
SHAPE FFG-2014-845638

1

Evaluation report (version 1 – input for refinements)

Deliverable D6.3

FFG – IKT der Zukunft
SHAPE Project
2014 – 845638

SHAPE FFG-2014-845638

2

Project acronym:

SHAPE

Project full title:

Safety-critical Human- & dAta-centric Process
management in Engineering projects

Work package:

Document number:

Document title:

Version:

6

6.3

Evaluation report (version 1 – input for
refinements)

1

Delivery date:

Actual publication date:

Dissemination level:

Nature:

October, 1st, 2016 (M4)

-

Public

Report

Editors / lead beneficiary :

Author:

Reviewers:

SIEMENS AG

Srdjan Stevanetic

Alois Haselböck and Jan Mendling

Table 1. Document Information

SHAPE FFG-2014-845638

3

Contents

1.	
 Introduction .. 4	

2.	
 Industry Scenario ... 4	

3.	
 Requirements .. 6	

4.	
 Framework for Process Management in Complex Engineering Projects 8	

5.	
 Prototype Architecture ... 11	

6.	
 Initial Architecture Review ... 12	

7.	
 References .. 20	

SHAPE FFG-2014-845638

4

1. Introduction

In SHAPE, we aim at developing a framework for process management in complex engineering
processes that includes the formalization of human-centric process models, the integration of
heterogeneous data sources, rule enforcement and compliance checking automation, and
adaptability, among others. The framework has been defined from an industry scenario from the
railway automation domain.

The goal of this document is to evaluate the existing system’s architecture, i.e. to provide
information on how the system’s architecture complies with the specified requirements. With
regard to that, we first describe the architecture and then provide the corresponding evaluation.
Regarding the evaluation part, we provide an initial, qualitative evaluation of the architecture by
evaluating the current system state with regard to the system functional and non-
functional requirements and indicating the potential risks related to the current and new
implementation.

This document is organized as follows. Section 2 describes the main application scenario.
Section 3 describes both modeling time and runtime requirements of the system. Section 4
describes the generic architecture of our framework for process management in complex
engineering projects while Section 5 describes the concrete prototype architecture. Section 6
describes the evaluation of the current prototype architecture with regard to both functional and
non-functional requirements. Section 7 provides conclusions that wrap up the given evaluation
points. In Section 8, we provide a list of references used in the document.

2. Industry Scenario

Activities to create complete, valid and reliable planning and customization process data for a
product deployment are part of an overarching engineering process that is of crucial importance
for the success of a project in a distributed, heterogeneous environment. Figure 1 depicts a
generic engineering process for building a new infrastructure system in the railway automation
domain modeled with Business Process Model and Notation (BPMN) [1]. The engineering
process itself is represented in the pool Railway automation unit and comprises the building and
testing of the system. The pool Resource planning unit as well as the activities depicted in grey
represent a meta-process comprising scheduling activities that are performed in the background
in order to enable the completion of the engineering process in compliance with a set of
restrictions (temporal and logistics, among others) while making an appropriate use of the
resources available. Resource allocation has a great importance in large-scale engineering
processes in which unexpected situations may have critical consequences, e.g. delays that lead
to unplanned higher costs. Many resources are involved in the engineering process, ranging
from laboratories and specific hardware to the employees of the organization, who are
responsible for the correct execution of the process.

Hence, the first step consists of scheduling the building of the system. Building the system is, in
turn, a process composed of several activities (potentially operating on different levels of
abstraction) each involving a large variety of different resources, data sources, and data formats
used. Specifically, the customer provides input data in form of, e.g., XML documents
representing railway topology plans, signal and route tables, etc., which are used by the
engineers to configure the product. Typically, several configuration tools are involved in that

SHAPE FFG-2014-845638

5

process too, complemented by version control and documentation activities. The result is a set
of data of various kinds and formats (i.e., XML, JSON, and alike) such as bill of material (BOM),
assembly plans, software configuration parameters, and all other documents and information
required for the testing, integration, and installation of the system. Additionally, we map all
gathered data to a common extendable RDF model in order to make use of standard data
integration and processing strategies from the Semantic Web (e.g., OWL, SPARQL, SHACL,
etc.). The engineering project manager orchestrates and monitors these engineering tasks.
Besides, further data is generated during the execution of the sub-process Engineer system in
the form of, e.g., emails exchanged between the process participants.

Once the system is built, it must be tested before it is released for its use. That procedure takes
place in laboratories and comprises two phases: the test setup and run phases. Like before, it is
necessary to schedule these activities taking into consideration the setting and all the
restrictions for the execution of the activities. The setting is the following: there are several
space units distributed into two laboratories and several units of different types of hardware for
conducting the testing. The employees of the organization involved in these activities are
specialized in the execution of specific testing phases for specific types of systems, i.e. there
may be an engineer who can perform the setup for a system S1 and the test execution for a
system S2, another engineer who cannot be involved in the testing of system S1 but can
perform the two activities for the system S2, and so on. As for the restrictions, they are as
follows: each task involved in these two phases requires a specific set of resources for its
completion. In particular, the setup tasks usually require one employee working on one unit of a
specific type of hardware in a laboratory, and the run activity usually requires several employees
for its execution. Besides, a test can only be executed if the whole setup takes place in the
same laboratory. In addition, for the scheduling it is necessary to take into account that other
instances of the same or different processes might be under execution at the same time and
they might share resources.

SHAPE FFG-2014-845638

6

Figure 1. Engineering process for building a new infrastructure system in the railway
automation domain

The setup and the run test activities will then be executed according to the plan. Similar to the
engineering step, data comprising the results of the tests, emails, Version Control System
(VCS) file updates and the like, is generated during the testing steps. When the testing of the
system is finished, a final report is written and archived with the information generated
containing the description of the test cases, test data, test results, and the outline of the
findings. Responsible for the final version of this report is the testing project manager. Finally,
the engineering project manager deploys a complete and tested version of the engineering
system and the integration team takes over the installation of the product. Note that unexpected
situations may cause delays in the completion of any of the activities involved in the engineering
process. It is important to detect such delays as soon as possible in order to properly schedule
the use of resources and figure out when the process can be finished under the new
circumstances. Therefore, rescheduling may be required at any point, involving all the
aforementioned restrictions and possibly new ones.

3. Requirements

Based on the provided industry scenario the following set of requirements is identified to be
relevant for the SHAPE project: Table 2 lists the modeling time while Table 3 lists the runtime
system requirements.

SHAPE FFG-2014-845638

7

Table 2. SHAPE modeling time requirements

Requirement Description
RM01 Automatic extraction of process models from textual descriptions
RM02 Automatic extraction of process models from log data (process mining)
RM03 RA can model their processes / change their process models without help of

R&D
RM04 Automatic generation of process documentation (process handbook)
RM05 Definition of roles
RM06 Access rights of roles modelling
RM07 Definition of constraints to check data integrity, e.g., file versions, tool versions

RM08 Definition of constraints to check data completeness, e.g. do ReleaseNotes
exist?

RM09 Explicit modelling of safety aspects, e.g., 4eye principle, engineer != verifier
RM10 Safety risks analysis on processes, e.g., for support of hazard analysis
RM11 Task duration and deadline modelling
RM12 Escalation modelling
RM13 Specification of templates (documents, e-mails, checklists) with placeholders

for artefacts, e.g., e-mail template for release letter of tool outputs to
subsequent engineers, e.g., release letter to the customer, with actual data file
links/locations/versions, e.g., checklist template for verifiers

Requirement Description
RR01 Process engine monitors/guides engineers at runtime
RR02 Notification/requests of process steps via e-mail
RR03 Notification/requests of process steps via web interface
RR04 Complete documentation of process steps during runtime (log file)
RR05 Integration/examination of e-mail traffic, e.g., tags in emails cause

starting/finishing of activities
RR06 Integration/examination of SharePoint traffic, e.g., finished/changed

documents start/finish activities
RR07 Integration/examination of SVN/GIT traffic, e.g., commit automatically finishes

activity
RR08 Integration of people directory
RR09 Assignment of actual persons to roles (people resolution)
RR10 Assignment of actual persons to tasks based on availability/workload/custom

weighting
RR11 Access rights checking (roles based, based on policy model)
RR12 Deadline and effort tracking by logging of activity/process durations
RR13 Deadline and effort prediction , e.g., not enough available engineer-hours to

meet deadline
RR14 Synchronization with project planning, e.g., with Enterprise Project

Management (EPM)
RR15 Detection of process deviations e.g., incomplete input data used
RR16 Predictive process deviation, e.g., a predicted failed deadline causes creation

of new activities like a meeting

SHAPE FFG-2014-845638

8

Table 3. SHAPE runtime requirements

4. Framework for Process Management in Complex Engineering
Projects

Typical functionality of a BPMS includes modeling and executing processes. Information about
process instances is usually stored in event logs including, among others, temporal and
resource information related to the execution of the process activities [2]. In addition to that
structured information, several kinds of unstructured and semi-structured data are generated
during the execution of complex engineering processes, e.g. emails, VCS files and reports. All
the data produced during process execution must be analyzed in order to detect, e.g.,
deviations with regard to the expected behavior. The Process Miner component of our
framework (see Figure 2) tries to discover as much data relevant to the current state of a
process execution as possible, performs the transformations required as specified by, and
communicates the information extracted to the Process Monitor periodically under request. In
case the Process Monitor reveals a discrepancy between process instance data and the data
discovered by the process miner (e.g. a delay), it informs the Process Adapter about the
discrepancy. The Process Adapter analyzes the deviation and responds by proposing an
adaptation solution to the BPMS in order to put the process back into a coherent and consistent
state. The adaptation may consist of small changes that can be performed directly on the BPMS
side or, on the contrary, of complex recovery actions that may require reasoning functionalities.
In the latter case, the Reasoner comes into play by, e.g., doing a new activity or resource
scheduling according to the new domain conditions. Therefore, the Reasoner can be seen as a
supportive component that helps the BPMS with typical activities, such as the scheduling of
process activities, and the allocation of resources to those activities in accordance with resource
constraints and regulations defined in the semantic model. We encode the resource allocation
problem in Answer Set Programming (ASP) [3], a declarative (logic programming style)
paradigm. Its expressive representation language, efficient solvers, and ease of use facilitate
implementation of combinatorial search and optimization problems (primarily NP-hard) such as
resource allocation. Finally, the Document Generator of the framework provides support for by
helping to fill out the documents that must be generated as output of process activities. As
aforementioned, this automation is expected to decrease reporting errors, especially in
documents related to auditing.

RR17 Rollback or safe process continuation in case of a deviation, e.g., wrong input
data -> use correct input data

RR18 Compensation handling
RR19 Continuous process optimization (automatic detection of process

improvements)
RR20 Learning of task durations / variations
RR21 Automatic generation of documents/e-mails/checklists – based on templates

cf. RM14
RR22 Automatic generation of a plan inventory, i.e. a document consisting of all

relevant artefacts, their locations and versions
RR23 Checking of data integrity and completeness constraints and user notification

of constraint violations
cf. RM08, RM09

SHAPE FFG-2014-845638

9

Figure 2. Proposed framework for process management in complex engineering
projects

Aiming at automation, we believe that an ontology is the most appropriate mechanism for
storing and retrieving data due to, among others, the large amount of off-the-shelf reasoners
available to query them. Therefore, following the METHONTOLOGY approach [4], we have
developed an engineering domain ontology that represents: (i) engineering domain and
organizational (i.e. resource-related) knowledge; (ii) business processes; and (iii) regulations
and policies [5].

Regarding the engineering domain and organizational knowledge, we decided to adopt parts of
the organizational meta-model described in [6] and enriched it with concepts for modeling teams
[7] (see Figure 3).

SHAPE FFG-2014-845638

10

Figure 3. Ontology for engineering domain and organizational knowledge

Regarding the business processes ontology, we decided to represent processes and process
instances using timed Petri nets utilizing transformation rules proposed in [8, 9] (see Figure 4).

Figure 4. Ontology for processes and process instances

Extracting and specifying compliance rules is one of the most important aspects of dealing with
safety critical human- and data-centric processes is providing means for proving that business
processes comply with relevant regulations and policies such as domain-specific norms or

SHAPE FFG-2014-845638

11

workflow patterns. Since all process relevant data is stored in RDF, we plan to utilize recent
advancements in the area of constraint checking for RDF, i.e. the Shapes Constraint Language
(SHACL) [10] for representing and validating identified compliance rules. Specified compliance
rules and constraints are then subsequently used by a monitoring/compliance checking engine
for verifying correct and valid execution of business processes.

5. Prototype Architecture

Here, we coarsely describe main implementation details of the architecture prototype
components and their interactions. The prototype architecture is shown in Figure 5.

Figure 5. Prototype architecture

Camunda running process. We use the Camunda BPM engine as our BPMS. Camunda is an
open source platform that allows for defining new components and for interacting with its APIs in
a custom way. All the process instances that run into Camunda and their data are stored in log
files. Camunda uses two main databases to store its logs: i) a database for processes that are
currently executing; and ii) a database for historical information. These two databases can be
queried through provided Java or REST APIs. Results are returned as either a set of Plain Old
Java Objects (POJOs) or in the JSON format, respectively. Before an activity starts to run, it first
fetches the ontology which contains the set of assignments from existing resources to activities.
Consecutively, a resource is assigned to the activity and thus can appear on their task list.
When the resources complete their tasks, an event is triggered. This event is listened by the
process miner and the document generator components, who can react accordingly. At the
same time, the event is stored into the Camunda database of the running instances. Both the
running processes database and the history database record similarly-structured data.
Furthermore, they can be accessed using the same technology, i.e. the Camunda REST APIs.

SHAPE FFG-2014-845638

12

Reasoner. The reasoner module is implemented as a Java application connected to the
Camunda process engine as an asynchronous service. We use Sesame, an open source
framework for creating, parsing, storing, inferencing and querying over our ontology data. With
respect to the request, the reasoner either performs resource allocation by first translating the
RDF data into the ASP language, solving the problem instance using the ASP solver clasp, and
then writing the allocation results back or it validates all contained constraints specified in the
ontology and returns potential violation result back to the process engine.

Process Monitor. This component is in charge querying the status of the running processes in
Camunda. In case a deviation occurs, for example, a process instance cannot be completed
within the assigned schedule, the process monitor must signal out the anomaly. The process
adaptation module can use this output to learn the status of the system and subsequently apply
an adaptation. This component is implemented as a web client that can read execution logs
through the Camunda REST API. Results are returned in the JSON format which are then
parsed into POJOs and can be processed by customized monitoring algorithms. In this case the
communication happens through periodical queries to the database. An alternative to this is to
implement an activity listener that notifies the process monitor whenever a task is completed.

Miner. The miner is in charge of running a number of mining algorithms on the logs from
Camunda and from VCSs. Emails and commit messages can also be analysed by using the
approaches discussed in [11]. This component is implemented as a web service, which can be
called by the process monitor
in order to understand how the activities being monitored have performed in the past. Mining
algorithms can give new insights into the processes, like for instance actual execution times and
several performance indicators of the process. This can contribute to the domain knowledge.
Thus, they are stored again into the ontology as RDF.

Document generator. The document generator is in charge of listening to activity submissions
and of collecting information from them with the final goal of creating textual documents. This
component uses customizable event handlers to process changes of process variables and
forms compiled by the users. It is implemented in Java and can be imported as a Java library
into several other modules that require document generation from events.

6. Initial Architecture Review

In this part, we pursue the initial, qualitative review of the described system’s architecture.
Based on the examined technical design of the architecture and its documentation, we evaluate
the current system state with regard to the system requirements. The evaluation of both
functional and non-functional requirements is provided. They show how the given requirements
are satisfied or how they can be satisfied as well as which potential risks are associated with
them.

Tables 4 and 5 show the evaluation of the modeling time and runtime requirements from Tables
2 and 3, respectively. For the sake of easier tracking, we list again the set of requirements with
their descriptions (Columns 1 and 2 in the tables).

SHAPE FFG-2014-845638

13

Requirement Description Evaluation with regard to the current architecture
RM01 Automatic extraction of

process models from
textual descriptions

To be implemented (some approaches for mining
processes from unstructured data exist in the literature)

RM02 Automatic extraction of
process models from
log data (process
mining)

To be implemented (traditional process mining algorithms)

RM03 RA can model their
processes / change
their process models
without help of R&D

The users can change process models using the
Camunda UI, but need to know how to deploy the
changes on the server in case that it is required

RM04 Automatic generation of
process documentation
(process handbook)

.doc files are generated by the framework. Any other
format generation can be implemented using the
delegation technique that Camunda supports (e.g.
JavaDelegate)

RM05 Definition of roles Defined as a part of the ontology. The ontology needs to
be synchronized with the definitions supported by
Camunda (e.g. roles definitions using Camunda Admin
Web App.)

RM06 Access rights of roles
modelling

The same as for RM05.

RM07 Definition of constraints
to check data integrity,
e.g., file versions, tool
versions

Can be specified using the delegation technique in
Camunda. In the future, it needs to be synchronized with
the ontology, because the ontology should contain and
manage all kinds of constraints

RM08 Definition of constraints
to check data
completeness, e.g. do
ReleaseNotes exist?

The same as for RM05.

RM09 Explicit modelling of
safety aspects, e.g.,
4eye principle, engineer
!= verifier

Safety aspects can be modelled in the ontology as
constraints (to be implemented). User can edit the
ontology using appropriate ontology editor that facilitates
the definition of the safety aspects.

RM10 Safety risks analysis on
processes, e.g., for
support of hazard
analysis

To be implemented in the Process Monitor component.

RM11 Task duration and
deadline modelling

This is supported by the scheduling part of the system
(Reasoner component). The introduced Answer Set
Programming solver, used for the resource allocation,
scales bad with size so that other logic might need to be
implemented. Another scheduling that could be
implemented is stochastic scheduling, i.e. the assessment
of the resources assignments using statistical process
execution

RM12 Escalation modelling Escalation modelling is managed by the exception handler
that already exists in the BPMN standard of Camunda.
Therefore the exceptions can be appropriately handled.

RM13 Specification of In the document generator, .doc files comments can be

SHAPE FFG-2014-845638

14

Table 4. Evaluation of the modeling time requirements with regard to the current system’s

architecture

templates (documents,
e-mails, checklists) with
placeholders for
artefacts
e.g., e-mail template for
release letter of tool
outputs to subsequent
engineers, e.g., release
letter to the customer,
with actual data file
links/locations/versions,
e.g., checklist template
for verifiers

added to the document in order to specify which
information is to be documented (e.g. project name, users,
tasks). Email and other kinds of templates need to be
implemented.

SHAPE FFG-2014-845638

15

Requirement Description Evaluation with regard to the current
architecture

RR01 Process engine monitors/guides
engineers at runtime

All activities in the process are inherently
stored in Camunda logs.

RR02 Notification/requests of process
steps via e-mail

To be implemented. It can be added using
Camunda delegation technique.

RR03 Notification/requests of process
steps via web interface

Inherently implemented via task lists in
Camunda

RR04 Complete documentation of
process steps during runtime (log
file)

The same as for RR01.

RR05 Integration/examination of e-mail
traffic, e.g., tags in emails cause
starting/finishing of activities

To be implemented. A problem that might
occur is a security problem during accessing of
the companies’ servers infrastructure

RR06 Integration/examination of
SharePoint traffic, e.g.
finished/changed documents
start/finish activities

To be implemented as a part of the process
mining.

RR07 Integration/examination of
SVN/GIT traffic
e.g., commit automatically
finishes activity

SVN analysis is implemented.

RR08 Integration of people directory To be implemented.
RR09 Assignment of actual persons to

roles (people resolution)
To be defined in the ontology constraints or
optimized by the Reasoner component using
the ASP logic.

RR10 Assignment of actual persons to
tasks based on
availability/workload/custom
weighting

Implemented by scheduling.

RR11 Access rights checking (roles
based, based on policy model)

Implemented in the Ontology constraints.

RR12 Deadline and effort tracking
by logging of activity/process
durations

The same as for RR01.

RR13 Deadline and effort prediction
e.g., not enough available
engineer-hours to meet deadline

Implemented in scheduling.

RR14 Synchronization with project
planning
e.g., with Enterprise Project
Management (EPM)

To be implemented. The calculated scheduled
distribution of assignments can be aligned with
the project plan, i.e. the requirements from the
project plan can be added as constraints to the
scheduling process.

RR15 Detection of process deviations
e.g., incomplete input data used

Inherently implemented in the Camunda
validation, e.g. when the task is completed
validation event is triggered.

RR16 Predictive process deviation
e.g., a predicted failed deadline
causes creation of new activities
like a meeting

To be implemented.

SHAPE FFG-2014-845638

16

Table 5. Evaluation of the runtime requirements with regard to the current system’s architecture

In Tables 4 and 5, we provide the evaluation of the functional requirements of the system. The
evaluation of the non-functional requirements (quality attributes) is shown Table 6.

RR17 Rollback or safe process
continuation in case of a
deviation
e.g., wrong input data -> use
correct input data

Inherently provided by Camunda, e.g.
transactions management, i.e. rolling back to
the previous stable state.

RR18 Compensation handling To be implemented. The main focus of
compensation is to set back the data and state
consistency where an automatic transactional
rollback is not available. It is very useful
technique for long running business processes.

RR19 Continuous process optimization
(automatic detection of process
improvements)

To be implemented by mining the process logs
and adapting the given process. Implementing
adaptations can require complex changes in
the process that sometimes would require
creating a new instance of a process. In that
case, the new instance has to be backward
compatible with the previous one.

RR20 Learning of task durations /
variations

The same as for RR01.

RR21 Automatic generation of
documents/e-mails/checklists –
based on templates
cf. RM14

Implemented in the document generation.

RR22 Automatic generation of a plan
inventory, i.e. a document
consisting of all relevant
artefacts, their locations and
versions

The same as for RR21.

RR23 Checking of data integrity and
completeness constraints and
user notification of constraint
violations
cf. RM08, RM09

Constraints are defined in the ontology and
validated in the Reasoner component.

SHAPE FFG-2014-845638

17

Quality
attribute Description Evaluation with regard to the

current architecture
Flexibility Flexibility reflects the ease with which a

system or component can be modified for
use in applications or environments other
than those for which it was specifically
designed.

Easy changes: document
generation, scheduling analysis
using the ASP logic, ontology
modifications with regard to the
domain

Difficult changes: Camunda process
engine integration with another
process engine (risk: incompatible
process integration APIs)

Extensibility Extensibility is a software design principle
defined as a system’s ability to have new
functionality extended, in which the
system’s internal structure and data flow
are minimally or not affected, particularly
that recompiling or changing the original
source code is unnecessary when
changing a system’s behavior, either by the
creator or other programmers.

Scripting is inherently provided by
Camunda (e.g. .js, .groovy external
scripts can be called). In that way
any additional operations with tasks
can be easily integrated.

Multiple process definitions
(versions) can exist in parallel and
communicate with each other.

Interoperability Interoperability is the ability of a system or
different systems to operate successfully
by communicating and exchanging
information with other external systems
written and run by external parties. An
interoperable system makes it easier to
exchange and reuse information internally
as well as externally.

Camunda supports REST and Java
APIs that enable monitoring and
interaction with the process engine.

The communication with other
external systems like SVN or emails
can be easily integrated by using
the Camunda delegation technique.

Rausability Reusability defines the capability for
components and subsystems to be suitable
for use in other applications and in other
scenarios. Reusability minimizes the
duplication of components and also the
implementation time.

Scheduling and document
generation components are
independent from Camunda and
can be reused in any related
scenario.

Camunda process engine limits the
reusability in terms of process
models integration and
interoperability.

Ontology specification can be
reused.

Complexity Architectural complexity reflects the use of
code, components, architectural styles,
best practices, design patterns, etc. beyond
the minimum needed to fulfill the
functional requirements to the system.

The system is pretty complex and
use different technologies: java ee
technology stack, Camunda, RDF
ontology. This can complicate
testing.

SHAPE FFG-2014-845638

18

Architectural complexity can be measured
in terms of code size, number of
components and classes, and
entanglement (i.e., lack of separation of
concerns).
Architectural complexity is not necessarily
induced by programming complexity, as
defined in software engineering literature
(e.g., cyclomatic complexity). Rather, it is a
measure of how much effort and money
has to be spent at present and in the future
for keeping the system running and fulfilling
its function.

Safety Safety is concerned that especially life
critical systems behave as required (doing
no or minimal harm to other
systems/devices) even when components
fail. Safety requirements are the shall
not requirements which exclude unsafe
situations from the possible solution space
of the system. The capabiltity of the
software product to achieve acceptable
levels of risk of harm to people business
software property or the environment in a
specified context of use. The subtype of
defensibility that is the degree to which the
system or architectural component
prevents or reduces the probability or
severity of detects and properly reacts to
Unauthorized unitentional harm to valuable
assets Mishaps Hazards Safety risks

Camunda transactions inherently
support safe execution of processes
(risk: one should know how to
specify Camunda transactions
which is domain specific as well as
how to safely undo external/non-
Camunda actions, e.g. send an
ignore email mail)

Safety constraints for the process
can be defined/verified in the
ontology (risk of potential
unsatisfiable constraints)

Maintainability Maintainability is the ability of the system to
undergo changes with a degree of ease.
These changes could impact components,
services, features, and interfaces when
adding or changing the functionality, fixing
errors, and meeting new business
requirements.

See the Complexity quality attribute.

Composability Composability is a system design principle
that deals with the interrelationships of
components. A highly composable system
provides recombinant components that can
be selected and assembled in various
combinations to satisfy specific user
requirements.

Camunda can be composed with
other programs using its REST APIs
(risk: rest api do not provide full
ability of controlling the process
engine like java APIs that are
Camunda specific).

Auditability Auditability is the degree to which
transactions can be traced and audited
through a system. Auditability means that:
(1) it is possible to establish whether a
system is functioning properly and,

To be defined in the ontology
constraints or optimized by the
Reasoner component using the
ASP logic.

SHAPE FFG-2014-845638

19

Table 6. Evaluation of the non-functional requirements with regard to the current system’s

architecture

Additional evaluation points:

- The documentation of the system needs to be improved: different system views can be
generated in order to facilitate the understanding of the system (e.g. typical 4
architectural views logical, process, development, and deployment). Some partial
description of these views already exists (i.e. the component and deployment diagrams)

- To facilitate the understanding of the mining, monitoring, and scheduling components,
user interfaces for visualizing these data would be useful.

- Connections among different components in the system have to be specified using
corresponding interfaces. For example, connecting ontology with other components in
an appropriate way need to be implemented.

7. Conclusion

To summarize the pursued architecture evaluation we can say the following. Regarding
the required system functionalities, some parts still need to be implemented. However,
the necessary infrastructure for successfully implementing those parts already exists.
Regarding the system non-functional requirements, most of them are or can be
successfully satisfied by further improvements. However, satisfying some non-functional
requirements is very difficult because of the specificities inherently contained in the
chosen software technologies (e.g. the Camunda process engine). The system as a
whole is pretty complex, dealing with many different technologies, which can be a
potential bottleneck for the testing and maintenance. To facilitate the understanding of
the system, the system documentation needs to be improved, the interfaces between
the components need to be clearly defined, and the appropriate UIs need to be
provided.

thereafter, that it has worked properly, (2)
the capability of supporting a systematic,
independent and documented process for
obtaining audit evidence and evaluating it
objectively to determine the extent to which
audit criteria are fulfilled.

Reliability Reliability is the ability of a system or
component to perform its required functions
under stated conditions for a specified
period of time In general reliability is the
ability of a person or system to perform and
maintain its functions in routine
circumstances as well as hostile or
unexpected circumstances.

ASP scheduling logic can
sometimes consume too many
resources in order to find a reliable
solution and it can be a potential
risk in terms of the system response
time.

SHAPE FFG-2014-845638

20

8. References

1. OMG, \BPMN 2.0," recommendation, OMG, 2011.
2. Wil M. P. van der Aalst. 2011. Process Mining: Discovery, Conformance and Enhancement

of Business Processes (1st ed.). Springer Publishing Company, Incorporated.
3. R. M. Dijkman, M. Dumas, and C. Ouyang, \Semantics and analysis of business process

models in BPMN.," Information & Software Technology, vol. 50, no. 12, pp. 1281-1294,
2008.

4. M. Bozzano and A. Villa_orita, Design and safety assessment of critical systems. CRC
Press Taylor & Francis Group, 2010.

5. M. Bozzano and A. Villa_orita, Design and safety assessment of critical systems. CRC
Press Taylor & Francis Group, 2010.

6. Anonymous, \Details omitted for double-blind reviewing," 2015.
7. S. Steyskal and A. Polleres, \De_ning expressive access policies for linked data using the

ODRL ontology 2.0," in SEMANTICS 2014, pp. 20-23, 2014.
8. M. C. Suarez-Figueroa, A. Gomez-Perez, and B. Villazon-Terrazas, “How to write and use

the Ontology Requirements Speci_cation Document," in On the move to meaningful internet
systems: OTM 2009, pp. 966{982, Springer, 2009.

9. N. Russell, W. M. P. van der Aalst, A. H. M. ter Hofstede, and D. Edmond, “Workow
Resource Patterns: Identi_cation, Representation and Tool Support," in CAiSE, pp. 216{232,
2005.

10. C. Cabanillas, D. Knuplesch, M. Resinas, M. Reichert, J. Mendling, and A. Ruiz-Cortes,
“RALph: A Graphical Notation for Resource Assignments in Business Processes," in CAiSE,
vol. 9097, pp. 53-68, Springer, 2015.

11. F. Calimeri, M. Gebser, M. Maratea, and F. Ricca, “Design and results of the fifth answer set
programming competition," Articial Intelligence, vol. 231, 2016.

