used by a user, relative to the total number of commits.

Number of added/modified/deleted files

Occurrence number of file formats: How often a file with a certain format
(e.g. .java, .py, .html...) are modified by a user, relative to the total number of
modified files.

In order to find useful clusters, an experimentation with different combina-
tions of features is necessary. For each of these combinations the optimal cluster
number has to be found. While the clustering and optimizing tasks can be done
programmatically, the clusters have to be evaluated manually. This makes it im-
possible to test all possible combinations of features, especially when including
the keyword occurrence numbers, as the list of keywords with potential value was
far too large. Combinations that promise useful results are selected. Evaluation is
done using plots as well as looking at the raw data to find connections between
the identified clusters and the existing classes in the sample data.

From the clusters generated with this method classification models are built
using the decision tree classification method. The decision tree models are trained
for the three data sets individually. For verification of their quality, the models are
cross validated with the other data sets respectively.

6.3.2 Commit-based Approach
There are multiple reasons leading to the decision of adopting a second approach
in addition to the user clustering. As already mentioned above, the research led
to the conclusion that in many cases a user can have multiple roles or executes
many tasks not belonging to his primary role. This kind of use case is hard to
cover using only the simple clustering method. Another reason is that a lot of
information is lost when aggregating the commit information for users. This lead
to the idea of classifying individual commits.

The algorithm iterates over commits and tries to assign types to them. The
types are assigned based both on the analysis of the commit message, and the file
extensions. The message is searched for certain keywords and phrases which are
connected to types. The file extensions are searched for known file types fitting
to a commit type. There are certain overlaps between commit types, for example
the type addition can be a development or test commit. In those cases where one
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identified type is a more specific description for another, only the more specific
one is included into the further analysis. The identified commits and the related
keywords and file types are listed in Table 9.
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After assigning the commit types, the commits can be aggregated for the indi-
vidual users resulting in the absolute occurrence numbers of each type for each
user. Dividing each of these values by the total number of commits of the user,
we get percentages for each type. These percentages tell how the work of a user is
distributed among the different kinds of tasks which appear in a VCS. These user
profiles are a form of classification, which is not as simple and concise as assign-
ing one definite class for each user, but has the advantage of covering secondary
roles and minor tasks. They can be useful for analyzing smaller project teams with
multiple roles for one user.

The classification task is done on user profiles. A table of user profiles is cre-
ated and a role for each user manually inserted, based on the role information of
the data sets. For this part the Infinica data set is used, because it is the one with
the most extensive information base and it has the most diverse and comprehen-
sive set of roles. Four roles are assigned to the Infinica users: Web developers,
other developers, testers and support. The last one is an aggregation of users who
have different oficial roles but contribute in the VCS mainly in form of minor,
supportive tasks.

The classification task was done in two ways: 1. Manual analysis of the table
and derivation of rules by looking for similarities between users with the same
role. 2. Automated classification in line with our original concept. For the latter
the decision tree method is used. In this case the commit type percentages are used
as features and the manually assigned roles as classes. The resulting decision tree
model was cross validated against the ProM and Camunda data sets.

The final algorithm including retrieval, processing and analysis of data as well
as classification and verification, consists of roughly 700 lines of code. The results
for the two approaches are discussed below.

6.3.3 Results

In the first step of the user-based approach, the most expressive features of the
Infinica data set were identified. The solution was tested on the Infinica data set
due to the immediate availability of detailed information about the log file. The
best results were achieved with the combination of the commit frequency and the
occurrence numbers of test related keywords.

The commit frequency is a strong indicator of developers. Moreover, it also
differentiates between the working preferences of the developers. The group with
the lower frequencies tends to work locally on their machines and pushes their
work when it is finished. Whereas, the other developers group pushes every small
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(a) User profile for a backend developer (b) User profile for a tester

Figure 11 Commit distributions of the Infinica dataset

change into the repository separately so that everybody is updated and works
with the latest code.

Test-related keywords can not only identify testers, but also differentiate be-
tween their expertise. The sum of the words "test", "tested", "testing", "tests" is
already enough to make a distinction between testers and developers. Addition-
ally, manual testers use these words less often than their technical counterparts,
who are more focused on automation.

The first part of the commit-based algorithm implementation, i.e., the commit
classification, was successfully tested on all three data sets combined. For all
three sets we achieved a similar coverage (percentage of commits which could be
assigned some type). For Infinica the coverage was 88,94%, for Camunda it was
90,25% and for ProM 86,65%.

While the user profiles were originally intended as an intermediary step and
a means to verify and improve the quality of our approach, they proved to be
a quite useful perspective on user roles, beyond the simple categorisation using
a single class. Especially when using a graphical representation such as the pie
charts which can be seen in Figure 11a and Figure 11b, the commit distribution
provides an interesting insight in the actual roles and tasks of users.

The Infinica dataset is divided successfully into expressive classes with k-
means clustering with a k=4 shown in Figure 12. The developers (red and dark
blue) are split off based on their higher frequency in the first step of the decision
tree and the following classes are derived:

Developers - frequent committers: The red cluster is comprised of developers
which push every change to the repository.
Developers - heavy commits: The dark blue cluster contains developers who
work on their local machine and push less frequently. However, they have
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Figure 12 Scatterplot with colorcoded clusters (Infinica data set)

bigger commits containing more changes.

Testers - technical: Testers focused on automating the testing process are in
the light blue cluster. They are solely senior developers but not all of them are
situated in this group.

Testers - non technical: The yellow cluster is comprised of less technical testers
which tend to do more manual testing. Additionally, it includes the special
service team.

Table 10 shows an excerpt of the user profiles and role assignments for the In-
finica data set. The commit types development, backend, maintenance and refac-
tor have been merged to a single type development, as the other, more specific
types provided no additional value in this case. Also the types addition, removal
and merge have been left out here due to a lack of meaningfulness. The data vis-
ible in the table was used for the manual classification as well as the creation of
the decision tree model.

We identified 4 role-based classes which were visible from the Infinica data.
Those were testers, with more than 20% of their commits being of type test and
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between 30% and 50% of type development developers with above 50% develop-
ment commits, web developers with more than 40% of type web and 20% of other
development and non-technical users with less than 20% development. In addi-
tion to those, we found some less obvious hints for additional classes, represented
by minor, secondary roles of users. These were not represented as actual existing
roles in our data, so we could not verify our assumptions. The corresponding
classes we suggest for those are technical writer with more than 40% documen-
tation commits, designers with above 30% design commits, users with various
administration tasks, represented by high numbers of the types build, vcsManag-
ment and toolManagement and database experts with a large percentage of data
commits.

When applying the optimal features and clusters deduced from the Infinica
data set on the ProM data set, different but still meaningful user classes are de-
rived. This is due to the fact, that the Infinica data set represents the development
process within a company, whereas ProM is an academic project where researchers
continuously join and leave. However, it still required to get invited for working
on the project which creates an entry barrier. All members are developers without
any designated testers. The ProM data set can be divided into the following four
classes as shown in Figure 13.

Core developers: The employed users of the ProM project are situated in the
light blue cluster to the right. Their commit frequency and absolute number
commits is far above the others. There is also a system user in this class. Its
main task is building the project.

Engaged developers: The dark blue cluster contains developers which also
write tests. They are more committed and they put more effort into the devel-
opment.

One-time developers: The enagement of this group ends with the addition of
their required functionality. The majority of the users falls into this class and
it is represented by the red cluster at the bottom left.

Testers: Despite the lack of testers in the ProM data set two have been identi-
fied as such.

For the ProM data set which consisted of 42 users, 35 (83%) were classified
as developers. This is not surprising as we knew before that the contributors
of open source projects are mostly developers, which was also confirmed by our
contact persons for ProM and Camunda. Six users (14%) were regarded as testers,
which fits to our results in the user-based approach. One (2%) remaining user
was classified as a web developer. As the ProM project has no web component,
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Figure 13 Scatterplot with color-coded clusters, ProM data set

it makes sense that there are no web developers identified. The one we found
has only 5 commits, 2 of them web commits so this (potential) misclassification is
ignored.

The Camunda data set was analyzed based on the optimal features and classes
derived of the Infinica data set. The majority of the users are developers just like
in the ProM data set. However, it is an open source project and users can commit
anything at any time without restrictions. There is a permanently appointed core
team which evaluates, selects and integrates commits for the product. The cluster-
ing creates similar classes like in the ProM data set and it can be divided into the
following four classes as shown in Figure 14.

Core developers: The red cluster contains the employed users of the Camunda
project. Their commit frequency and absolute number commits is far above the
others.

Engaged developers: Developers which stay longer with the project are situ-
ated in the light blue cluster. They are refining their own committed code or
they are extending the product in different areas.
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Figure 14 Scatterplot with colorcoded clusters, Camunda data set

One-time developers: Similar to the ProM data set the majority of the users
belongs to this group and it is represented by the dark blue cluster. Code
usefull or not is committed typically once and there is no lasting commitment.

Testers: Also testers have been identified in the yellow cluster. They already
have a lower frequency than developers and therefore it is difficult to make an
estimation about their commitment.

For the Camunda data the case is similar. Out of 66 total users, 49 (74%) were
regarded as developers, the high number being again explained by the type of
project and confirmed by the contact person we spoke to. Ten (15%) testers were
found, mostly in line to our knowledge the data. Contrary to ProM, there is a
web part in the analyzed Camunda project reflected by the fact that our algorithm
found 7 (11%) web developers.

For the user-based apparoach no further distinction can be made based on
expertise, time in the company, teamwork, development area, project membership,
room allocation, etc. In the case of a development from junior to a senior role in
the course of the coverage of the log file the respective persons stay within their
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Figure 15 Decision trees, all three data sets

previous clusters. The associated increase or decrease in commit frequency can
not be linked to the development.

For the commit-based approach in neither of the two validation data sets a
support user was found. This might be due to the differences in the organisational
structure between Infinica and the other two or it could stem from the classification
rule based on the vcsManagement commi type, for which we already expressed
our doubts.

The corresponding decision trees for the previous presented k-means cluster-
ing shown in Figure 15 display the boundaries of the clusters. Due to the differ-
ences in the structure of the projects, business vs open source, the data sets share
only little similarities.

The Infinca decision tree initially splits the developers and the testers apart. In
the second step these 2 classes are then divided into subclasses. On the contrary,
the other two trees start separating the subsets right away in different orders.

The decision tree model is depicted in Figure 16. When comparing its rules
with those of our manual classification there are some clear parallels. In the tree
the differentiation between web developers and other developers is done with a
border value of 36% for web commits, close to the 40% threshold of the manual
table. Testers are identified having more than 17% test commits, similar to the
20% boundary. The decision tree separates the support users from the rest using
the vcsManagement type. Looking at the data, this rule is definitely valid for the
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Figure 16 Decision tree, commit based model

Infinica data, however as we were not able to provide a definite explanation for
this class having higher percentages for that particular type, we can not say if this
rule would also apply to other data sets. One possible explanation is that all users
have a similar number of vcsManagement commits within a given timeframe, but
because the support role has on average a significantly lower number of commits,
they account for a higher percentage in the distribution, however this is just an
assumption.

In general the decision tree is more precise, but our manually created rules
capture more factors of differentiation and we were able to identify some poten-
tial classes which could not be included in the programmatic classification with
reasonable effort. A clear advantage of the automated model is of course that it
can be applied to other data sets very efficiently. Doing that with the Camunda
and ProM data sets provided some verification for our decision tree model. We
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Figure 17 Classication based on Infinica training set: Prom, Camunda

only included users with 5 or more commits into the cross validation.

When validating the model with the Infinica data set and then predicting the
ProM and Campunda data set only moderate results can be achieved with the
user-based approach as shown in Figure 17. For the Infinica data set meaningful
classes can not be conveyed to the other data sets due to the structural differences
of the projects.

For ProM (Figure 17 left) the trained classes are less representative than the
ones created when clustering on its own, especially since the ProM data set does
not include any designated testers. The prediction of Camunda (Figure 17 right)
on the other hand performs better. However, the core developer class now also
includes very committed contributors.

Because of the missing designated testers in both test data sets, the initial dif-
ferentiation between technical and non-technical testers is not possible. Due to the
moderate results of user based approach the commit based approach was initiated.

6.3.4 Discussion

Throughout this project we discovered a number of research directions to go fol-
low, methods to use and features to analyze, which made our research much more
exploratory than originally planned. For our research we picked from a vast se-
lection of potential methods and tools, a small set which seemed promising to us.
The user-based approach, which was our initial plan, provided a useful insight
into the data but fell short of providing generally applicable results in terms of
a classification algorithm. The commit-based approach seems more valuable to
us, due to its results and the much larger spectrum of information it delivers for
analyzing users. The commit classification method seems quite robust and could
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with some extensions and refinements become a useful tool for analyzing arbi-
trary VCS repositories. The user profiles created based on this classification are
definitely an interesting source of information and building a classification model
on top of them has proven to be a legitimate approach. Our first research question
can be answered with: Yes, it is possible to classify users based on the information
usually found in VCS logs. Our results prove that at least for some typical roles in
software development there can be enough information in commit messages and
file types, to make certain statements about the users who created them. However
this is not true for all users, especially because the ways commit messages are
used are very different.

The other two questions are more difficult to answer. The classes to be found
can differ between repositories. From our experience, developers can be distin-
guished from other roles quite easily due to high numbers of commits and/or
modified files as well as the usage of certain words and phrases. Testers can also
be set apart in most cases, mainly through key words. Looking at the file types
of added, modified and deleted files also reveals users in the field of web devel-
opment. Beyond that there are certainly more differences and classes to be found
but they are less obvious and require more research.

6.3.5 Limitations

While our algorithms and models work well for describing our three data sets, it
still needs to be tested for other repositories, especially from other domains. This
would require testing with more data sets, more verification information and more
manual analysis. While fetching more VCS repositories and running them through
our algorithms could be done in a short amount of time, obtaining the necessary
role information is challenging and the manual analysis time consuming.

Acquiring the right data proved to be more challenging than expected. While
there is a large selection of open source projects, acquiring useful information for
potential classes can be difficult. Furthermore we have to assume that there are
significant differences between open source and other repositories, which need to
be further investigated for making a clear statement of the general representative-
ness of our data and our results.

A definite limitation for the whole topic of analyzing VCS logs is the fact that
commit messages are used differently between users, repositories and teams. We
have to assume that it is practically infeasible to find one classification model,
which produces valid results for any VCS repository, because there can be contra-
dictions in what certain statements mean. Even worse, some users even leave the
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commit messages empty, which means no classification is possible for this case.

6.4 Future Work

The exposed approach is the preliminary stage on which we plan to build upon
a more comprehensive solution of the problem of role discovery from VCS. There
are many ways to extend our approaches as well as other potential methodolo-
gies for classification. On the technical level, different methods of clustering and
classification from the machine learning domain could be used. More concep-
tual additions would be for example the use of additional features and feature
combinations.

There is also much potential for further refining our proposed methods. For
instance, we would use more extensively the natural language toolkit for process-
ing the commit messages. So far we only used the more basic functionality of the
language processing tools. In this research we focused mainly on the user roles
for classification but there might be other classes, for example discriminated by
the experience of users. Significant improvements would be possible by analyzing
different categories of VCS repositories. Especially log files of large software com-
panies, where many different roles are formally defined and executed would be
interesting.

7 Implementation in a BPMS

We have refined the prototype presented in the previous version of this Deliverable
by proof-of-concept implementation. Specifically, we have implemented the main
components of the framework discussed in Deliverable D2.4 (Havur et al. [2016]).
In this prototype, we aim to bring together functionality for reasoning, process
mining and document generation. Fig. 18 shows the software architecture that we
use. It considers four main components which inter-operate during the execution
of a process activity.

Camunda running process. We use the Camunda BPM engine as our Business
Process Management System (BPMS). Camunda is an open source platform
that allows for defining new components and for interacting with its APIs in
a custom way. All the process instances that run into Camunda and their data
are stored in log files. Camunda uses two main databases to store its logs:
i) a database for processes that are currently executing; and ii) a database for
historical information. These two databases can be queried through provided
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Figure 18 Software architecture of the prototype

Java or REST APIs. The results are returned as either a set of plain old java
objects (POJOs) or in the JSON format, respectively.

Before an activity starts to run, it first fetches the ontology which contains the
set of assignments of existing resources to activities. Consecutively, a resource
is assigned to the activity and thus can appear on their task list. When the re-
sources complete their tasks, an event is triggered. This event is listened by the
process miner and the document generator components, who can react accord-
ingly. At the same time, the event is stored into the Camunda database of the
running instances. The running processes database and the history database
record similarly-structured data. Furthermore, they can be accessed using the
same technology, i.e. the Camunda REST APIs. Hence, we abstract both these
databases as a single database in Figure 18 and denote it as Event Logs.

Reasoner. The reasoner module is implemented as a Java application con-
nected to the Camunda process engine as an asynchronous service. We use
Sesame, an open source framework for creating, parsing, storing, inferencing
and querying over our ontology data. With respect to the request, the reasoner
either performs resource allocation by first translating the RDF data into the
ASP language, solving the problem instance using the ASP solver clasp, and
then writing the allocation results back to the triple store; or it validates all
contained SHACL constraints and returns potential violation result back to the
process engine.

Process Monitor. This component is in charge of querying the status of the
running processes in Camunda. In case a deviation occurs, for example, a pro-
cess instance cannot be completed within the assigned schedule, the process
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monitor must signal out the anomaly. The process adaptation module can use
this output to learn the status of the system and subsequently apply an adap-
tation. This component is implemented as a web client that can read execution
logs through the Camunda REST API. Results are returned in the JSON for-
mat which are then parsed into POJOs and can be processed by customized
monitoring algorithms. In this case the communication happens through peri-
odical queries to the database. An alternative to this is to implement an activity
listener that notifies the process monitor whenever a task is completed.

Miner. The miner is in charge of running a number of mining algorithms on
the logs from Camunda and from VCSs. Emails and commit messages can also
be analyzed by using the approaches discussed in Cabanillas et al. [2016a] and
summarized in the document at hand. This component is implemented as a
web service, which can be called by the process monitor in order to under-
stand how the activities being monitored have performed in the past. Mining
algorithms can give new insights into the processes, like for instance actual
execution times and several performance indicators of the process. This can
contribute to the domain knowledge. Thus, they are stored again into the
ontology as RDF triples.

Document generator. The document generator is in charge of listening to ac-
tivity submissions and collecting information from them with the final goal of
creating textual documents. This component uses customizable event handlers
to process changes of process variables and forms compiled by the users. It is
implemented in Java and can be imported as a Java library into several other
modules that require document generation from events.

The prototype has been published as a demo in the BPM 2016 conference. For
more information on the prototype and a video demonstration of its functionali-
ties, the reader is referred to Bala et al. [2016].

7.1 Limitations
The architecture is currently under implementation. The components have been
only individually tested. There is the need for a comprehensive software solution
that integrates the single software components into one.

SQL console for querying Camunda logs. We are developing a tool for pro-
cess monitoring. This tool will allow for SQL-like queries on top of Camunda
logs. The approach involves mapping Camunda’s database schema to RXES ?.
In addition to this we are also developing a tool that can map from RXES
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to XES Verbeek et al. [2011] and we plan to use this tool with the approach
from Schönig et al. [2015b] in order to make it fully compatible with the RXES
standard.

Process adaptation. The process adaptation module that we describe in the
framework is yet to be implemented. This module will be developed as an
intermediate component between the process monitor and the Camunda en-
gine. It will act as a middle layer that is able to correct slight deviations in
the running process, without stopping the workflow. Deviations that are not
adjustable may occur. In this case, this component will communicate the need
for a schedule to the reasoner.

Connection to ontology. Our ontology is currently under improvement. We
are planning to complete it with all the data from the engineering domain
ontology. Furthermore, its connections to the various components are yet to be
implemented.

User interfaces. We support for mining and monitoring techniques whose re-
sults are models that are generated out of data. User interfaces to visualize
these data are required in order to easy the understanding of the mining re-
sults. Analogously, we plan to provide a fully fledged user interface for the
reasoner component.

8 Conclusions

In this deliverable we have studied and implemented several approaches to gather
insights from project by combining data from structured and unstructured sources.
We showed how we can capture project data through a schema. This approach
is flexible: it allows to gather different insights by simply changing the query.
We also showed that we can further elaborate the query results and get better
understanding of the project. Text mining approaches have also been evaluated.
Using semantic models for VCS seems promising. We plan to improve on this
by working on a better categorization of the comments. Given the final goal of
discovering project phases, we first study the language that is used by people who
collaborate together in software projects. This allows us to find out that a few
of the main phases of the RUP model are represented in the VCS logs. We then
consider Story mining as a preprocessing approach that can extract activities form
user stories. The method is applied considering the user comments grouped by
user as a single user story. We also deal with structured data such as process logs.
Here, we provide a methods that can automatically map XES logs onto RXES. This
is particularly useful, as it also allows for applying process mining algorithms on
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top on a DMBS. Combined techniques that take into account additional data to the
comments have been presented. We used this method to classify users according to
roles. The results have been validated with experts that work on the projects under
analysis. In order to integrate the approaches from different work packages, we
are developing a tool that combines functionalities from Cabanillas et al. [2015a]
and Cabanillas et al. [2015b] and use the Camunda BPMS platform. The resulting
prototype will be presented in the next SIMPDA 2016 conference. Furthermore,
we are developing two approaches that will allow to easily query the Camunda
history log for complex insights. These methods are parts of two master theses. In
future work, we want to cluster the stories according to their semantic similarity
and obtain clusters of similar stories, then compare the to the Gantt chart of the
project and see how are stories related to the activities.
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Table 11 Top 100 keywords in GitHub

Rank Freq Keyness Word Rank Freq Keyness Word

1 1212853 517488.538 i 51 101650 1489.434 only
2 916708 114516.665 it 52 101346 153112.089 file
3 890624 468819.394 this 53 101320 6191.12 your
4 821212 57731.182 is 54 99219 78942.457 change
5 594955 114537.346 you 55 99138 11260.855 see
6 470949 11531.196 be 56 98911 54.706 some
7 419625 172664.97 t 57 98350 187635.858 teamcity
8 393774 41752.597 not 58 97033 25047.237 get
9 327041 51697.196 we 59 96008 24907.336 good
10 311008 83091.706 if 60 95147 133462.402 add
11 264235 409.665 but 61 94837 923.251 could
12 256178 488746.1 http 62 94211 179739.317 artsmia
13 255928 166004.114 should 63 93912 21817.985 make
14 250139 473005.767 com 64 93716 121407.133 x
15 248839 47482.863 can 65 92157 3913.986 me
16 238349 454731.258 https 66 85517 157170.396 id
17 236759 188578.457 d 67 82899 533.86 new
18 235398 449101.228 github 68 82812 8472.168 work
19 222431 289867.254 e 69 80642 65970.871 using
20 202718 229875.524 c 70 78736 5196.082 because
21 195483 17258.064 so 71 78603 148463.986 api
22 190001 48798.324 do 72 74859 63299.856 sure
23 188724 84766.431 just 73 74807 28965.684 does
24 182176 292912.214 build 74 73758 25234.115 ll
25 177067 3217.884 will 75 72940 54782.572 name
26 174618 126391.167 use 76 72738 3348.803 how
27 173664 331026.652 org 77 72427 83848.625 please
28 169245 189941.183 b 78 71648 135996.767 io
29 167700 251285.863 f 79 69874 81256.099 page
30 163970 299089.188 commit 80 69804 14262.959 same
31 157942 109267.606 here 81 69320 105731.118 error
32 154196 5593.506 what 82 69203 25102.281 want
33 151203 30293.068 like 83 68142 5350.697 right
34 149213 84831.75 think 84 68142 1594.704 way
35 148506 892.176 would 85 67958 85395.922 function
36 146943 239408.589 code 86 67343 79257.146 passed
37 145415 238340.12 tests 87 65778 66554.412 instead
38 135298 1679.696 no 88 65778 7187.732 re
39 129005 62613.252 don 89 65549 113139.049 fix
40 127570 45132.065 m 90 62996 120186.157 buildid
41 125407 78562.239 need 91 62975 120146.092 buildtypeid
42 118936 226910.61 html 92 62973 120142.277 viewlog
43 117826 8233.327 my 93 62470 77458.796 version
44 116805 11194.652 now 94 61890 7579.612 used
45 112272 141362.02 test 95 60663 77764.588 check
46 111053 174217.483 thanks 96 60615 28377.29 better
47 110026 8655.042 also 97 60041 1058.466 know
48 108421 72222.388 why 98 59739 15692.208 case
49 106328 100087.887 line 99 59368 57334.546 simple
50 102923 175359.501 ok 100 58950 16644.435 something
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Table 12 GitHub versus BNC. Top 100 most frequent words

GitHub BNC GitHub BNC

1 1936305 the 5739934 the 51 151203 like 194887 up
2 1285929 to 2913193 of 52 149978 an 190155 what
3 1212853 i 2438445 and 53 149213 think 188294 when
4 1064976 a 2435448 to 54 148506 would 186689 who
5 916708 it 2034829 a 55 147101 there 186398 no
6 890624 this 1840393 in 56 146943 code 180936 out
7 821212 is 981651 that 57 145415 tests 169651 about
8 634698 in 906927 is 58 135298 no 168862 said
9 594955 you 881422 it 59 131610 all 156131 its

10 578323 and 827489 for 60 129005 don 153152 some
11 558000 that 802982 was 61 127570 m 149806 into
12 535551 of 697204 s 62 125407 need 148945 time
13 506379 for 675096 on 63 118936 html 144493 them
14 470949 be 667192 i 64 117965 one 144074 other
15 419625 t 623251 as 65 117826 my 143529 two
16 393774 not 621414 with 66 116805 now 140275 him
17 330042 on 609545 be 67 112593 when 140055 do
18 328147 s 571916 he 68 112272 test 138207 only
19 327041 we 496597 by 69 111053 thanks 137641 than
20 311008 if 495596 you 70 110026 also 132942 could
21 281833 with 486944 at 71 108421 why 130558 then
22 264235 but 425407 are 72 106328 line 130282 my
23 256178 http 416125 this 73 104633 by 125782 over
24 255928 should 405253 from 74 102923 ok 124019 like
25 250139 com 400792 but 75 101650 only 123581 may
26 248839 can 400074 have 76 101346 file 120450 now
27 244599 as 395909 not 77 101320 your 119126 new
28 239346 have 392864 his 78 99219 change 118701 also
29 238349 https 388807 had 79 99138 see 116545 first
30 236759 d 355725 they 80 98911 some 114964 your
31 235398 github 350717 which 81 98350 teamcity 114679 these
32 222431 e 346865 or 82 97033 get 112451 any
33 216583 was 322839 an 83 96693 more 111108 me
34 202718 c 311655 she 84 96008 good 110153 people
35 200536 are 292329 we 85 95147 add 107985 after
36 195483 so 288651 were 86 94837 could 106680 well
37 190001 do 287218 her 87 94211 artsmia 104932 very
38 188724 just 272428 there 88 93912 make 104104 such
39 182176 build 266654 one 89 93716 x 100038 just
40 177067 will 250834 all 90 93210 about 97993 should
41 174618 use 243443 their 91 92157 me 97879 see
42 173664 org 243140 been 92 87673 which 94430 most
43 169245 b 239753 has 93 85517 id 94138 where
44 167947 at 236726 t 94 83758 time 89018 made
45 167700 f 236217 will 95 82899 new 88630 way
46 167136 from 224979 if 96 82812 work 88228 back
47 163970 commit 214187 would 97 80642 using 88046 because
48 161147 or 207983 can 98 79781 then 87472 between
49 157942 here 205541 so 99 78736 because 86617 how
50 154196 what 197587 more 100 78603 api 85375 our
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Table 13 GitHub versus RUP frequencies

GitHub RUP GitHub RUP

1 1936305 the 8400 the 51 151203 like 326 other
2 1285929 to 3944 of 52 149978 an 326 which
3 1212853 i 3658 a 53 149213 think 316 these
4 1064976 a 3305 to 54 148506 would 303 there
5 916708 it 3049 and 55 147101 there 300 will
6 890624 this 2511 is 56 146943 code 296 they
7 821212 is 2462 in 57 145415 tests 293 when
8 634698 in 1598 that 58 135298 no 284 has
9 594955 you 1267 are 59 131610 all 284 page
10 578323 and 1127 as 60 129005 don 279 implementation
11 558000 that 1094 you 61 127570 m 278 am
12 535551 of 1092 this 62 125407 need 278 some
13 506379 for 1082 be 63 118936 html 274 example
14 470949 be 1027 for 64 117965 one 273 each
15 419625 t 951 an 65 117826 my 269 but
16 393774 not 919 design 66 116805 now 258 up
17 330042 on 894 or 67 112593 when 257 what
18 328147 s 883 it 68 112272 test 256 process
19 327041 we 818 can 69 111053 thanks 256 testing
20 311008 if 772 class 70 110026 also 254 package
21 281833 with 770 system 71 108421 why 252 such
22 264235 but 688 by 72 106328 line 245 also
23 256178 http 662 use 73 104633 by 242 should
24 255928 should 645 object 74 102923 ok 239 its
25 250139 com 640 analysis 75 101650 only 234 s
26 248839 can 636 software 76 101346 file 231 many
27 244599 as 634 requirements 77 101320 your 231 used
28 239346 have 633 classes 78 99219 change 229 into
29 238349 https 615 on 79 99138 see 227 how
30 236759 d 615 with 80 98911 some 222 new
31 235398 github 569 have 81 98350 teamcity 220 two
32 222431 e 568 model 82 97033 get 216 interface
33 216583 was 551 we 83 96693 more 214 then
34 202718 c 541 figure 84 96008 good 210 set
35 200536 are 454 from 85 95147 add 208 development
36 195483 so 449 one 86 94837 could 208 operations
37 190001 do 438 test 87 94211 artsmia 206 must
38 188724 just 437 may 88 93912 make 206 time
39 182176 build 430 chapter 89 93716 x 203 only
40 177067 will 430 objects 90 93210 about 203 very
41 174618 use 368 state 91 92157 me 201 name
42 173664 org 363 case 92 87673 which 200 diagrams
43 169245 b 354 not 93 85517 id 197 patterns
44 167947 at 353 more 94 83758 time 195 uml
45 167700 f 350 if 95 82899 new 191 any
46 167136 from 345 between 96 82812 work 189 about
47 163970 commit 338 all 97 80642 using 189 product
48 161147 or 329 at 98 79781 then 189 workflow
49 157942 here 327 code 99 78736 because 187 using
50 154196 what 326 business 100 78603 api 184 user
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Table 14 RUP keywords using BNC as reference corpus

Rank Freq Keyness Word Rank Freq Keyness Word

1 919 5265.796 design 51 184 715.492 user
2 633 4169.816 classes 52 59 711.807 ejb
3 634 4142.086 requirements 53 67 710.798 stakeholders
4 645 4041.867 object 54 117 707.347 programming
5 636 3549.507 software 55 175 693.351 elements
6 772 3364.497 class 56 102 679.194 dependency
7 640 3213.087 analysis 57 72 678.871 iteration
8 568 2713.496 model 58 326 676.73 business
9 430 2687.702 objects 59 161 675.931 tests

10 195 2497.087 uml 60 51 661.214 bankaccount
11 770 2402.769 system 61 363 658.22 case
12 541 2323.235 figure 62 818 641.107 can
13 189 2156.263 workflow 63 144 628.838 program
14 163 2031.289 modeling 64 87 619.956 deployment
15 438 1849.759 test 65 278 612.291 am
16 327 1771.47 code 66 109 608.344 instances
17 279 1762.52 implementation 67 256 606.542 process
18 200 1759.637 diagrams 68 177 592.331 pattern
19 430 1755.852 chapter 69 189 586.653 product
20 662 1545.132 use 70 115 578.506 transition
21 256 1498.752 testing 71 82 577.303 realization
22 216 1411.267 interface 72 95 564.386 inheritance
23 118 1268.46 behavior 73 59 552.771 nested
24 254 1226.465 package 74 106 551.383 associations
25 167 1206.329 diagram 75 41 531.564 registrationmanager
26 145 1166.036 interfaces 76 144 531.231 relationships
27 162 1136.316 attributes 77 1267 516.984 are
28 284 1133.367 page 78 64 510.285 functionality
29 105 1067.774 subsystems 79 173 488.737 specific
30 104 1024.926 oo 80 87 481.325 collaboration
31 110 1007.531 java 81 41 477.935 classifier
32 99 1003.896 artifacts 82 274 472.698 example
33 165 948.81 define 83 103 472.398 component
34 96 943.606 subsystem 84 55 470.234 refine
35 163 942.057 jump 85 89 466.135 domain
36 125 924.251 attribute 86 108 462.596 languages
37 208 917.704 operations 87 69 457.78 syntax
38 91 910.671 isbn 88 44 455.817 subclasses
39 136 876.196 specification 89 68 455.156 composite
40 148 865.285 functional 90 35 453.774 addcourse
41 197 858.293 patterns 91 50 446.897 addison
42 2511 852.612 is 92 34 440.809 statechart
43 96 840.015 aggregation 93 60 440.13 coupling
44 131 802.212 packages 94 77 431.168 documentation
45 99 797.031 semantics 95 33 427.844 multiobject
46 151 781.856 architecture 96 33 427.844 submachines
47 71 744.776 dependencies 97 141 419.112 instance
48 368 731.656 state 98 165 413.13 operation
49 147 725.787 components 99 89 409.959 interaction
50 75 721.874 int 100 33 398.267 modeled
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Table 15 GitHub keywords using BNC as reference corpus

Rank Freq Keyness Word Rank Freq Keyness Word

1 1212853 593890.895 i 51 58315 80529.844 comment
2 256178 472946.795 http 52 125407 80041.322 need
3 890624 467442.461 this 53 69874 80025.254 page
4 250139 458380.288 com 54 55384 78242.885 remove
5 238349 440031.524 https 55 54186 77467.306 images
6 235398 434583.492 github 56 327041 77163.451 we
7 173664 320407.237 org 57 99219 76729.639 change
8 163970 289588.017 commit 58 67343 76251.15 passed
9 222431 284645.346 e 59 60663 76212.421 check

10 182176 284071.219 build 60 48550 76210.672 collections
11 167700 246838.28 f 61 62470 74500.682 version
12 146943 231185.757 code 62 42703 73795.266 builds
13 145415 230291.597 tests 63 108421 73385.886 why
14 202718 228654.809 c 64 129005 73021.45 don
15 118936 219575.452 html 65 39120 71580.935 oss
16 419625 199857.038 t 66 37776 69740.72 href
17 236759 195078.741 d 67 47314 69442.823 summary
18 169245 187476.415 b 68 39932 65353.748 default
19 98350 181570.304 teamcity 69 74859 64534.593 sure
20 94211 173929.028 artsmia 70 65778 64215.998 instead
21 111053 171255.971 thanks 71 39752 64169.967 update
22 102923 169396.327 ok 72 34715 64089.61 ubuntu
23 594955 167120.848 you 73 80642 63788.679 using
24 255928 162316.584 should 74 35103 63150.499 git
25 85517 152529.732 id 75 34104 62902.609 php
26 101346 148781.95 file 76 56991 62749.071 looks
27 78603 143620.453 api 77 34042 62395.444 js
28 112272 136482.109 test 78 51148 61465.131 fixed
29 916708 136367.554 it 79 36599 60878.691 pr
30 71648 131579.753 io 80 190001 59989.718 do
31 95147 131047.368 add 81 44131 59985.004 outcome
32 174618 123262.624 use 82 54558 59433.832 method
33 93716 119434.804 x 83 32930 59226.34 python
34 62996 116300.995 buildid 84 51071 59138.549 maybe
35 62975 116262.226 buildtypeid 85 49604 58850.629 master
36 62973 116258.533 viewlog 86 56751 58367.789 doesn
37 157942 113344.541 here 87 43513 57559.51 pull
38 65549 109663.405 fix 88 821212 57555.778 is
39 149213 107136.557 think 89 40319 56790.59 files
40 69320 102113.252 error 90 40221 56524.006 string
41 52666 97168.512 jpg 91 48662 56105.925 user
42 106328 97006.802 line 92 38395 55799.561 guest
43 188724 95385.642 just 93 59368 55386.022 simple
44 49464 91318.694 linux 94 29851 55109.864 B
45 311008 91045.423 if 95 58666 55005.096 success
46 72427 83981.958 please 96 29574 54598.477 nrel
47 47493 83920.967 rust 97 72940 53648.842 name
48 45529 83584.9 notifications 98 248839 52098.218 can
49 67958 83052.943 function 99 28117 51908.614 he
50 46846 82081.643 auto 100 31801 51342.29 builders
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Table 16 GitHub keywords using RUP as reference corpus

Rank Freq Keyness Word Rank Freq Keyness Word

1 1212853 4745.013 i 51 52666 244.573 jpg
2 238349 1106.858 https 52 190001 244.153 do
3 235398 1093.154 github 53 65549 241.286 fix
4 256178 1064.277 http 54 74859 239.335 sure
5 419625 1022.381 t 55 169245 238.536 b
6 916708 938.423 it 56 311008 237.697 if
7 250139 889.463 com 57 51071 237.166 maybe
8 236759 865.046 d 58 67343 232.36 passed
9 173664 761.574 org 59 49604 230.354 master

10 163970 747.571 commit 60 56991 228.675 looks
11 167700 708.529 f 61 47493 220.551 rust
12 216583 622.345 was 62 45529 211.43 notifications
13 890624 558.524 this 63 55448 208.713 yes
14 182176 515.802 build 64 97033 206.255 get
15 111053 515.714 thanks 65 43513 202.068 pull
16 117826 505.373 my 66 65778 201.302 re
17 328147 503.752 s 67 53866 195.799 did
18 118936 479.675 html 68 58666 190.157 success
19 157942 458.951 here 69 55384 186.135 remove
20 98350 456.723 teamcity 70 49464 182.294 linux
21 149213 453.473 think 71 39120 181.668 oss
22 393774 449.327 not 72 101320 181.262 your
23 94211 437.502 artsmia 73 53593 178.475 issue
24 127570 423.843 m 74 38395 178.301 guest
25 222431 390.287 e 75 94837 177.91 could
26 102923 382.191 ok 76 60663 175.851 check
27 92157 380.411 me 77 37776 175.426 href
28 108421 372.56 why 78 37692 175.036 didn
29 93716 341.684 x 79 47654 174.336 ve
30 71648 332.723 io 80 36599 169.96 pr
31 78603 319.059 api 81 38559 168.076 nice
32 85517 317.38 id 82 55535 167.756 since
33 202718 310.157 c 83 47176 166.588 probably
34 72427 306.189 please 84 46846 165.154 auto
35 188724 305.57 just 85 42737 164.784 wrote
36 62996 292.544 buildid 86 51148 163.204 fixed
37 62975 292.447 buildtypeid 87 35103 163.013 git
38 62973 292.437 viewlog 88 73758 161.437 ll
39 116805 290.851 now 89 34715 161.211 ubuntu
40 106328 283.214 line 90 34571 160.543 sorry
41 101346 283.028 file 91 34042 158.086 js
42 151203 280.035 like 92 95147 155.37 add
43 129005 273.647 don 93 44131 153.382 outcome
44 255928 270.021 should 94 65778 151.158 instead
45 58315 258.992 comment 95 48213 150.874 seems
46 195483 252.294 so 96 31801 147.679 builders
47 54186 251.632 images 97 60615 145.132 better
48 148506 249.75 would 98 30705 142.59 yeah
49 53097 246.575 de 99 37424 141.173 failed
50 264235 245.825 but 100 56751 140.825 doesn
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B Concordances

Hit KWIC File

1 not if (res insert-pan-fader-xmit ![new design why does datasource require a name? Thx for ccfi.txt
2 ecture14.pdf "don’t anticipate the future" "[use design that] contains the fewest possible classes ccbx.txt
3 :+1: -1 Think about this sentence: "API design for mathematics". Doesn’t it sound strange ccbz.txt
4 the design. do you think using a ‘"list":[]‘ design helps clear up the design for JSON-ites [g] ccbd.txt
5 om sample gcenv.h? Yep, file this one under "Poor Design That’s A Minor Annoyance". This function wa ccfg.txt
6 "game perspective" is gaining over the "software design perspective", which is not something that I ccce.txt
7 ignored: 250 Buil We cannot force the "tdp" design anytime. By the way there can be other ccge.txt
8 wrong with the text before? Something like: "The design incorporates a monitoring port per pipeline ccas.txt
9 workaround is to load I’d reword to "the design of the session specification requires..." ( ccfs.txt

10 all and process thi AAAAAAAAAAAAAAAAAAA :100: ## Design - All receivers share a symmetric 32-b ccfm.txt
11 smooth as it should at this point. ### Design and Code Changes * Consistent use of impr ccac.txt
12 We read a text file. What for "rb"? #### Design reference source A then we write a text ccfe.txt
13 Read the comments bro! xP Code Smells & Design Pattern Violations: This code was not DRY. ccbg.txt
14 was already up to date. Code Smells & Design Pattern Violations: This is another example ccbg.txt
15 the repo, it comes "ready to go" (a design principle for the whole Vagrant box experie ccfq.txt
16 itance and make events handle themselves (command design pattern). Skulle det ha vært ::Trust::Inher ccac.txt
17 in spring), with unknown added value IMO (don’t design something when we have no use case, Can ccae.txt
18 -level requirements for the data itself? (Formal design and weird edge cases can come later) Awesom ccgc.txt
19 2) It is that way by design (my design :)). I’m thinking you should have the same ccbx.txt
20 espace ;-) Note that because of the (perhaps-bad) design of non-linear matchine, equality involves a ccbu.txt
21 test and by using integers as keys (solid design choice) -Iterating through parsed data -Dyn ccaw.txt
22 ) I’m looking forward to it :) (The design includes at least one house boat, right?) H ccbx.txt
23 condition of a while loop like this (this design choice was made because too many people mix ccbl.txt
24 to be a remnant from the original (v1) design of Boost.Filesystem. In v2 that method was ccar.txt
25 hould name it "config". Layout "strategy" (yeah.. design pattern :) ) would position all "widgets". ccfc.txt
26 lear in the most recent commit. :heart: **LOGO:** Design Justification - C and S are stacked on ccae.txt
27 file. @IanMayo your changes makes perfect sense - design is cleaner with the canHandle responsibilit ccfo.txt
28 [ x"$install = xyes ]; then “‘ 1.2.2 -Neues Design -Karte von Orten -Eigene Armbänder und Bild cccb.txt
29 wayah e jatah ku ki sing upload >.< Design pattern for Cost is not really a design ccae.txt
30 @aron should talk about this and plan / design / spec this better. I’m reading this and cccj.txt

Table 17 Concordance list of the word design
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Hit KWIC File

1 view.chromium.org/317783008/ 2. First line "[IAP] Implement query and buy functionalities." r+ no , ccbs.txt
2 In this case, I think "refactor" means "actually implement the functionality." Feel free to submit ccau.txt
3 e it. @NotNull annotation is forgotten. >"Always implement things when you actually need them, neve ccba.txt
4 in "foregone" which is the keyword for "don’t implement this". >(PECL pecl >= 0.10.0) >http — cccc.txt
5 etc) I can also imagine queries like "extensions: implement the thing" whic Add a rainvow color func cccy.txt
6 now. Can you make a note like "May implement in the future" inside of the code? we cccr.txt
7 introduce a stub-function there, that says "TODO implement me" and has documentation saying what it ccbf.txt
8 fix for request "Get Build by Id #61" implement DownloadTestsCsv #386 hp.target changed ccbk.txt
9 to get it to work in MPAS. #ifdef implement our own ‘strcasestr()‘. #endif This is r cccj.txt

10 way. They come in pairs: /Int and %Int implement t-division (which I think is the most co ccbd.txt
11 other group need to think about that & implement I think I’ll move the script over to ccfz.txt
12 Slds. El abr. 2, 2016 10:50, "diegorc22" (8) Implement a SASS-JSON translator. [ Did you find a ccgj.txt
13 always present, but it’s the most reliable (could implement failover chaining). Oh and when you cli ccga.txt
14 ist.github.com/zeffii/53e618454372798c171c (could implement special unpacking for gist compressions) ccck.txt
15 no cache, you should store it explicitly. (Or implement a cache. :) Any other ‘method‘ should ra ccaf.txt
16 - so, please, upgrade to Rails 4 (or implement Rails 3 support in a fork until you ccas.txt
17 # Server commands * Implement "uptime" command * Implement "add-superuser"/"re header s/constantly/ ccga.txt
18 ## Server commands * Implement "uptime" command * Implement "add-superu ccga.txt
19 will work on this next. I will * Implement an abort mechanism. Perhaps an animated ccao.txt
20 will work on this next. I will * Implement an abort mechanism. Perhaps an animated ccao.txt
21 g items) # ololord.js v1.0.0-beta ## General * Implement different access levels for different bo ccga.txt
22 reason doesn’t work, there are two options: * Implement fallbacks (so for example the localisati ccas.txt
23 the Git Bash console. 2 options here: * implement ‘Iterator‘, the downside is that we can’ ccfp.txt
24 s problem and implement relative gui interface * Implement Meteo settings gui interface it also nee ccar.txt
25 notify can wait a while.. ;) TODO: * Implement save and restore activated plugins. * Co ccat.txt
26 figuration support to ServiceContractGenerator. * Implement Se Moet ik dan nog iets anders doen ccae.txt
27 error now when I try to insta * implement semaphore instead of a mutex to reduce o ccam.txt
28 nt different access levels for different boards * Implement superuser ## Server commands ccga.txt
29 table.Map‘ with ‘java.util.Map‘ and call RxJava * Implement ‘toMap‘ and ‘toMultimap‘ directly in RxS ccbs.txt
30 steps 3 through 6 into something like * Implement your feature and make sure it is covered

Table 18 Concordance list of the word implement
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Hit KWIC File

6 ehind? "keyboard cat!" Again no ERROR check(s) ! test ACTUALSIZE || ACTUALSIZE=1 something like t ccca.txt
7 Bytecode‘ allow portable location. try this one ! test another Looks good, thanks a lot broski! temp ccca.txt
8 :+1: , if zou want :shipit: ! test comment The reason I’m not handling loginComp cccy.txt
9 It’s my fault and I AM SORRY ! test comment Aber wieso steht da nothing to do ccgf.txt

10 allow spaces in it... a size()-misusage bug ! Test documented with PR https://github.com/wso2-de cccr.txt
11 was a typo here :( self.opts.sstp = 1 ! test This commit still contains multiple variables cccu.txt
12 but indeed you were quicker than me ! Test your stuff on VAAPI. Works fine as it ccfo.txt
13 the docsite one Don’t do this please !! test 8 It’d better follow the import convention us cccs.txt
14 nie ! nie podoba mi się to !! test @theophani fair suggestion! Is it ok to do ccai.txt
15 x86 OK (329 of 329 tests passed) ![ test page up Deze hoort in ‘Domain‘, niet ccco.txt
16 9/6b49f612-cfa2-11e2-8009-1f237179c4b1.png) ![201 Test Result: 1. This is palette addition result o ccbk.txt
17 level description of what’s going on. ![20140503 test comment This variable is not well named. It ccbu.txt
18 9.. no fear next time. asesome ???? ![20160402 test https://docs.oracle.com/javase/8/docs/api/jav ccgk.txt
19 84 80334374 (evanweaver) - x86 Build Failed ![Bu Test comment. ’Code’ First, a line is repeated cccm.txt
20 b7b-11e4-82ea-9eba8e887209.PNG) Test Run ![final test run](https://cloud.githubusercontent.com/asse ccck.txt
21 /70e96f38-ab1e-11e2-92eb-21bec957bb8a.png) ![kpca test output](https://f.cloud.github.com/assets/361 ccah.txt
22 Test Test Looks good. Test Test Test ![tumblr Test Test Test Test Test Test Test Test Test ccbz.txt
23 7293’ Check the screenshot for reference. ![wrong test case codeigniter date helper gmt to local](ht ccau.txt
24 one half of the res == -1 && !feof(pfp) test is redundant. Yes we have been hunting down ccaw.txt
25 the door. GET//schema.org/:pwz3n0/:4d1b6b6 !join test class desperado amigo No guys, just me. Proba ccfb.txt
26 es #1 ">alert("XSS") ">alert(1) alert(1) " TesT ">">">0); Cute, but this will ccaw.txt
27 ) ">alert(1) ’">alert(/pwned/) alert(1) " TesT ">">1 rather than n in the ccbd.txt
28 a ‘return‘. In this test case " test " no anything for testing then what is ccex.txt
29 and see how they fare. if [ "$ TEST = "phpunit-coverage.xml" ] Same here My bad. ccam.txt
30 app - application output \n" + test - test output \n debug - tracebacks and othe ccga.txt
31 a I would replace this sentence with " test fails if no video is visible or if ccav.txt
32 ated. http://web.mit.edu/gnu/doc/html/autoconf " Test programs should exit, not return, from main, ccfm.txt
33 »http://web.mit.edu/gnu/doc/html/autoconf >" Test programs should exit, not return, from main, ccfm.txt
34 =>/+""+virt+test virt/ =>/+virt+""+ test /virt/ =>/+""+virt+""+test “‘ That’s why

Table 19 Concordance list of the word test
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