
Integration of Re-configuration/Re-scheduling
Algorithms into Process Architecture

Deliverable D5.2

FFG – IKT der Zukunft
SHAPE Project
2014 – 845638

Table 1 Document Information

Project acronym: SHAPE
Project full title: Safety-critical Human- & dAta-centric Process management

in Engineering projects

Work package: 5
Document number: 5.2
Document title: Integration of Re-configuration/Re-scheduling

Algorithms into Process Architecture
Version: 0.1

Delivery date: E03/2016 (M3)
Actual publication date: 01.04.2016
Dissemination level: Public
Nature: Technical Report

Editor(s) / lead beneficiary: Siemens
Author(s): S. Sperl
Reviewer(s): G. Havur, A. Polleres

Table 2 History

Version Changes Authors

0.1 Created Structure S. Sperl

Contents

1 Introduction 1

2 Adaptivity in Scheduling 1
2.1 Technical Details . 1
2.2 Integration with Camunda . 1

3 Adaptivity in Monitoring and Documentation 2
3.1 Technical Details . 3
3.2 Integration with Camunda . 4

Bibliography 4

SHAPE FFG-2014-845638 1

1 Introduction

This document is part of work package 5 (WP5) on integration of adaptivity algo-
rithms into the process architecture of the SHAPE project. Two main scenarios have
been developed and prototypically implemented: Re-configuration/Re-scheduling
(cf. Section 2) and Document Generation (cf. Section 3).

2 Adaptivity in Scheduling

2.1 Technical Details
Details of the integration of the resource allocation algorithm and the translation
from BPMN to Answer Set Programs (ASP) can be found in the diploma thesis
”Formalisms and Tools to Describe and Monitor Engineering Processes” in the
following chapters:

Chapter 3: Resource Assignment and Allocation under Constraints in BPM
Chapter 5: Integrating Resource Allocation Capabilities into a BPMS

2.2 Integration with Camunda
There are two components that are to be integrated with Camunda. First the
Scheduler, then the component that during execution returns the scheduled user to
a startable task.

The scheduler can potentially be started at any point of the process execution (it
is a JaveServer Faces (JSF)1 page), but is currently limited to process starts (because
of GUI limitations). Below a startEvent is configured in such a way as to require
the assignments (schedule) to be done before it can be started (if configured like
this the process actually has to be started by the JSF page).

<bpmn2:startEvent id="StartEvent_1" camunda:formKey="app:assignments.jsf">

There are multiple ways to set the assigned user of a task once it becomes
required.

By using process variables (not recommended once it gets complex).

1 http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html

2 Public Document

<userTask id="task" name="My Task"
camunda:assignee="${processVarWithUser}"/>

By invoking a bean

<userTask id="task" name="My Task" camunda:assignee=
"${assignmentService.getScheduledUserofTask(execution)}"/>

Or by setting it in a TaskDelegate during the create event of a UserTask.

<userTask id="task1" name="My task" >
<extensionElements>

<camunda:taskListener event="create"
class="org.camunda.bpm.MyAssignmentHandler" />

</extensionElements>
</userTask>

In general invoking a bean is likely the best approach in terms of flexibility and
”effort in manually editing BPMN files”.

3 Adaptivity in Monitoring and Documentation

The railway industry requires extensive and reliable documentation as part of
it’s validation process. Currently a lot of potentially trivial information has to
be maintained and cross checked manually by experts. In order to improve this
process we implemented an adaptive documentation system.

In it’s basic conception, parts of an existing document can marked as ”to be
filled out”, the system will then adapt the document to include the currently
available information. As marking mechanism the comment system was chosen,
since this allows for the intuitive error reporting (problems are appended to the
comment).

Figure 1 Exemplary MS Word Template, updateable regions are marked by word
comments

SHAPE FFG-2014-845638 3

Figure 2 Exemplary MS Word Result

3.1 Technical Details
These operations are built upon the Apache POI project, which allows editing of
MS Office documents via Java. Sadly the MS Word integration is likely the least
feature complete of all office formats, for our purposes we extended the official
release with our requirements and posted a patch [1].

The Interpreter expects the documents executable Comments to start with a #
and then a valid JSON expression, all single underlined. If the JSON expression is
invalid, an error will be reported, but comments not starting with # while single
underlined will be ignored entirely.

The project is at.shape.docgen, primary components are Function and Interpreter.

public interface Function {
public boolean executeable(XWPFRun r, SpinJsonNode n);
public void execute(XWPFComment c, XWPFRun r, SpinJsonNode n);
public String getName();

}

Via execute(), Function must inform the interpreter, if this Function can
(should) work with the provided input data. The XWPFRun represents the com-
mented text region and the SpinJsonNode represents the parsed JSON term that
has to be in the comment.

In addition, execute() supplies the XWPFComment since implementations likely
wish to overwrite the JSON expression contained in the comment (to stop re-
interpretation or to store a machine readable version of the displayed data).

The getName() function is currently only used for error reporting purposes and
should give a readable description of the problem.

In general it is advisable to design Functions in such a way:

assert(f.executable() == true);
assert(f.execute())

4 Public Document

assert(f.executable() == false);

This helps with preventing unnecessary repeated executions (though you could
also just reduce maxPasses to 1).

public class Interpreter {
public void execute(XWPFDocument document);
public ArrayList<Function> getFunctions();
public int getMaxPasses();
public void setMaxPasses(int maxPasses);

}

The Interpreter can be executed on an entire XWPFDocument, getFunctions()

returns the list of Functions that the Interpreter will use on the document. If
an executable Comment has no or more than one Function that match, an error is
reported (and no further action is taken on this comment). The interpreter can also
be configured to run multiple passes with the same set of functions (and will stop
early once there are no more executable comments).

The library also ships with 3 pre-made Functions that allow simple replacement,
growing a table by a number of rows, and convenient filling of grown table cells.
Example:

Interpreter interpreter = new Interpreter();
interpreter.getFunctions().add(new

NamedReference("variablemarker",keyValueMap));
interpreter.getFunctions().add(new TableExtender("tablemarker",10));
interpreter.getFunctions().add(new TableReplacer("tablemarker"){

@Override
public void execute(XWPFRun r, SpinJsonNode row, SpinJsonNode col) {

r.setText("CELL" + (col.numberValue().intValue() +
row.numberValue().intValue()),0);

}
});
interpreter.execute(document);

3.2 Integration with Camunda

In general, execution listeners can work at any place in the program. Cf. Fig. 3.

SHAPE FFG-2014-845638 5

Figure 3 BPMN side update handler for document generation

References
1 Simon Sperl. Apache POI Patch. https://bz.apache.org/bugzilla/show_bug.cgi?id=

56469, 2016. [Online; accessed 17-March-2016].

2 Alexander Wurl. Formalisms and tools to describe and monitor engineering processes.

Master’s thesis, Vienna University of Technology, January 2016.

https://bz.apache.org/bugzilla/show_bug.cgi?id=56469
https://bz.apache.org/bugzilla/show_bug.cgi?id=56469

	Introduction
	Adaptivity in Scheduling
	Technical Details
	Integration with Camunda

	Adaptivity in Monitoring and Documentation
	Technical Details
	Integration with Camunda

	Bibliography

