
Automated Resource Allocation in Business
Processes with Answer Set Programming?

Giray Havur, Cristina Cabanillas, Jan Mendling, and Axel Polleres

Vienna University of Economics and Business, Austria
{firstname.lastname}@wu.ac.at

Abstract. Human resources are of central importance for executing and
supervising business processes. An optimal resource allocation can dra-
matically improve undesirable consequences of resource shortages. How-
ever, existing approaches for resource allocation have some limitations,
e.g., they do not consider concurrent process instances or loops in busi-
ness processes, which may greatly alter resource requirements. This pa-
per introduces a novel approach for automatically allocating resources
to process activities in a time optimal way that is designed to tackle
the aforementioned shortcomings. We achieve this by representing the
resource allocation problem in Answer Set Programming (ASP), which
allows us to model the problem in an extensible, modular, and thus
maintainable way, and which is supported by various efficient solvers.

Keywords: Answer Set Programming, business process management,
resource allocation, timed Petri net, work scheduling

1 Introduction

Human resources1 are crucial in business process management (BPM) as they
are responsible for process execution or supervision. A lack of resources or a
suboptimal work schedule may produce delayed work, potentially leading to a
reduced quality and higher costs.

In this paper, we address the problem of allocating the resources available in
a company to the activities in the running process instances in a time optimal
way, i.e., such that process instances are completed in the minimum amount
of time. Our approach lifts limitations of prior research pursuing similar goals,
which assumes simplified non-cyclic processes and does not necessarily search for
an optimal resource allocation [1,2]. To this end, we rely on Answer Set Program-
ming (ASP) [3], a declarative knowledge representation and reasoning formalism
that is supported by a wide range of efficient solvers. ASP has been successfully
used to address planning and configuration problems in other domains [4].

Our solution is divided into three layers: The core layer represents process
models in ASP. The second layer adds all the information related to time, such

? Funded by the Austrian Research Promotion Agency (FFG), grant 845638 (SHAPE).
1 From now on resources for the sake of brevity.

2 Havur et al.

(a) Process to publish a book (b) Organisational model
Fig. 1: Running example

as the estimated activity durations. Finally, resource-related information includ-
ing, among others, the characteristics of the resources available according to an
organisational model as well as the conditions that must be fulfilled to assign
resources to activities (e.g., to have a specific organisational role), is encoded on
top of these two layers. An ASP solver can use all this data to compute possi-
ble optimal solutions for the resource allocation problem. We have evaluated our
approach with a proof-of-concept implementation and we have measured its per-
formance with non-trivial scenarios that contain loops and concurrent process
instances.2

Our modular encodings in ASP provide flexibility and extensibility so that,
e.g., additional instances of pre-defined processes can be added. In addition,
the declarative nature of the encodings of constraints enables an executable
specification of the problem.

The paper is structured as follows: Section 2 presents a scenario that moti-
vates this work as well as related work. Section 3 defines technical background
required to understand our approach. Section 4 describes our modular approach
for resource allocation in business processes with ASP. Section 5 presents the
evaluations performed and Section 6 concludes and outlines future work.

2 Background

In the following, we describe an example scenario that motivates this work and
shows the problems to be addressed, and then we outline related work.

2.1 Running Example

In this paper we rely on (timed) Petri nets [5] for business process modelling,
commonly used for this purpose due to their well defined semantics and their
analysis capabilities. Nonetheless, any process modelling notation can be used
with our approach as long as it can be mapped to Petri nets, for which several
transformations have already been defined [6]. Fig. 1a depicts a model repre-
senting the process of publishing a book from the point of view of a publish-
ing entity. In particular, when the publishing entity receives a new textbook
manuscript from an author, it must be proofread. If changes are required, the

2 Our encoding and the problem instances are provided at http://goo.gl/lzf1St

Automated Resource Allocation in Business Processes with ASP 3

modifications suggested must be applied on text and figures, which can be done
in parallel. This review-and-improvement procedure is repeated until there are
no more changes to apply, and the improved manuscript is then sent back to the
author for double-checking. In Fig. 1a, the numbers above the activities indicate
their (default maximum) duration in generic time units (TU)3.

The organisational model depicted in Fig. 1b shows the hierarchy of roles of
a publishing entity. Specifically, it has four roles and five resources assigned to
them. The following relation specifies how long it takes to each role and resource
to complete the process activities: (Role∪Resource)×Activity× TU ⊃{(Copy
Editor, Proofread, 2), (Glen, Proofread, 5), (Drew, Proofread, 2), (Drew, Re-
vise Text, 2)}. For resource allocation purposes, the duration associated with a
specific resource is used in first place followed by the duration associated with
roles and finally, the duration of activities (cf. Fig. 1a). Resources are assigned
to activities according to their roles. In particular, the relation activity-role in
this case is as follows: Role×Activity ⊃{(Publisher, Receive Manuscript), (Copy
Editor, Proofread), (Copy Editor, Revise Text), (Graphic Artist, Revise Visual),
(Admin. Asst., Send Press Release)}.

For the purpose of planning the allocation of resources to process activities
in an optimal way, the following aspects must be taken into consideration: (i)
several process instances can be running at the same time; (ii) the review-and-
improvement procedure is a loop and hence, it may be repeated several times
in a single process instance. Since one cannot know beforehand the number of
repetitions that will be required for each process instance, assumptions must
be made about it. Optimality is reached when the activities in all instances of
a business process are assigned resources so that the overall execution of all
instances takes as little time as possible.

2.2 Related Work

The existing work on resource allocation in business processes has mostly relied
on Petri nets. In fact, the goal we pursue is doable at the Petri net level with
some shortcomings and limitations. Van der Aalst [1] introduced a Petri net
based scheduling approach to show that the Petri net formalism can be used to
model activities, resources and temporal constraints with non-cyclic processes.
However, modelling this information for multiple process instances leads to very
large Petri nets. Moreover, other algorithms for resource allocation proved to
perform better than that approach [7]. Rozinat et al. [2] used Coloured Petri
nets (CPNs) to overcome the problems encountered in traditional Petri nets.
In CPNs, classes and guards can be specified to define any kind of constraints.
However, the approach proposed is greedy such that resources are allocated to
activities as soon as they are available, overlooking the goal of finding an optimal
solution. This may make the allocation problem unsatisfiable.

Several attempts have also been done to implement the problem as a con-
straint satisfaction problem. For instance, Senkul and Toroslu [8] developed an
architecture to specify resource allocation constraints and a Constraint Program-

3 Please, note that events are instantaneous, and hence, they take zero time units.

4 Havur et al.

ming (CP) approach to schedule a workflow according to the constraints defined
for the tasks. However, they aimed at obtaining a feasible rather than an op-
timal solution and the approach does not support the schedule of concurrent
workflows. Besides, Heinz and Beck [9] demonstrated that models such as Con-
straint Integer Programming (CIP) outperform the standard CP formulations.
In addition, loops are disregarded in these approaches.

Resource allocation in projects has been widely investigated [10, 11]. How-
ever, projects differ from business processes in that they are typically defined to
be executed only once and decision points are missing. Therefore, the problem is
approached in a different way. The agent community has also studied how to dis-
tribute a number of resources among multiple agents [12,13]. Further research in
necessary to adapt those results to resource allocation in business processes [14].

3 Preliminaries

Timed Petri Nets [15] associate durations with transitions: a timed Petri net
is a 5-tuple NT = 〈P, T, F, c,M0〉 such that P is a finite set of places, T is a finite
set of transitions, with P ∩ T = ∅, F ⊂ (P × T) ∪ (T × P) describes a bipartite
graph, M0 is the initial marking. and c : T → N is a function that assigns firing
delays to every transition t ∈ T . Here, a marking(state) M : P → Z+ assigns to
each place a non-negative integer, denoting number of tokens in places. For each
t ∈ T the input place set •t = {p ∈ P | (p, t) ∈ F}. The output place set t•, and
analogously input •p (and output p•,resp.) transition sets of a place p ∈ P can

be defined analogously. A transition may fire, written
t−→, when all p ∈ •t have

tokens: all tokens in •t are consumed and tokens produced in each p ∈ t•.
A Fig. 1a shows an example of a timed Petri net: circles represent places,

squares represent transitions, and numbers in brackets on transitions denote
firing delays. Filled squares denote “silent” transitions that have no firing delays,
i.e., c(t) = 0. However, note that also normal transitions that correspond to
activities can have no delay, e.g., tm in Fig. 1a.

A marking Mk is reachable from Mk−1 in one step if Mk−1
tk−1−−−→ Mk. A

firing sequence of transitions −→σ = 〈t1t2...tn〉 changes the state of the Petri net

at each firing: M0
t1−→M1

t2−→M2
...−→Mn. In this paper we use 1-safe Petri nets,

i.e., each place contains at most one token in any state. NT is called sound if
from every reachable state, a proper final state can be reached in N . NT is called
free-choice if every for transitions t1 and t2, •t1 ∩ •t2 6= ∅ implies •t1 = •t2.

Answer Set Programming (ASP) [3, 16] is a declarative (logic-
programming-style) paradigm for solving combinatorial search problems

An ASP program Π is a finite set of rules of the form

A0:-A1, . . . , Am,not Am+1, . . . ,not An. (1)

where n≥m≥ 0 and each Ai ∈σ are (function-free first-order) atoms; if A0 is
empty in a rule r, we call r a constraint, and if n = m = 0 we call r a fact.
Whenever Ai is a first-order predicate with variables within a rule of the form
(1), this rule is considered as a shortcut for its “grounding” ground(r), i.e.,
the set of its ground instantiations obtained by replacing the variables with all

Automated Resource Allocation in Business Processes with ASP 5

possible constants occurring in Π. Likewise, we denote by ground(Π) the set of
rules obtained from grounding all rules in Π.

Sets of rules are evaluated in ASP under the so-called stable-model semantics,
which allows several models (so called “answer sets”), that is subset-minimal
Herbrand models, we again refer to [16] and references therein for details.

ASP Solvers typically first compute (a subset of ground(Π), and then use a
DPLL-like branch and bound algorithm is used to find answer sets for this ground
program. There are various solvers [17,18] for ASP problem specifications, we use
clasp [3] for our experiments herein (cf. Section 5), as one of the most efficient
implementations available.

As syntactic extension, in place of atoms, clasp allows set-like
choice expressions of the form E = {A1, . . . , Ak} which are true for any
subset of E; that is, when used in heads of rules, E generates many an-
swer sets, and such rules are often referred to as choice rules. For instance,
Π4 = {lights on.{shop open, door locked}:-lights on.} has both answer sets of
Π3 plus the answer set {lights on}. Note that in the presence of choice rules,
answer sets are not necessarily subset-minimal, we refer to [3] for details.

Another extension supported in clasp are optimisation statements [3] to in-
dicate preferences between possible answer sets:

#minimize {A1 : Body1 = w1, . . . , Am : Bodym = wm}
associates integer weights (defaulting to 1) with atoms Ai (conditional to Bodyi
being true), where such a statement expresses that we want to find only answer
sets with the smallest aggregated weight sum; again, variables in Ai : Bodyi = wi

are replaced at grounding w.r.t. all possible instantiations.
Finally, many problems conventiently modelled in ASP require a boundary

parameter k that reflects the size of the solution. However, often in problems like
planning or model checking this boundary (e.g., the plan length) is not known
upfront, and therefore such problems are addressed by considering one problem
instance after another while gradually increasing this parameter k. However,
re-processing repeatedly the entire problem is a redundant approach, which is
why incremental ASP (iASP) [3] natively supports incremental computation
of answer sets; the intuition is rooted in treating programs in program slices
(extensions). In each incremental step, a successive extension of the program is
considered where previous computations are re-used as far as possible.

An iASP program is a triple (B,A[k], Q[k]), where B describes static knowl-
edge, and A[k] and Q[k] are ASP programs parameterized by the incremental
parameter k ∈ N+. In the iterative answer set computation of iASP, while the
knowledge derived from the rules in A[k] accumulates as k increases, the knowl-
edge obtained from Q[k] is only considered for the latest value of k. A[k] and Q[k]
are called cumulative knowledge and volatile knowledge, resp. More formally, an
iASP solver computes in each iteration i

Π[i] = B ∪
⋃

1≤j≤iA[k/j] ∪Q[k/i]

until an answer set for some (minimum) integer i ≥ 1 is found. We will demon-
strate next, how iASP can be successfully used to model and solve various vari-
ants of resource allocation problems in business process management.

6 Havur et al.

4 Resource Allocation with iASP

For tackling the problem of resource allocation in business processes, we have
developed a modular iASP program consisting of three layers. The bottom layer
is the generic iASP encoding ΠN for finding a firing sequence between initial
and goal markings of a 1-safe Petri net N . This provides a marking of N at each
value of parameter k. On a second layer we extend ΠN towards ΠT to encode
timed Petri Nets, i.e., we support business processes encoded as timed Petri nets
whose activities can have a duration. Consequently, this encoding cannot only
compute possible markings, but also the overall duration for a firing sequence.
In other words, now we also know about the value of the overall time spent time
at a firing sequence of length k. In the upper layer ΠR, we include rules and
constraints about resources in order to encode an iASP program that allocates
activities to available resources for a certain period of time.

Please, note some general assumptions that we make about the structure of
a resource allocation problem: (i) no resource may process more than one activ-
ity at a time; (ii) each resource is continuously available for processing; (iii) no
pre-emption, i.e., each activity, once started, must be completed without inter-
ruptions; and (iv) the processing times are independent of the schedule, and they
are known in advance. These assumptions are common in related approaches [1].

4.1 ΠN : A Generic Formulation of 1-safe Petri Nets

Based on the notions introduced in Section 3, we formalise the firing dynamics
of 1-safe Petri net N = 〈P, T, F,M0〉 in an iASP program (BN , AN [k], QN [k]).
Given a goal state Mk, which for the sake of simplicity we assume to be defined
in terms of a single goal place pg, the aim is to find a shortest possible firing
sequence −→σ = 〈t1t2...tk〉 that does not violate the constraints, from M0 to Mk.

BN : N = 〈P, T, F,M0〉 is represented using predicates inPlaceN (p, t) and
outPlaceN (p, t) that encode F . We encode different instances i of N by the
predicate instanceN , which allows us to run the allocation problem against
different instances of the same process; initial markings of instance M0i are
defined via predicate tokenAtN (P0, k0, i) where for each p ∈ P0, M0(p) = 1.4

AN [k]: is shown in Fig. 2. Rule (2) guesses all subsets of possible firing actions
for each instance of N . Constraint (3) ensures that any transition t ∈ T is fired
only if all input places in •t have tokens. Rule (4) models the effect of the action
fire on output places by assigning a token to each output place in the step
following the firing. Constraint (5) prohibits concurrent firings of transitions
t ∈ p•. Rules (6) and (7) preserve tokens at place p in successive steps if none
of the transitions t ∈ p• fires.

QN [k]: Finally, constraint (8) in Fig. 2 enforces a token to reach the goal place
pg (for all instances i ∈ I). The computation ends as soon as this constraint is
not violated in an iteration of the iASP program, i.e., it computes the minimally
necessary number of iterations k to reach the goal state.

4 Since in the following we only consider instances of the same Petri Net, we will drop
the subscript N in the predicates.

Automated Resource Allocation in Business Processes with ASP 7

AN [k] :

{fire(T, k, I) : inPlace(P, T), instance(I)}. (2)

:-fire(T, k, I), instance(I), inPlace(P, T), not tokenAt(P, k, I). (3)

tokenAt(P, k, I):-fire(T, k− 1, I), outPlace(P, T), instance(I). (4)

:-inPlace(P, T1), inPlace(P, T2), T1! = T2, fire(T1, k, I), fire(T2, k, I), (5)

instance(I).

consumeToken(P, k, I):-inPlace(P, T), fire(T, k, I), instance(I). (6)

tokenAt(P, k, I):-tokenAt(P, k− 1, I), not consumeToken(P, k− 1, I). (7)

QN [k] :

:-not tokenAt(pg, k, I), instance(I). (8)

Fig. 2: 1-safe Petri net formulation in iASP

4.2 ΠT : Activity Scheduling using Timed Petri Net

In order to model activity durations, we extend the above iASP encoding towards
Timed Petri nets: that is, ΠN is enhanced with the notion of time in ΠT . By
doing so, ΠN ∪ ΠT becomes capable of scheduling activities in instances of a
timed Petri net NT .

BT : We expand the input of ΠN with facts related to time and with the rules
that are independent from the parameter k. For each fact tokenAt(p0, k0, i)
previously defined we add in BT a fact timeAt(p0, c0, k0, i) where c0 is the initial
time at p0. In order to distinguish activity transitions and (“silent”) non-activity
transitions5, we add facts activity(t) for all activities. Durations of activities
are specified with facts timeActivity(t,c) where t is an activity and c ∈ Z+.
The remainder of BT is given by rules (9,10) in Fig. 3: rule (9) defines firing
delays of each transition in N and rule (10) assigns duration zero to activity
transitions per default, where the delay is not otherwise specified.

AT [k]: Rule (13) defines the effect of action fire on timeAt for all output
places t• where t is a non-activity transition. In this case, the maximum time
among the input places, which is computed by rules (11,12), is propagated over
all output places. As opposed to (13), rule (14) defines the effect of action fire

on timeAt for activity transitions. Time value derived in rule (14) for the next
step is the sum of the maximum time value at the input places and the value
of the activity duration. Rule (15) conserves the time value of a place in the
succeeding step k in case the transition does not fire at step k − 1.

QT [k]: On top of QN [k], an optimization statement (16) is added for computing
answer sets with the minimum time cost.

4.3 ΠR : Resource Allocation

In the last layer of our iASP program, ΠR, we additionally formalise resources
and related concepts. ΠN ∪ΠT ∪ΠR allow allocating resources to activities for
a time optimal execution of all defined instances of NT .

5 Recall: in Petri nets representing business processes, activity transitions are empty
squares while silent transitions are represented in filled squares (cf. Fig. 1a).

8 Havur et al.

BT :

firingDelay(T, C):-timeActivity(T, C). (9)

firingDelay(T, 0):-not timeActivity(T,), activity(T). (10)

AT [k] :

greTimeInPlace(P1, T, k, I):-inPlace(P1, T), inPlace(P2, T), fire(T, k, I), (11)

timeAt(P1, C1, k, I), timeAt(P2, C2, k, I), P1! = P2,

C1 < C2, instance(I).

maxTimeInPlace(P, T, k, I):-inPlace(P, T), not greTimePlace(P, T, k, I), (12)

fire(T, k, I), instance(I).

timeAt(P2, C, k, I):-not activity(T), fire(T, k− 1, I), outPlace(P2, T), (13)

maxTimeInPlace(P, T, k− 1, I), timeAt(P, C, k− 1, I),

instance(I).

timeAt(P2, C1, k, I):-activity(T), fire(T, k− 1, I), outPlace(P2, T), (14)

maxTimeInPlace(P, T, k− 1, I), timeAt(P, C, k− 1, I),

firingDelay(T, D), C1 = C + D, instance(I).

timeAt(P, C, k, I) :-not consumeToken(P, k− 1, I), inPlace(P, T), (15)

timeAt(P, C, k− 1, I), instance(I).

QT [k]′ :

#minimize{timeAt(pg, C, k, I) : instance(I) = C} (16)

Fig. 3: Scheduling extension

BR: The facts related to resources and organisational models are defined
in the input of ΠT . An example organisational model is shown in Fig. 1b.
Facts hasRole(r,l) relates a resource r to a role l. Activities are related to
a role via facts of the form canExecute(l,t), which means that a role l is
allowed to performing an activity t. An optional estimated duration for a re-
source to execute an activity can be defined by timeActivityResource(t,r,c).
Similarly an optional estimated duration for a role per activity can
be defined by timeActivityRole(t,l,c). Both can override the default
timeActivity(t,c). In particular, the order (>) preferred in resource-time allo-
cation is timeActivityResource > timeActivityRole > timeActivity. This
is especially useful when a resource or a role is known to execute a particular
activity in a particular amount of time, which can be different from the default
duration of the activity. In our program (cf. Fig. 4) this preference computation
is encoded in rules (17-21). Rules (17,18) are projections of optionally defined
activity execution durations. Rules (19-21) derive correct execution duration for
resource-activity pairs considering both mandatory and optional durations.

AR[k]: In the iterative part, rule (22) allocates a resource r to an activity t
from time c to time c2. Note that, for handling optional execution durations, rule
(14) from Fig. 3 is replaced by rule (14)*. Rule (23) along with constraint (24)
prohibits any firing of an activity transition that is not allocated to a resource.
Constraint (25) ensures that an activity cannot be assigned to more than one

Automated Resource Allocation in Business Processes with ASP 9

BR :

existsTimeActivityResource(T, R):-timeActivityResource(T, R, C). (17)

existsTimeActivityRole(T, L):-timeActivityRole(T, L, C), hasRole(R, L). (18)

takesTime(T, R, C):-timeActivityResource(T, R, C). (19)

takesTime(T, R, C):-timeActivityRole(T, L, C), hasRole(R, L), canExecute(L, T), (20)

not existsTimeResource(T, R).

takesTime(T, R, C):-firingDelay(T, C), hasRole(R, L), canExecute(L, T), (21)

not existsTimeActivityResource(T, R),

not existsTimeActivityRole(T, L).

AR[k] :

{assign(R, T, C, C2, k, I) : takesTime(T, R, C), C2 = C + D}:-inPlace(P1, T), (22)

timeAt(P1, C, k, I), activity(T), instance(I).

timeAt(P2, C2, k, I):-activity(T), assign(R, T, C1, C2, k− 1, I), (14)*

fire(T, k− 1, I), outPlace(P2, T), instance(I).

assigned(T, k, I):-assign(R, T, C1, C2, k, I). (23)

:-not assigned(T, k, I), fire(T, k, I), activity(T), instance(I). (24)

:-assign(R, T, C1, C2, K, I), assign(R1, T, C3, C4, K, I), R! = R1. (25)

:-assign(R, T1, C1, C2, K1, I1), assign(R, T2, C1, C2, K2, I2), C1! = C2, T1! = T2. (26)

:-assign(R, T, C1, C2, K1, I1), assign(R, T, C1, C2, K2, I2), C1! = C2, I1! = I2. (27)

:-assign(R, T1, C1, C2, K1, I1), assign(R, T2, C1, C2, K2, I2), (28)

C1! = C2, I1! = I2, T1! = T2.

:-assign(R, T, B1, B2, K1, I), assign(R, T2, A1, A2, K2, I2), A1 > B1, A1 < B2. (29)

:-assign(R, T, B1, B2, K1, I), assign(R, T2, A1, A2, K2, I2), A2 < B2, A2 > B1. (30)

Fig. 4: Allocation extension

resource. Constraints (26-28) guarantee that only one resource is assigned to one
activity at a time. Constraints (29,30) prevents a busy resource to be re-assigned.

Time Relaxation In case a resource is busy at the time when s/he is required
for another activity, our program would be unsatisfiable as it is. We add rules
(31) and (32) (cf. Fig. 5) into AT [k] for allowing the demanding activity to wait
until the required resource is available again.

5 Evaluation

We demonstrate the applicability and effectiveness of the proposed computa-
tional method for resource allocation in business processes by using it with a
specific process. In order to measure performance and scalability, we conduct a
batch experiment using generated examples of timed Petri nets of different sizes.

AT [k]′ :

relaxationAt(P, C + 1, k, I):-timeAt(P, C, k− 1, I), inPlace(P, T), activity(T), (31)

not consumeToken(P, k− 1, I), instance(I).

timeAt(P, C, k, I):-relaxationAt(P, C, k, I). (32)

Fig. 5: Time relaxation for optimality

10 Havur et al.

Fig. 6: Instance I - 2 loop repetitions / instance II - 3 loop repetitions / instance
III - 1 loop repetition

5.1 Example Scenario

We apply our method to a business process model that specifies the process of
publishing a book as described in Section 2.1. The input of the program encoded
in ASP following the explanations in Section 4 is: (i) three different instances
i1, i2, i3 of the timed Petri net depicted in Fig. 1a, whose starting times are
defined as t0i1 = 0, t0i2 = 6 and t0i3 = 11, respectively; (ii) the organisational
model and optional activity times for resources and roles as shown in Fig. 1b,
(iii) role-activity relation defined in Section 2. We also add additional constraints
for enforcing the firing sequence to go through the loop present in the process
two, three and one times for i1, i2 and i3, respectively.

The computed optimal resource allocation is visualised in Fig. 6. The alloca-
tion periods are depicted as coloured rectangles with a tag on it. Each tag has
three parts: an initial with the initials of a resource, a short version of the allo-
cated activity name and a subscript representing the instance ID. For example,
D : PR1 means that Drew is allocated to activity Proofreading. The colours of
these rectangles correspond to the colours used for the roles depicted in Fig. 1b.
Note that Amy has more than one roles in the organisation.

The longest process instance i2 finishes in 36 time units. Several solutions
were found for that global minimum time. In Fig. 6, instances 1 and 2 finish
without interruptions. However, instance 3 waits 7 time units for the availability
of Glen to start performing activity Proofread, since he is busy performing that
activity for process instance 2 until time unit 23. All-in-all, this computation
optimises the use of resource Oliver, who is the only Graphic Artist and is
required in all the process instances. Please, note that, e.g., in instance 2 Drew
is selected to perform activity Proofread because it takes him only 2 time units
(cf. Fig. 1b), half of the default duration associated with the activity (cf. Fig. 1a).
This responds to the preference order described in Section 4.3.

Automated Resource Allocation in Business Processes with ASP 11

id |I| |L| |f(T)| k s m

1 1 1 10 8 1.13 10.2

2 2 1 20 21 7.38 72.2

3 3 1 38 9 176.45 432.1

4 1 2 10 3 0.57 0

5 2 2 20 21 83.03 459.4

6 3 2 42 31 199.46 756.8

7 1 3 10 11 1.27 17.9

8 2 3 20 16 28.57 229

9 3 3 38 21 85.73 475.1

id |I| |L| |f(T)| k s m

10 1 1 24 4 15.02 101.6

11 2 1 48 25 90.87 419

12 3 1 72 33 193.72 372.9

13 1 2 28 29 33.96 186.2

14 2 2 60 7 1314.73 2877.2

15 3 2 n/a n/a 10800 5744.1

16 1 3 24 25 17.5 83.9

17 2 3 48 28 161.15 496.5

18 3 3 96 4 2366.24 4473.9

Table 1: Experiments: (1-9) Loops not enforced, (10-18) Loops enforced

5.2 Performance

For our experimental evaluation, we generated a set of sound choice-free timed
Petri nets (cf. Section 3). We varied the number of existing loops in these Petri
nets and the number of parallel process instances. We use the same organisational
model for all of the generated Petri nets, specifically the one depicted in Fig. 1b.
We performed these experiments on a Linux server (4 CPU cores/2.4GHz/32GB
RAM). clasp was used as ASP solver with the multi-threading mode enabled.

The results are shown in Table 1 in two parts. In the programs on the left hand
side (1-9), no transitions in the loops are enforced to be fired. In the programs
on the right hand side (10-18), each loop in the Petri net is constrained to be
followed at least one time. The columns of the table are as follows: id is the
identifier of a generated program, |I| is the number of parallel instances, |L| is
the number of loops, |f(T)| is the number of fired transitions from initial to goal
state, k is the final value of that parameter, s is the time in seconds to find the
answer set of the program, and m is the maximum memory usage in megabytes.

For instance, it takes the solver 1.13 seconds to find an answer set for a Petri
net with one loop that is not enforced at run time, and 15.02 seconds for a similar
Petri net in which the loop is executed. This is satisfactory for many planning
scenarios with large processes, as they can be scheduled in a few seconds/minutes
and executed for a long period of time.

6 Conclusions and Future Work

We have introduced an approach for automated resource allocation in business
processes that relies on ASP to find an optimal solution. The result is a work
distribution (i.e., an activity allocation) that ensures that all the process activ-
ities can finish in the minimum amount of time given a set of resources. Unlike
similar approaches, it is capable of dealing with cyclic processes and concurrent
process instances as our encoding in ASP is flexible and extensible. Note that
extensions like constraints enforcing separation and binding of duties [19] can be
easily added in our formalism, which we omitted due to space restrictions.

We plan to conduct further performance measurements and compare them
to other formalisms, e.g., constraint solvers. We are confident that there is room

12 Havur et al.

for optimisations (e.g., symmetry breaking [4] or similar techniques) that have
been successfully applied in ASP.

References

1. W.M.P. van der Aalst. Petri net based scheduling. Operations-Research-Spektrum,
18(4):219–229, 1996.

2. A. Rozinat and R. S. Mans. Mining CPN Models: Discovering Process Models with
Data from Event Logs. In Workshop and Tutorial on Practical Use of Coloured
Petri Nets and the CPN, pages 57–76, 2006.

3. Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. An-
swer Set Solving in Practice. Synthesis Lectures on Artificial Intelligence and
Machine Learning. Morgan & Claypool Publishers, 2012.

4. Andreas A. Falkner, Gottfried Schenner, Gerhard Friedrich, and Anna Ryabokon.
Testing object-oriented configurators with ASP. In Workshop on Configuration at
ECAI 2012, pages 21–26, 2012.

5. Tadao Murata. Petri nets: Properties, analysis and applications. IEEE, 77(4):541–
580, 1989.

6. Niels Lohmann, Eric Verbeek, and Remco Dijkman. Petri Net Transformations for
Business Processes - A Survey. Transactions on Petri Nets and Other Models of
Concurrency II, 2:46–63, 2009.

7. J. Carlier and E. Pinson. An Algorithm for Solving the Job-shop Problem. Manage.
Sci., 35(2):164–176, February 1989.

8. Pinar Senkul and Ismail H. Toroslu. An Architecture for Workflow Scheduling
Under Resource Allocation Constraints. Inf. Syst., 30(5):399–422, July 2005.

9. Stefan Heinz and Christopher Beck. Solving Resource Allocation/Scheduling Prob-
lems with Constraint Integer Programming. In COPLAS 2011, pages 23–30, 2011.

10. Jan Weglarz. Project Scheduling with Continuously-Divisible, Doubly Constrained
Resources. Management Science, 27(9):1040–1053, 1981.

11. M.H.A. Hendriks, B. Voeten, and L. Kroep. Human resource allocation in a multi-
project R&D environment: Resource capacity allocation and project portfolio plan-
ning in practice. Int. J. of Project Management, 17(3):181–188, 1999.

12. Yann Chevaleyre, Paul E. Dunne, Ulle Endriss, Jrme Lang, Michel Lematre, Nico-
las Maudet, Julian Padget, Steve Phelps, Juan A. Rodrguez-aguilar, and Paulo
Sousa. Issues in multiagent resource allocation. Informatica, 30:2006, 2006.

13. Chongjie Zhang, Victor Lesser, and Prashant Shenoy. A Multi-Agent Learning
Approach to Online Distributed Resource Allocation. In International Joint Con-
ference on Artificial Intelligence (IJCAI’09), volume 1, pages 361–366, 2009.

14. Yuhong Yan, Z. Maamar, and Weiming Shen. Integration of workflow and agent
technology for business process management. In Computer Supported Cooperative
Work in Design, pages 420–426, 2001.

15. Louchka Popova-Zeugmann. Time Petri Nets. In Time and Petri Nets, pages
139–140. Springer Berlin Heidelberg, 2013.

16. Gerhard Brewka, Thomas Eiter, and Miros law Truszczyński. Answer set program-
ming at a glance. Communications of the ACM, 54(12):92–103, 2011.

17. Francesco Calimeri, Martin Gebser, Marco Maratea, and Francesco Ricca. The
Design of the Fifth Answer Set Programming Competition. CoRR, 2014.

18. Marijn JH Heule and Torsten Schaub. What’s Hot in the SAT and ASP Compe-
titions. In AAAI, 2015.

19. Maria Leitner and Stefanie Rinderle-Ma. A systematic review on security in
Process-Aware Information Systems Constitution, challenges, and future direc-
tions. Information and Software Technology, 56(3):273 – 293, 2014.

