Rules Catalogue for Necessary Process

Adaptations

Deliverable D5.1

FFG - IKT der Zukunft
SHAPE Project
2014 - 845638

Table 1 Document Information

Project acronym:
Project full title:

SHAPE
Safety-critical Human- & dAta-centric Process management
in Engineering projects

Work package:
Document number:
Document title:
Version:

5

51

Rules Catalogue for Necessary Process Adaptations
0.2 - ready for review

Delivery date:

Actual publication date:
Dissemination level:
Nature:

E03/2016 (M3)
01.04.2016

Public

Technical Report

Editor(s) / lead beneficiary:

Author(s):
Reviewer(s):

Siemens
S. Sperl, A. Haselbock
S. Bala, S. Steyskal

Table 2 History

Version Changes

Authors

0.1 Created Structure

S. Sperl

0.2 Requirements chapter added A. Haselbock

Contents

1 Abstract 1
2 Introduction and Terminology 1
3 Flexibility 1
4 Control Flow Patterns 2
5 Ad Hoc changes 2
6 Configurable Process Models 3
7 Inheritance 4
8 Case-based Reasoning 5
9 Declarative Paradigm 5

9.1 Case Handling Paradigm 6
10 Exception Handling 7
11 Requirements of Rail Automation 8

11.1 Requirements from Engineering 8

11.2 Requirements from Verification/Validation 9

11.3 Derived SHAPE Requirements 10
12 Summary 11

Bibliography 12

SHAPE FFG-2014-845638

1 Abstract

Business Processes need to correspond with reality, but no plan survives contact
with the enemy. The question is then how to adapt business processes when
exceptions and a changing environment have to be taken into account. Traditional
workflow management systems with their inflexible control policies tend to make
reactive control and graceful exception handling difficult. This report attempts to
give an overview about possible strategies to cope with changes and exceptions
during execution and design time. The list of requirements from Siemens Rail
Automation are taken into account when it comes to questions like "Which adap-
tivity scenarios are investigated with which priority?" and "Which strategies and

methods are used to resolve such scenarios?".

2 Introduction and Terminology

Dynamic adaptability was not at topic in early process management, since in the
primary use case processes were designed once and then executed repeatedly. But
in an interactive environment not all processes can be executed as specified. In order
to keep going the process participant then in some way has to act without/outside
the management system, ultimately turning the system more into a liability than
an asset. Adaptability can then mitigate this problem via inherently more flexible
process definitions, techniques that allow the user to change/circumvent the process
definition at runtime or reporting systems that allow building a better future version
of the process definition.

A business process (BP) is a collection of activities with a starting and an ending
point. Workflows are a subset of possible business processes where all all activities
can be executed /belong to one organization.

Activities represent a piece of work, are executed by one worker (or resource)
and result in either a "commit" or "roll back". Their order of execution is typically
ordered by some graphical language such as Petri nets [26], the Business Process
Modelling Language [14] or UML Activity Diagrams [7].

3 Flexibility

The question is then how to deal with model changes, redesigns, exceptions or just
expected variations in execution, this process adaptability can be accomplished by

introducing flexibility in various ways [17]:

Public Document

Flexibility by Variability requires processes to be handled differently depend-
ing on context (i.e. process variants). Typically the parameters relevant for
variability are known at design time and the concrete variant is bound at
run-time (e.g., country specific regulations).

Flexibility by Looseness is usually required if each process is always slightly
different, unpredictable and the exact courses of action emerge during execution
(e.g., patient treatment processes)

Flexibility by Adaptation is the case when the BP definition can be changed
at runtime. Usually requiring that one or all of the currently running BP in-
stances are migrated to the new BP definition. This category includes exception
handling.

Flexibility by Evolution is achieved via planned changes at the process defini-

tion level, usually supported by a versioning system.

This is not the only taxonomy of flexibility with regards to process adaptation
[6,23], the categories (and labels) are roughly similar but differ in details.

4 Control Flow Patterns

Control flow (workflow) patterns are reusable solutions for common modeling
problem [22,30]. Originally a set of twenty patterns focused control-flow perspective
they were intended as a objective way to compare the relative capabilities of
workflow management systems. Now workflow patterns are a de facto standard
for evaluating modelling languages like UML 2.0 Activity Diagrams [35], BPEL4WS
[34], BPMN [33] and Workflow Management Systems.

With regards to Adaptability, since the intended behaviour is usually declared
more explicitly adaptation mechanisms may use specialized handlers (e.g. for

Interleaved Routing (execute n activities sequentially in any order)).

5 Ad Hoc changes

When dealing with changes in an already running process by skipping/redoing
activities (i.e. changing the execution path) it is easy to miss creating / updating
some input data for a later activity or create a live / deadlock. One of the earliest
results regarding data flow correctness is published by [16] and shows directly how
to correctly handle inserting a new activity that depends on in and output data. A
considerably more comprehensive overview about dealing with ad-hoc changes

can be seen in [18].

SHAPE FFG-2014-845638

Ad-Hoc changes can be separated into primitive changes (i.e. adding or deleting
a single node or edge) or high level adaptation patterns

In the generally supported adaptation mechanisms the user notices a deviation
of the specified /expected workflow and initiates changes to his process. If it is not
the user that directly adapts the process one speaks of Context-aware systems [24],
these react to changes in the context (e.g. availability of people or services) by
adapting services, tasks or entire workflows. For example, a workflow arranging
transportation contains the tasks for booking a flight, arranging airport pickup
and hotel reservation. A predictive context-aware system [25], could note from the
weather service that the flight is at risk of being cancelled and book a train ticked
and cancel/modify hotel reservations. While a reactive (not predictive) system
would initiate the corrective behaviour at the the point of time when the flight is

known to be cancelled.

Non-repeatability

Unpredictability Looseness
Emergence
Poor internal quality
Technical problems Internal
Design errors Product and service variability
Organizational learning Drivers Differences in regulations
Variability
Regulatory adaptations Different customer groups
External
Chan i Time
ges of technological context Taxonomy of Flexibility
Changes of the business context . Exceptions
X Drivers
Incremental Evolution) Special Cases
Extent Adaptation
Revolutionary . Planned
Anticipation
Deferred Unplanned
Swiftness
Immediate

Temporary

Duration
Permanent

Internal siructure)
Behavior
Observable behavior

Figure 1 A taxonomy of process flexibility needs [17]:Fig. 3.1

6 Configurable Process Models

Configuration can be seen as limiting choices by making choices, in [10] a configurable
element can be marked as activated, blocked or hidden. An element configured as
blocked then the element and any subsequent activities are removed, if configured
as hidden the element is removed but subsequent activities can still be executed.
Note, theoretically the notion of configuring a process model can be extended to
runtime if one considers a classical "or" decision node as undergoing configuration

once a condition on a path becomes true. One way of creating configurable process

Public Document

models is by merging multiple process models into one. [21] created an algorithm
that creates a configurable process model which subsumes the input models and
further enables tracing back every element to it’s source model.

A slightly different approach merges configuration with the ability to give

different views for different roles of the same process [3,20].

In general configuring process variants is non-trivial when considering the high
variability of business processes as well as the many syntactical and semantical
constraints the configured process variants may have to obey in different contexts.
The Provop approach [11] defines a base process on which a sequence of changes
can be applied, like classical insert update delete operations supported by specially
marked modification points on the model. Additionally the provop approach
allows one to specify constraints between options (e.g. option 1 implies the usage
of option 2).

Base process

c
A] A}F{AE

Options Option 1 Option n
‘ Change [Change | Change
lo ion 1 «=. |O ion x|| ==+ ||O ion y|

Process.
Modeling

(

Process-
Optimization

Configuration
of Variants

(

Process-
Execution

Figure 2 Configurable Process Models. Provop approach [11]:Fig. 3

7 Inheritance

The introduction of inheritance (as known from object-orientation) for workflows
intends to enable a more graceful reaction of workflow systems to evolutionary
or ad-hoc changes, via inheritance-preserving transformation rules [27,36]. So for
example in some cases ad-hoc changes can be seen as specialization under some
inheritance relation and therefore not requiring an entire copy (or new version) of

a workflow (process definition).

SHAPE FFG-2014-845638

8 Case-based Reasoning

Case-based Reasoning in general is the process of solving new problems based on
the solutions of similar past problems [2]. In our context, the idea is to remember
past ad-hoc changes to the process model and let those changes inform future
redesigns or just help the user in a currently running adaptation [19].

9 Declarative Paradigm

Falling under achieving flexibility by looseness is the declarative paradigm which
moves from the classical imperative specification of workflows to a more declarative
specification [8,15]. To elaborate, an imperative specification tends to specify what
is possible while a declarative approach tends to specify what is impossible. In
stronger terms, when using the declarative approach by default all execution paths
are allowed which can then be restricted by constraints. This is a answer to the
problem of modelling all possible execution paths / requiring execution paths

where not necessary.

[A|———{B]
Imperative: {[A, B|}

Declarative: {[A, B],[A, A],[A, A, B],[A,B,A],...}

Figure 3 Example showing possible event log interpretations of "A before B" for different
approaches.

Logically the highest amount of flexibility can be achieved by declaring no
constraints, at the cost of no support (e.g. enforcing correct execution or rec-
ommending effective execution), for a more detailed description of the interplay
between flexibility and support see [29].

Similar to imperative problems in the model (e.g. dead/livelock) a declarative
model can contain dead activities (activities which can never be executed) or
conflicts (there is always a violated constraint in the model). One should note that
these checks for complex languages like LTL as used in Declare [29] can quickly
become intractable and likely require a restricted featureset for larger problems.

A rather distinctive disadvantage of the declarative approach is understandabil-
ity, complex formulae (like LTL) tend to become hard to understand much faster
than a classical graphical notation.

The idea of freeing the strict control flow via the usage of preconditions is
not new, like the Vortex Paradigm [12] or Document-Driven Workflow [32]. Case

Public Document

handling is probably one of more used implementation of approaches that fall

under the umbrella term artifact(data)-centric business processes.

9.1 Case Handling Paradigm

Case handling integrates processes and associated data in a tighter manner, using
produced data not only for routing decisions, but also for determining which parts
of the process have already been accomplished [1,31] (Note, often a case is defined
as a workflow instance e.g. YAWL). In other words a case follows the idea of
specifying "given this situation what is to be/can be done". A data object is a piece
of information which if present has an associated value (and is usually edited via
forms).

Case Handling prioritizes the following design goals:

Provide all pieces of available information.
Activities are enabled on the basis of available information.

Information can be registered /modified at any time.
Each activity is associated with three sets of data objects:

Authorized data objects that are visible while performing the activity.
Mandatory data objects which once set cause the activity to be finished.
Restricted data objects that can be changed during the activity.

Additionally data objects can be free, meaning they can be edited as long as the
case is being handled. Undo, skip and redo functionality in CH is automatically
supported by clearing the associated mandatory data objects. Since undo,skip and
redo are ubiquitous many process paths or ad-hoc changes required for classical
PMs become unnecessary.

A standard application of case handling is in the healthcare domain, where
patients must be registered without possibly knowing their name, sudden com-
plications can require new/interrupt activities or new relevant information (like
allergies) can become available at any moment.

A simple example showing multiple parts (packages) that require development
and verification by a separate role. CH naturally supports creating forms where
the associated data objects (if the role has the necessary rights) can be edited. The
dotted line represents that this activity is allowed to change the connected data
objects. The not shown roles in Case Handling are handled by authorization rules.

Case handling in general does not adequately support interaction between
different cases or multiple cases of instances. Object aware Process Management [4]
intends to fill the gap by providing an entire object structure for interaction (in

SHAPE FFG-2014-845638

Verified Project - Case
() o)
. . . 00a
[Develop 1 H Verify 1] [Develop 2 H Verify 2]
! !
Developer Form erifier Form
Package 1 Package 1
Verification 1 |Statu51 | |‘-Ier'rfic:atinn 1 |
Package 2 Package 2
Verification 2 [Status 2 | [verification2 |
Package 3 Package 3
Verification 3 [Status 3 | [verification 3|
Package 4 Package 4
Verification 4 [Status 4 | [verffication 4 |
Verified Project
Develaper Verifier
I/' \..I
et

Develop Part

parts remaining x ‘
or fixes required? i

—>@

Figure 4 The same problem as Case and Process.

contrast to classical CH where there are only atomic data objects and at best a case
can be considered an object). Currently the only implementation for object aware
processes is the PHILharmonicFlows framework [5].

"non

Note, Case Handling is in use under several terms; "case management", "case

"non

file handling", "case file management" and "case folder management" (under these

labels it is usually aligned with law and government institutions).

10 Exception Handling

In general adaptivity regarding exceptions is mainly interested in unexpected
exceptions and as such can be seen as having the following goals [13]:

Detecting Exceptions. Under the assumption that not all anomalies are known

Public Document

a-priori, it is of interest to be able to detect new exceptional situations and have
the means to detect the origin point of an exception.

Avoiding Exceptions The system itself can be the source of errors, as such
approaches such as open systems, incremental adoption, flexible execution,
reusable processes can often help prevent the rise of exceptions.

Handling Exceptions Depending on the severity/frequency of the exception
handling strategies are; tolerating minor deviations, local exception handling
that only changes the affected process, and global exception handling that is
used for evolving process definitions.

In general the handling of exceptions can be separated in three groups; trying
alternatives, adding behaviour and cancelling behaviour. Adding behaviour then
includes fixing, retrying or reworking process parts while cancelling behaviour
includes actions that cancel or undo a process.

11 Requirements of Rail Automation

During several meetings, experts from Siemens Rail Automation defined and
refined requirements on the integration of a business process management system
(BPMS) into their engineering and verification process. The main input came from
the head of the engineering group head of the verification/validation group. In
the following, we summarize those requirements that are related to adaptivity and

flexibility aspects of their engineering and verification processes.

11.1 Requirements from Engineering

Distributed engineering teams. Rail Automation projects usually are large and
complex technical projects, meaning that most often more than one engi-
neer/team of engineers is involved. Engineers working on a project are often
located at different sites (e.g., Austria and Slovakia).

Parallel projects. Usually, an engineer or a team of engineers works on several
projects in parallel.

Different system types. The portfolio of Siemens Rail Automation in Austria con-
tains various different types of systems. The main one in Austria is the so-called
"Anlagenbauprozess" for configuring electronic interlocking systems in Austria.
For interlocking systems in countries other than Austria, a different technology
and tool set is used. Other types of systems are: ETCS (European Train Control
System) level 1 and 2, level crossings, etc.

SHAPE FFG-2014-845638

Different project types. The two main variants of a project for a system are: (1)
Build a new system; (2) Modify/extend an existing system.

Work parallelization. In principle, the different processes are sequential processes.
Due to distributed work and parallel projects, many process steps are performed
in parallel.

Conformance checks. There are many constraints specified on the different process
steps and assets (e.g., the right versions of input files). Currently, many of those
checks are done at the end of a project. Doing checks as early as possible could
save rollback and rework time.

Skills. Engineers have different experiences and skills. The goal is to assign only
those engineers to a process step who are (a) available, (b) have the neces-
sary skills, and (c) preferably already know the facility in case of required
modifications/extensions of the system.

Documentation of time and costs. Documentation of time and costs of engineer-
ing/verification tasks in a project is usually not done on basis of single steps,
but on process phases: "How many hours are used for engineering or verifying
a project?" Documentation on a finer level (e.g. on the level of a single process
step) could facilitate a better resource allocation and planning of future projects.

Data access rights. Currently, there are no hard restrictions on who is reading or
changing which data.

Change interdependencies. Currently, it is very difficult to know or track interde-
pendencies of changes at different parts of the system. This leads to challenges
like: (a) change tracking, (b) change effect interdependency control, (c) commu-
nication of changes, and (d) to make all the involved people work according to
the interdependency model.

Non-human resources. The main, critical non-human resources are hardware and
workstations in the test laboratory. Similar to human resources, optimal alloca-
tions of test laboratory equipment can essentially reduce system engineering

and test effort.

11.2 Requirements from Verification/Validation

The main goal of the verification/validation process is the final approval of a
national safety authority. In the following, we outline the main requirements of

verification/validation processes.

Verification and validation process. Part of the overall project management plan
are both the verification and validation process, which are usually started after
the engineering process has ended. Doing some of the verification/validation

10 Public Document

steps in parallel with the engineering process could save time by detecting

errors earlier.

Process approvals. Engineering, verification and validation processes must have
several approvals, like "Verfahrenssicherheitsnachweis" and "Gutachten". An
extensive and up-to-date process documentation is an important prerequisite of

these approvals.

SIL 4. Most of the systems built by Rail Automation must be engineered under
the condition of SIL 4 (Safety Integration Level). SIL 4 is a very high level and
usually cannot be achieved by making each single process step SIL 4 compliant,
but the whole process is designed to result in SIL 4 systems by integrating
diverse redundant engineering steps. Example: The output of an engineering
tool is re-transformed to the input data and checked against them by a separate

step/tool.

Standards and norms. The main standards are EN50126 ! (life-cycle model), EN50128
(important for the engineering process), and EN50129 (risk analysis, safety tar-
gets, hazard rates). Some of the rules in these standards and norms can be
checked automatically. The BPMS should support such automatic checks.

Traceability. Tracing of steps between input and output should be improved. Doc-
umentation of process steps is an important input for validation (usually at the
end of a project).

Process documentation. Engineering must prove that the system has been engi-
neered in compliance with the defined, safe engineering process. Currently,
there are no automated monitoring/tracking capabilities, so the challenge is
to know whether all process steps are executed correctly or not. Most of the
checks are currently performed at the end of the process.

Delta verification. In modification/extension projects, much verification work
could be saved, if only those parts of the system data are checked that have
actually changed.

11.3 Derived SHAPE Requirements

Derived from Siemens’ Rail Automation requirements we identify the following
main requirements concerning adaptivity and flexibility as input for our SHAPE

reference architecture and tool selection:

1 In the Bachelor’s Thesis of Julia Fuchsbauer [9] - written in the course of the project SHAPE - the
rules of EN50126 have been systematically extracted and categorized.

SHAPE FFG-2014-845638

Automated Resource (Re-)Allocation of human resources. The BPMS should sup-
port automated resource allocation and re-allocation of human resources. Data
like user roles, skill matrix, experience and performance values of users (about
skills and actual projects / systems) should be used for an optimal allocation.
Experience and performance values could be learned or refined from process
logs. The project manager should be able to overrule computed resource allo-
cation. Resource allocation should satisfy hard and soft constraints. Example
of a hard constraint: Verifier must be different to engineer. Example of a hard
constraint: If a user is assigned the first time to a task of a certain type, an
other, experienced user must be assigned to that task, too. Example of a soft
constraint: Assign task to engineer with highest experience points.

Automated Resource (Re-)Allocation of non-human resources. Similar to human
resources, the BPMS should support automated allocation and re-allocation
of non-human resources. Hardware, workstations and laboratory time are the

main non-human resources.

Exception handling. The BPMS should be able to handle exceptional situations. In
addition to the standard process paths, the process definition should contain
the most important exception paths. In exceptional cases, the process must
not prohibit deviations of the defined process paths. Deviations must be
documented.

Guide back to standard path. In cases of process deviations, the BPMS should
guide users back to a standard path. Consistency of external data must be
restored; e.g.: entries in the project logbook must be updated whenever tasks
are rolled-back and re-entered.

12 Summary

Rail Automation requirements show that engineering and verification processes
of safety-critical systems strongly rely on various different kinds of data. Two
examples are (i) resource allocation, which is based on, e.g., roles, skills, experiences,
and availability of team members, and (ii) document generation, which collects all
the necessary data produced in different tasks for filling out templates. From the
view of adaptivity/flexibility, we argued in Section 9 that a declarative paradigm
better supports data-oriented processes than classical imperative process workflow

specifications. Nevertheless, an architectural decision for Camunda? and the

2 https://camunda.com/

11

12

Public Document

notation language BPMN has been made in SHAPE. In future work, we will

integrate data-centered adaptivity patterns into the SHAPE reference architecture.

—— References

1

10

Wil M.P. van der Aalst and PJ.S. Berens. Beyond Workflow Management: Product-Driven
Case Handling. In S. Ellis, T. Rodden, and I. Zigurs, editors, International ACM SIG-
GROUP Conference on Supporting Group Work (GROUP 2001), pages 42-51. ACM Press,
New York, 2001.

Agnar Aamodt and Enric Plaza. Case-based reasoning: Foundational issues, method-
ological variations, and system approaches. Al Commun., 7(1):39-59, 1994.

Jorg Becker, Patrick Delfmann, Alexander Dreiling, Ralf Knackstedt, and Dominik
Kuropka. Configurative process modeling—outlining an approach to increased business
process model usability. In Proceedings of the 15th IRMA International Conference, pages
1-12. Hershey Idea Group, 2004.

Carolina Ming Chiao, Vera Kiinzle, and Manfred Reichert. Enhancing the case handling
paradigm to support object-aware processes. In Rafael Accorsi, Paolo Ceravolo, and
Philippe Cudré-Mauroux, editors, Proceedings of the 3rd International Symposium on Data-
driven Process Discovery and Analysis, Riva del Garda, Italy, August 30, 2013, volume 1027 of
CEUR Workshop Proceedings, pages 89-103. CEUR-WS.org, 2013.

Carolina Ming Chiao, Vera Kiinzle, and Manfred Reichert. A tool for supporting object-
aware processes. In Georg Grossmann, Sylvain Hallé, Dimka Karastoyanova, Manfred
Reichert, and Stefanie Rinderle-Ma, editors, 18th IEEE International Enterprise Distributed
Object Computing Conference Workshops and Demonstrations, EDOC Workshops 2014, Ulm,
Germany, September 1-2, 2014, pages 410-413. IEEE, 2014.

Riccardo Cognini, Flavio Corradini, Stefania Gnesi, Andrea Polini, and Barbara Re. Re-
search challenges in business process adaptability. In Proceedings of the 29th Annual ACM
Symposium on Applied Computing, SAC "14, pages 1049-1054, New York, NY, USA, 2014.
ACM.

Marlon Dumas and Arthur H. M. ter Hofstede. Uml activity diagrams as a workflow
specification language. In Proceedings of the 4th International Conference on The Unified
Modeling Language, Modeling Languages, Concepts, and Tools, «UML» ‘01, pages
76-90, London, UK, UK, 2001. Springer-Verlag.

Dirk Fahland, Daniel Liibke, Jan Mendling, Hajo A. Reijers, Barbara Weber, Matthias Wei-
dlich, and Stefan Zugal. Declarative versus imperative process modeling languages: The
issue of understandability. In Terry A. Halpin, John Krogstie, Selmin Nurcan, Erik Proper,
Rainer Schmidt, Pnina Soffer, and Roland Ukor, editors, BMMDS/EMMSAD, volume 29
of Lecture Notes in Business Information Processing, pages 353-366. Springer, 2009.

Julia Fuchsbauer. How to manage processes according to en50126. Bachelor thesis, Vi-
enna University of Economics and Business, July 2015.

Florian Gottschalk, Wil M. P. van der Aalst, Monique H. Jansen-Vullers, and Marcello La
Rosa. Configurable workflow models. Int. J. Cooperative Inf. Syst., 17(2):177-221, 2008.

SHAPE FFG-2014-845638

11

12

13

14

15

16

17

18

19

20

21

22

23

Alena Hallerbach, Thomas Bauer, and Manfred Reichert. Capturing variability in busi-
ness process models: the provop approach. Journal of Software Maintenance and Evolution:
Research and Practice, 22(6-7):519-546, 2010.

Richard Hull, Frangois Llirbat, Eric Simon, Jianwen Su, Guozhu Dong, Bharat Kumar,
and Gang Zhou. Declarative workflows that support easy modification and dynamic
browsing. In Proceedings of the international joint conference on Work activities coordination
and collaboration 1999, San Francisco, California, USA, February 22-25, 1999, pages 69-78.
ACM, 1999.

Peter]J. Kammer, Gregory Alan Bolcer, Richard N. Taylor, Arthur S. Hitomi, and Mark
Bergman. Techniques for supporting dynamic and adaptive workflow. Computer Sup-
ported Cooperative Work, 9(3/4):269-292, 2000.

OMG. Business Process Model and Notation (BPMN), Version 2.0. Technical report,
Object Management Group, January 2011.

M. Pesic and W. M. P. van der Aalst. A declarative approach for flexible business pro-
cesses management. In Proceedings of the 2006 International Conference on Business Pro-
cess Management Workshops, BPM'06, pages 169-180, Berlin, Heidelberg, 2006. Springer-
Verlag.

Manfred Reichert and Peter Dadam. A framework for dynamic changes in workflow

management systems. In DEXA Workshop, pages 42-48, 1997.

Manfred Reichert and Barbara Weber. Enabling Flexibility in Process-Aware Information

Systems: Challenges, Methods, Technologies. Springer, Berlin, 2012.

Stefanie Rinderle, Manfred Reichert, and Peter Dadam. Correctness criteria for dynamic

changes in workflow systems - a survey. Data Knowl. Eng., 50(1):9-34, 2004.

Stefanie Rinderle, Barbara Weber, Manfred Reichert, and Werner Wild. Integrating pro-
cess learning and process evolution - A semantics based approach. In van der Aalst
et al. [28], pages 252-267.

Marcello La Rosa, Marlon Dumas, Arthur H. M. ter Hofstede, and Jan Mendling. Config-
urable multi-perspective business process models. Inf. Syst., 36(2):313-340, 2011.

Marcello La Rosa, Marlon Dumas, Reina Uba, and Remco M. Dijkman. Merging business
process models. In Robert Meersman, Tharam S. Dillon, and Pilar Herrero, editors, On
the Move to Meaningful Internet Systems: OTM 2010 - Confederated International Conferences:
CoopIS, IS, DOA and ODBASE, Hersonissos, Crete, Greece, October 25-29, 2010, Proceedings,
Part 1, volume 6426 of Lecture Notes in Computer Science, pages 96-113. Springer, 2010.

N. Russell, A.H.M. ter Hofstede, WM.P. van der Aalst, and N. Mulyar. Workflow control-
flow patterns: A revised view. Technical Report BPM-06-22, BPM Center, 2006.

Helen Schonenberg, Ronny Mans, Nick Russell, Nataliya Mulyar, and Wil M. P. van der
Aalst. Towards a taxonomy of process flexibility. In Zohra Bellahsene, Carson Woo,
Ela Hunt, Xavier Franch, and Remi Coletta, editors, CAiSE Forum, volume 344 of CEUR
Workshop Proceedings, pages 81-84. CEUR-WS.org, 2008.

14

Public Document

24

25

26

27

28

29

30

31

32

33

34

35

36

Sucha Smanchat, Sea Ling, and Maria Indrawan. A survey on context-aware workflow
adaptations. In Gabriele Kotsis, David Taniar, Eric Pardede, and Ismail Khalil Ibrahim,
editors, MoMM, pages 414-417. ACM, 2008.

Abhishek Tiwari and Arvind K. T. Sekhar. Review article: Workflow based framework
for life science informatics. Comput. Biol. Chem., 31(5-6):305-319, October 2007.

Wil M. P. van der Aalst. The application of petri nets to workflow management. Journal
of Circuits, Systems, and Computers, 8(1):21-66, 1998.

Wil M. P. van der Aalst and Twan Basten. Inheritance of workflows: an approach to
tackling problems related to change. Theor. Comput. Sci., 270(1-2):125-203, 2002.

Wil M. P. van der Aalst, Boualem Benatallah, Fabio Casati, and Francisco Curbera, edi-
tors. Business Process Management, 3rd International Conference, BPM 2005, Nancy, France,
September 5-8, 2005, Proceedings, volume 3649. Springer, 2005.

Wil M. P. van der Aalst, Maja Pesic, and Helen Schonenberg. Declarative workflows:
Balancing between flexibility and support. Computer Science - R&D, 23(2):99-113, 2009.
Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, Bartek Kiepuszewski, and Alistair P.
Barros. Workflow patterns. Distributed and Parallel Databases, 14(1):5-51, 2003.

Wil M. P. van der Aalst and Mathias Weske. Case handling: A new paradigm for business
process support. Data Knowl. Eng., 53(2):129-162, May 2005.

Jianrui Wang and Akhil Kumar. A framework for document-driven workflow systems.
In van der Aalst et al. [28], pages 285-301.

Stephen A. White. Process Modeling Notations and Workflow Patterns. On BPMN web-
site, 2004.

Petia Wohed, Wil M. P. van der Aalst, Marlon Dumas, and Arthur H. M. ter Hofstede.
Analysis of web services composition languages: The case of BPEL4WS. In Il-Yeol Song,
Stephen W. Liddle, Tok Wang Ling, and Peter Scheuermann, editors, Conceptual Modeling
- ER 2003, 22nd International Conference on Conceptual Modeling, Chicago, IL, USA, October
13-16, 2003, Proceedings, volume 2813 of Lecture Notes in Computer Science, pages 200-215.
Springer, 2003.

Petia Wohed, Wil M. P. van der Aalst, Marlon Dumas, Arthur H. M. ter Hofstede, and
Nick Russell. Pattern-based analysis of the control-flow perspective of UML activity
diagrams. In Lois M. L. Delcambre, Christian Kop, Heinrich C. Mayr, John Mylopoulos,
and Oscar Pastor, editors, Conceptual Modeling - ER 2005, 24th International Conference on
Conceptual Modeling, Klagenfurt, Austria, October 24-28, 2005, Proceedings, volume 3716 of
Lecture Notes in Computer Science, pages 63-78. Springer, 2005.

George M. Wyner and Jintae Lee. Defining specialization for process models. pages
131-174. MIT Press, 2003.

	Abstract
	Introduction and Terminology
	Flexibility
	Control Flow Patterns
	Ad Hoc changes
	Configurable Process Models
	Inheritance
	Case-based Reasoning
	Declarative Paradigm
	Case Handling Paradigm

	Exception Handling
	Requirements of Rail Automation
	Requirements from Engineering
	Requirements from Verification/Validation
	Derived SHAPE Requirements

	Summary
	Bibliography

