
Integration of roll-back algorithms into process
architecture

Deliverable D5.3

FFG – IKT der Zukunft
SHAPE Project
2014 – 845638

Table 1 Document Information

Project acronym: SHAPE
Project full title: Safety-critical Human- & dAta-centric Process management

in Engineering projects

Work package: 5
Document number: 5.3
Document title: Integration of Re-configuration/Re-scheduling

Algorithms into Process Architecture
Version: 0.1

Delivery date: E03/2016 (M3)
Actual publication date: 01.04.2016
Dissemination level: Public
Nature: Technical Report

Editor(s) / lead beneficiary: Siemens
Author(s): S. Sperl
Reviewer(s): G. Havur, A. Polleres

Table 2 History

Version Changes Authors

0.1 Created Structure S. Sperl

Contents

1 Introduction 1

2 Related Work 1

3 Rollback in Camunda 2

4 Database Level Rollback 2

5 Business Level Rollback 3
5.1 Error Handling/Event . 3
5.2 Compensation . 4
5.3 Transaction Subprocess . 6

Bibliography 6

SHAPE FFG-2014-845638 1

1 Introduction

A rollback returns the process to some previous state, which is important for the
integrity of the system in case of errors. There are various techniques and to achieve
this effect with different technical and readability limitations for their use. This
document intends to give an overview over the available techniques for "returning
to a previous state" available in Camunda/BPMN.

2 Related Work

Avizienis et al. [1] present a taxonomy of error handling techniques: Rollback,
rollforward, and compensation. This categorization of exception handling strate-
gies has been applied to process modeling by Russell et al. [7]. They identify
three strategies in regard to process exception handling: No action, rollback, and
compensation: A rollback is an operation which returns the process execution to
some previous state, and a compensation is the action taken to recover from error
or cope with a change of plan.

In long running business process instances, rollback operation requires a com-
pensation process that undos the effects of executed actions up to the rollback
state, because parts of a transaction (e.g., communications with external agents)
are inherently impossible to undo. Butler et al. [2] describe the StAC language
which can be used to specify the orchestration of activities in long running business
transactions and therefore, they show that compensation is more general than
traditional rollback in database transactions. In a BPMN compliant representation,
Ritter et al. [6] make use of rollback as an exception strategy resulting in general
patterns for exception handling and compensation. Urban et al. [8] introduce
assurance points enhance the use of integration rules, providing checkpoints that
are placed at critical locations in the flow of a process, which are also used as
intermediate rollback points to support compensation, retry, and contingent pro-
cedures in an attempt to maximize forward recovery. van Beest et al. [9] focus on
run-time handling of interference by identifing and resolving potentially erroneous
situations. They define dependency scopes to represent the dependencies between
processes and data sources, which allows a rollback to be executed.

Golani and Gal [3] describe rollback and stepping forward in process modeling.
In their model, an exception handler is expected to perform first its set of rollback
tasks and then its set of stepping forward tasks, although they do note that either
or both sets of tasks may be empty. In a similar fashion, Zhao et al. [10] propose a
self-healing framework with rollback operation in order to provide reliable business

2 Public Document

process execution. In their work, not only the defined set of operations are rolled
back but also related data is revoked for maintaining transactional consistency.

Implementing rollback mechanisms for already existing modeling languages
might have some shortcomings and limitations. For addressing this issue, Rabbi et
al. [5] describe a new modelling language Compensable WorkFlow nets (CWF-nets)
for allowing compensable transactions (A type of transaction whose effect can be
semantically undone even after it has committed) with the help of t-calculus [4]
which was developed to aid in the creation and verification of compensable systems.

3 Rollback in Camunda

In general there are two distinct ways of managing rollbacks in Camunda.

On the database level.

On a process (BPMN supported) level

The main difference is transactions on a process level might run over days and
months, which is not advised or even possible for database transactions.

4 Database Level Rollback

Key point is that these transactions are not modelled by BPMN elements, these
transactions are typically cancelled by exceptions thrown in the process specific
Java event handlers.

The main concept for database level transactions in Camunda is the wait state.
Whenever a wait state is reached the process state is persisted in the database.

In Camunda the user task, receive task, message event, timer event and signal
event are all wait states by default.

Other activities can be turned into wait states via the XML attributes ca-
munda:asyncBefore and camunda:asyncAfter

<serviceTask id="useService" name="Use Service"
camunda:asyncBefore="true" camunda:class="at.shape.DelegateClass" />

<serviceTask id="useService" name="Use Service"
camunda:asyncAfter="true" camunda:class="at.shape.DelegateClass" />

The effect of these annotations are; that whenever a user enters data which is
followed by processing steps and that processing fails, the process returns to the
user task, as seen in Figure 1.

SHAPE FFG-2014-845638 3

Figure 1 Transaction Boundaries in Camunda

Camunda supports the Java Transaction API (JTA) 1, therefore other JTA com-
patible (database) systems can be incorporated in a Camunda transaction.

5 Business Level Rollback

Dealing with rollbacks can also be done explicitly via business process model
elements, but note that in Camunda none of these by default interact with the
database level transaction system or the Java exceptions. Camunda supports various
BPMN elements which is a more efficient notation in comparison than manual
error handling, as seen in Figure 2.

Figure 2 Basic Error Handling

5.1 Error Handling/Event

To start with a more sophisticated way to do simple error handling is with the error
event, as shown in Figure 3.

1 http://www.oracle.com/technetwork/java/javaee/jta/index.html

http://www.oracle.com/technetwork/java/javaee/jta/index.html

4 Public Document

Figure 3 External Error Handling with Error Boundary Event

The external error handling (cf. Figure 3) has the disadvantage that it does not
have access to the process variables in contrast to the internal error handling 4 (cf.
Figure 4).

Figure 4 Internal Error Handling with Error Event

5.2 Compensation

While error events deal with irrecoverable situations, compensation is able to undo
executed activities (cf. Figure 5). Camunda internally registers a compensation
event subscription to the activity whenever the annotated activity (or subprocess)
finishes. If the activity was executed successfully multiple times the compensation
will be executed an equal amount of times in reversed order.

SHAPE FFG-2014-845638 5

Figure 5 An example for compensation handling.

In addition to compensations handling on the boundaries of activities, compen-
sation handling can also be defined for an entire subprocess via the compensation
start event. In contrast to boundary compensation handling, the subprocess com-
pensation start event will consume the compensation event, this means that other
compensation events within the subprocess must be triggered manually, as seen in
Figure 6.

Figure 6 An example for compensation handling with a subprocess.

6 Public Document

5.3 Transaction Subprocess
A transaction subprocess (e.g Figure 7) is used for making a group of activities fail
or succeed as a whole. There can be three possible outcomes of a transaction;

the transaction subprocess completes successfully

the subprocess reaches a cancel end event

any other event ends the subprocess

It is important to note that, compensation is performed by the transaction subpro-
cess if and only if the cancel end event is reached.

Figure 7 An example transaction subprocess

References
1 Algirdas Avizienis, J-C Laprie, Brian Randell, and Carl Landwehr. Basic concepts and

taxonomy of dependable and secure computing. IEEE transactions on dependable and secure

computing, 1(1):11–33, 2004.

2 Michael J Butler, Carla Ferreira, and Muan Yong Ng. Precise modelling of compensating

business transactions and its application to bpel. J. UCS, 11(5):712–743, 2005.

3 Mati Golani and Avigdor Gal. Flexible business process management using forward

stepping and alternative paths. In International Conference on Business Process Management,

pages 48–63. Springer, 2005.

4 Jing Li, Huibiao Zhu, Geguang Pu, and Jifeng He. Looking into compensable transactions.

In Software Engineering Workshop, 2007. SEW 2007. 31st IEEE, pages 154–166. IEEE, 2007.

5 Fazle Rabbi, Hao Wang, and Wendy MacCaull. Compensable workflow nets. In Interna-

tional Conference on Formal Engineering Methods, pages 122–137. Springer, 2010.

6 Daniel Ritter and Jan Sosulski. Exception handling in message-based integration systems

and modeling using bpmn. International Journal of Cooperative Information Systems, page

1650004, 2016.

SHAPE FFG-2014-845638 7

7 Nick Russell, Wil van der Aalst, and Arthur ter Hofstede. Workflow Exception Patterns.

In International Conference on Advanced Information Systems Engineering, pages 288–302.

Springer, 2006.

8 Susan D Urban, Le Gao, Rajiv Shrestha, and Andrew Courter. The dynamics of process

modeling: New directions for the use of events and rules in service-oriented computing.

In The evolution of conceptual modeling, pages 205–224. Springer, 2011.

9 Nick RTP van Beest, Pavel Bulanov, Hans Wortmann, and Alexander Lazovik. Resolving

business process interference via dynamic reconfiguration. In International Conference on

Service-Oriented Computing, pages 47–60. Springer, 2010.

10 Yuhai Zhao and Ying Yin. Dynamic self-healing mechanism for transactional business

process. Mathematical Problems in Engineering, 2015, 2015.

	Introduction
	Related Work
	Rollback in Camunda
	Database Level Rollback
	Business Level Rollback
	Error Handling/Event
	Compensation
	Transaction Subprocess

	Bibliography

