
Resource Allocation with Dependencies
in Business Process Management Systems?

Giray Havur, Cristina Cabanillas, Jan Mendling, and Axel Polleres

Vienna University of Economics and Business, Austria
{firstname.lastname}@wu.ac.at

Abstract. Business Process Management Systems (BPMS) facilitate
the execution of business processes by coordinating all involved resources.
Traditional BPMS assume that these resources are independent from one
another, which justifies a greedy allocation strategy of offering each work
item as soon as it becomes available. In this paper, we develop a formal
technique to derive an optimal schedule for work items that have de-
pendencies and resource conflicts. We build our work on Answer Set
Programming (ASP), which is supported by a wide range of efficient
solvers. We apply our technique in an industry scenario and evaluate its
effectiveness. In this way, we contribute an explicit notion of resource
dependencies within BPMS research and a technique to derive optimal
schedules.

Keywords: Answer Set Programming, optimality, resource allocation,
resource requirements, work scheduling

1 Introduction

Business Process Management Systems (BPMS) have been designed as an inte-
gral part of the business process management (BPM) lifecycle by coordinating
all resources involved in a process including people, machines and systems [1].
At design time, BPMS take as input a business process model enriched with
technical details such as role assignments, data processing and system interfaces
as a specification for the execution of various process instances. In this way, they
support the efficient and effective execution of business processes [2].

It is an implicit assumption of BPMS that work items are independent from
one another. If this assumption holds, it is fine to put work items in a queue and
offer them to available resources right away. This approach of resource allocation,
can be summarized as a greedy strategy. However, if there are dependencies be-
tween work items, this strategy can easily become suboptimal. Some domains like
engineering or healthcare have a rich set of activities for which various resources,
human and non-human, are required at the same time. Resource conflicts have
often the consequence that working on one work item blocks resources such that
other work items cannot be worked on. This observation emphasizes the need
for techniques to make better use of existing resources in business processes [3].

?
Funded by the Austrian Research Promotion Agency (FFG) grant 845638 (SHAPE).

2 Havur et al.

In this paper, we address current limitations of BPMS with respect to taking
such resource constraints into account. We extend prior research on the inte-
gration of BPMS with calendars [4] to take dependencies and resource conflicts
between work items into account. We develop a technique for specifying these
dependencies in a formal way in order to derive a globally optimal schedule for
all resources together. We define our technique using Answer Set Programming
(ASP), a formalism from logic programming that has been found to scale well
for solving problems as the one we tackle [5]. We evaluate our technique using
an industry scenario from the railway engineering domain. Our contribution to
research on BPMS is an explicit notion of dependence along with a technique to
achieve an optimal schedule.

The paper is structured as follows. Section 2 presents and analyzes an indus-
try scenario. Section 3 conceptually describes the resource allocation problem.
Section 4 explains our ASP-based solution and how it can be applied to the
industry scenario. Section 5 evaluates the solution. Section 6 discusses related
work. Section 7 summarizes the conclusions of the work and the future steps.

2 Motivation

In the following, we describe an industry scenario that leads us to a more detailed
definition of the resource allocation problem and its complexity.

2.1 Industry Scenario

A company that provides large-scale technical infrastructure for railway automa-
tion requires rigorous testing for the systems deployed. Each system consists of
different types and number of hardware that are first set up in a laboratory. This
setup is executed by some employees specialized in different types of hardware.
Afterwards, the simulation is run under supervision.

Figure 1 depicts two process models representing the setup and run phases
of two tests. We use (timed) Petri nets [6] for representing the processes. The
process activities are represented by transitions (ai). The number within square
brackets next to the activities indicates their (default maximum) duration in
generic time units (TU). The numbers under process names indicate the start-
ing times of the process executions: 8 TU for Test-1 and 12 TU for Test-2.
The processes are similar for all the testing projects but differ in the activities
required for setting up the hardware as well as in the resource requirements as-
sociated with them. Certain resources can only be allocated to activities during
working periods, i.e., we want to enforce time intervals (so called breaks) where
some resources are not available. In our scenario, no resource is available in the
intervals [0, 8),[19, 32),[43, 56), and [67, 80).

For completing tests, the available non-human resources in the organization
include 13 units of space distributed into 2 laboratories (Table 1) and several
units of 3 types of hardware (Table 2). The human resources of the company are
specialized in the execution of specific phases of the two testing projects, whose

Resource Allocation with Dependencies in BPMS 3

t2start

t1end

TEST-1 TEST-2

S
E
T
U
P

R
U
N

[2] [2] [2] [5] [5] [5] [5] [6] [6] [6]

[10] [15]
4 2t2end

t1start

a12a5

a1 a2 a3 a4 a6 a7 a8 a9 a10 a11

Fig. 1: Workflow for two projects

activities are able to complete in a specific time. Table 3 shows available re-
sources in different process phases and therefore, their ability to conduct certain
activities along with their years of experience in the company in square brackets.

The requirements on the use of such resources in the process activities are
shown in Table 4. Each process activity requires a specific set of resources for its
completion. For instance, three of the activities involved in the setup of Test-1
require 1 employee working on 1 unit of the hardware HW-1 in a laboratory; 1
setup activity requires 1 employee working on 1 unit of the hardware HW-2 in
a laboratory; and the run activity requires 4 employees. Besides, a test can only
be executed if the whole setup takes place in the same laboratory.

The aim in this scenario is to optimize the overall execution time of simul-
taneous tests and consequently, the space usage in the laboratories.

LAB − 1 LAB − 2

Space 4 9

Table 1: Available space in labs

Type Units

HW1 hw1a, hw1b, hw1c

HW2 hw2a, hw2b, hw2c, hw2d

HW3 hw3a, hw3b, hw3c

Table 2: Available hardware (HW)

Test− 1 Test− 2

Setup Run Setup Run

Glen[7] X X
Drew[7] X
Evan[3] X
Mary[5] X X
Kate[6] X X
Amy[8] X X X

Table 3: Specialization of employees

4 Havur et al.

2.2 Insights

The resource allocation problem
1

deals with the assignment of resources and
time intervals to the execution of activities. The complexity of resource allo-
cation in BPM arises from coordinating the explicit and implicit dependencies
across a broad set of resources and activities of processes as well as from solving
potential conflicts on the use of certain resources. As we observe in our industry
scenario, such dependencies include, among others: (i) resource requirements,
i.e., the characteristics of the resources that are involved in an activity (e.g.,
roles or skills) (cf. Table 3); (ii) temporal requirements. For instance, the du-
ration of the activities may be static or may depend on the characteristics of
the set of resources involved in it, especially for collaborative activities in which
several employees work together (such as for the activities of the run phase of a
testing process). Furthermore, resource availability may not be unlimited (e.g.,
break calendars). In addition, resource conflicts may emerge from interdepen-
dencies between requirements, e.g., activities might need to be executed within
a specific setting which may be associated with (or share resources with) the
setting of other activities (e.g., all the setup activities of a testing process must
be performed in the same laboratory).

A resource allocation is feasible if (1) activities are scheduled with respect
to time constraints derived from activity durations and control flow of the pro-
cess model, and (2) resources are allocated to scheduled activities in accordance
with resource availability and resource requirements of activities. This combi-
natorial problem for finding a feasible resource allocation under constraints is
an NP-Complete problem [7]. However, organizations generally pursue an op-
timal allocation of resources to process activities aiming at minimizing overall
execution times or costs, or maximizing the usage of the resources available. In

presence of objective functions the resource allocation problem becomes ∆
P
2 [8].

3 Conceptualization of the Resource Allocation Problem

Fig. 2 illustrates our conceptualization of the resource allocation problem. We
divide it into three complexity layers related to the aforementioned dependencies

1
Commonly referred as scheduling.

Activities Requirements

T
es

t-
1 a1 − a3 1 Employee:Setup-1, 1 Hardware:HW-1, 1 Lab:a1-a4 same lab

a4 1 Employee:Setup-1, 1 Hardware:HW-2, 1 Lab:a1-a4 same lab

a5 4 Employee:Run-1, after execution(a.e.) release the lab for a1-a4

T
es

t-
2 a6 − a8 1 Employee:Setup-2, 1 Hardware:HW-2, 1 Lab:a6-a11 same lab

a9 − a11 1 Employee:Setup-2, 1 Hardware:HW-3, 1 Lab:a6-a11 same lab

a12 2 Employee:Run-2 (hasExp>5), a.e. release the lab for a6-a11

Table 4: Activity requirements

Resource Allocation with Dependencies in BPMS 5

Resource
Ontology

Activity
Duration

Resource
Allocation

Basic resource allocation

Advanced time management

Advanced resource management

Resource Set

Resource

Aggr.

Optimization
function

time

oc
cu

pa
nc

y
of

 ro
om

 1

co
m

pl
ex

ity

Fig. 2: Resource allocation in business processes

res:Employee res:Hardware res:Lab

xsd:string

res:hasName res:hasSpace

xsd:integer

res:hasExpres:hasRole

xsd:integerres:HW1 res:HW2 res:HW3

: g l en a r e s : Employee ; r e s : name ”Glen ” ; r e s : hasExp 7 ;
r e s : hasRole ” Setup Test1 ” , ”Run Test1” .

: drew a r e s : Employee ; r e s : name ”Drew” ;
r e s : hasExp 7 ; r e s : hasRole ”Run Test1” .

. . .
: lab1 a r e s : Lab , r e s : hasSpace 4 .
: lab2 a r e s : Lab , r e s : hasSpace 9 .
: hw1a a r e s :HW1. : hw1b a r e s :HW1. : hw1c a r e s :HW1.
: hw2a a r e s :HW1. : hw2b a r e s :HW2. : hw2c a r e s :HW2. : hw2d a r e s :HW2.
: hw3a a r e s :HW3. : hw3b a r e s :HW3. : hw3c a r e s :HW3.

Fig. 3: Resource ontology and example instantiation

and resource conflicts. Optimization functions can be applied to all types of allo-
cation problems. This model has been defined from the characteristics identified
in our industry scenario as well as in related literature [9].

3.1 Basic Resource Allocation

Three elements are involved in a basic resource allocation, namely: a model that
stores all the information required about the resources available, information
about the expected duration of the process activities, and a language for defining
the restrictions that characterize the allocation.

6 Havur et al.

Resource Ontology As a uniform and standardized representation language,
we suggest the use of RDF Schema (RDFS) [10] to model organizational informa-
tion and resources. Fig. 3 illustrates a sample RDFS ontology, in which a resource
is characterized by a type and can have one or more attributes. In particular, any
resource type (e.g. Employee) is a subclass of rdfs:Resource. The attributes are all
of type rdf:Property; domain (rdfs:domain) and range of attributes are indicated
with straight arrows labeled with the attribute name, whereas dashed arrows in-
dicate an rdfs:subclassOf. There are three different types of resources: Employee,
Hardware and Lab, where Hardware has three resource subtypes. Employees have
attributes for their name (hasName), role(s) (hasRole) and experience level (ha-
sExp) in the organization (number of years). Labs provide a certain amount of
space for experiments (hasSpace). An instantiation of the ontology is described
at the bottom of the figure using the RDF Turtle syntax [11]. This instantiation
represents Tables 1-3 of the industry scenario.

Activity Duration Resource allocation aims at properly distributing available
resources among running and coming work items. The main temporal aspect
is determined by the expected duration of the activities. The duration can be
predefined according to the type of activity or calculated from previous execu-
tions, usually taking the average duration as reference. This information can be
included in the executable process model as a property of an activity (e.g. with
BPMN [12]) or can be modelled externally. In either case, it has to be accessible
by the allocation algorithm.

Resource Allocation Resource allocation can be seen as a two-step definition
of restrictions. First, the so-called resource assignments must be defined, i.e., the
restrictions that determine which resources can be involved in the activities [13]
according to their properties. The outcome of resource assignment is one or
more

2
resource sets with the set of resources that can be potentially allocated to

an activity at run time. The second step assigns cardinality to the resource sets
such that different settings can be described, e.g. for the execution of activity
a1, 1 employee with role setup-1, 1 hardware of type HW2, and 1 unit space of
a laboratory are required.

There exist languages for assigning resource sets to process activities [13–16].
However, cardinality is generally disregarded under the assumption that only
one resource will be allocated to each process activity. This is a limitation of
current BPMS that prevents the implementation of industry scenarios like the
one described in Section 2.1.

3.2 Advanced Time Management

This layer extends the temporal aspect of resource allocation by taking into ac-
count that: (i) resource availability affects allocation, and that (ii) the resource
sets allocated to an activity may affect its duration. Regarding resource avail-
ability, calendars are an effective way of specifying different resource availability

2
Since several sets of restrictions can be provided, e.g. for activity a1 resources with
either role r1 or skill s1 are required.

Resource Allocation with Dependencies in BPMS 7

status, such as available, unavailable, occupied/busy or blocked [9]. Such infor-
mation must be accessible by the resource allocation module. As for the variable
activity durations depending of the resource allocation, three specificity levels
can be distinguished:

– Resource-set-based duration, i.e., a triple (activity, resourceSet, duration)
stating the (minimum/average) amount of time that it takes to the resources
within a specific resource set (i.e., cardinality is disregarded) to execute
instances of a certain activity. For instance, (a1, technician, 6) specifies that
people with the role technician need (at least/on average) 6 TU to complete
activity a1, assuming that technician is an organisational role.

– Resource-based duration, i.e., a triple (activity, resource, duration) stating
the (minimum/average) amount of time that it takes to a concrete resource
to execute instances of a certain activity. For instance, (a1, John, 8) specifies
that John needs (at least/on average) 8 TU to complete activity a1.

– Aggregation-based duration, i.e., a triple (activity, group, duration) stating
the (minimum/average) amount of time that it takes to a specific group to
execute instances of a certain activity. In this paper, we use group to refer
to a set of human resources that work together in the completion of a work
item, i.e., cardinality is considered. Therefore, a group might be composed
of resources from different resource sets which may not necessarily share a
specific resource-set-based duration. An aggregation function must be im-
plemented in order to derive the most appropriate duration for an activity
when a group is allocated to it. The definition of that function is up to the
organization. For instance, a group might be composed of (John,Claire),
where John has an associated duration of 8 TU for activity a1 and Claire
does not have a specific duration but she has role technician, with an asso-
ciated duration of 6 TU for activity a1. Strategies for allocating the group
to the activity could be to consider the maximum time needed for the re-
sources involved (i.e., 8 TU), or to consider the mean of all the durations
(i.e., 7 TU) assuming that the joint work of two people will be faster than
one single resource completing all the work.

3.3 Advanced Resource Management

The basic resource allocation layer considers resources to be discrete, i.e. they
are either fully available or fully busy/occupied. This applies to many types of
resources, e.g. people, software or hardware. However, for certain types of non-
human resources, availability can be partial at a specific point in time. Moreover,
they may have other fluent attributes. For instance, cumulative resources are
hence characterized by their dynamic attributes and they can be allocated to
more than one activity at a time, e.g. in Fig. 2 there is a resource room 1 whose
occupancy changes over time.

We use the ASP solver clasp [17] due to its efficiency for our experiments. This
allows us to use integer variables as attributes. There are also other extensions
of ASP such as FASP [18] that adds the power to model continuous variables.

8 Havur et al.

3.4 Optimization Function

Searching for (the existence of) a feasible resource allocation ensures that all the
work items can eventually be completed with the available resources. However,
typically schedules should also fulfill some kind of optimality criterion, most
commonly completion of the schedule in the shortest possible overall time. Other
optimization criteria may involve for instance costs of the allocation of certain
resources to particular activities, etc.

Given such an optimization criterion, there are greedy approaches [19] pro-
viding a substantial improvements over choosing any feasible schedule, although
such techniques depend on heuristics and may not find a globally optimal solu-
tion for complex allocation problems.

We refer to [20] for further information on various optimization functions,
but emphasize that our approach will in principle allow arbitrary optimization
functions and finds optimal solutions – similar in spirit to encodings of cost
optimal planning using ASP [21].

4 Implementation with ASP

Answer Set Programming (ASP) [17] is a declarative (logic-programming-style)
paradigm. Its expressive representation language, ease of use, and computational
effectiveness facilitate the implementation of combinatorial search and optimiza-
tion problems (primarily NP-hard). Modifying, refining, and extending an ASP
program is uncomplicated due to its strong declarative aspect.

An ASP program Π is a finite set of rules of the form:

A0 ← A1, . . . , Am,not Am+1, . . . ,not An. (1)

where n≥m≥ 0 and each Ai ∈σ are (function-free first-order) atoms; if A0 is
empty in a rule r, we call r a constraint, and if n = m = 0 we call r a fact.

Whenever Ai is a first-order predicate with variables within a rule of the
form (1), this rule is considered as a shortcut for its grounding ground(r), i.e.,
the set of its ground instantiations obtained by replacing the variables with all
possible constants occurring in Π. Likewise, we denote by ground(Π) the set
of rules obtained from grounding all rules in Π. Sets of rules are evaluated in
ASP under the so-called stable-model semantics, which allows several models,
so called answer sets (cf. [22] for details).

ASP Solvers typically first compute a subset of ground(Π) and then use
a DPLL-like branch and bound algorithm to find answer sets for this ground
program. We use the ASP solver clasp [17] for our experiments as it has proved
to be one of the most efficient implementations available [23].

As syntactic extension, in place of atoms, clasp allows set-like
choice expressions of the form E = {A1, . . . , Ak} which are true for any sub-
set of E; that is, when used in heads of rules, E generates many answer sets,
and such rules are often referred to as choice rules. Another extension supported
in clasp are optimization statements [17] to indicate preferences between possible
answer sets:

#minimize {A1 : Body1 = w1, . . . , Am : Bodym = wm@p}

Resource Allocation with Dependencies in BPMS 9

associates integer weights (defaulting to 1) with atoms Ai (conditional to Bodyi
being true), where such a statement expresses that we want to find only answer
sets with the smallest aggregated weight sum; again, variables in Ai : Bodyi = wi

are replaced at grounding w.r.t. all possible instantiations. Several optimization
statements can be introduced by assigning the statement a priority level p. Rea-

soning problems including such weak constraints are ∆
P
2 -complete.

Finally, many problems conventiently modelled in ASP require a boundary
parameter k that reflects the size of the solution. However, often in problems like
planning or model checking this boundary (e.g. the plan length) is not known
upfront, and therefore such problems are addressed by considering one problem
instance after another while gradually increasing this parameter k. Re-processing
repeatedly the entire problem is a redundant approach, which is why incremen-
tal ASP (iASP) [17] natively supports incremental computation of answer sets;
the intuition is rooted in treating programs in program slices (extensions). In
each incremental step, a successive extension of the program is considered where
previous computations are re-used as far as possible.

A former version of our technique is detailed in [5]. We enhance our encoding
in three folds: (1) basic resource allocation supporting multiple business processes
with multiple running instances, (2) definition of advanced resource management
concepts, and (3) definition of advanced time management concepts. The entire
ASP encoding can be found at http://goo.gl/Q7B2t4.

4.1 Basic Resource Allocation

This program schedules the activities in business processes described as timed
Petri nets (cf. the generic formulation of 1-safe Petri Nets [5, Section 4]) and
allocates resources to activities with respect to activity-resource requirements. To
achieve this, the program finds a firing sequence between initial and goal places
of given processes, schedules the activities in between, and allocates resources
by complying with resource requirements. In our program, a firing sequence
is represented as predicates fire(a,b,i,k), which means that an activity a

of a business process b in instance i is fired at step k. Starting time of each
activity in the firing sequence is derived from the time value accumulated at the
activity’s input place p. A time value at a place p is represented by the predicate
timeAt(p,c,b,i,k), where c is the time value.

A resource set is defined as a rule that derives the members of the set that
satisfy a number of properties. These properties can be class memberships or re-
source attributes defined in resource ontology(cf. Section 3.1). Note that, any re-
source ontology described in RDF(S) can be easily incorporated/translated into
ASP [24]. A resource set is represented with the predicate resourceSet(R,id),
where R is a set of discrete resources and id is the identifier of the set. We explain
the following resource sets following our industry scenario:
All employees that can take part in the setup phase of Test-1:
resourceSet(R,rs set1):-employee(R), hasRole(R,setup1).

All employees that can take part in the run phase of Test-2 and have a working
experience greater than 5 years:
resourceSet(R,rs ex2):-employee(R), hasRole(R,run2), hasExp(E), E>5.

10 Havur et al.

All hardware resources of type HW2:
resourceSet(R,rs h2):-hardware2(R).

After defining resource sets, we define resource requirements of an activity
a with the predicate requirement(a,id,n) where id refers to a specific re-
source set and n is the number of resources that activity a requires from this
set. For instance, requirement(a12,rs ex2,2) means that activity a12 requires
2 resources from the resource set rs ex2. The resource requirements that we
support include typical access-control constraints [13]. In particular, Separation
of duties (SoD) and binding of duties(BoD) are implemented in our program
by using the predicate separateDuties(a1,b1,a2,b2), which separates the re-
sources allocated to the activity a1 of process b1 from the resources allocated to
a2 of b2; and bindDuties(a1,b1,a2,b2), which binds the resources allocated to
the activity a1 of process b1 with the resources allocated to a2 of b2.

4.2 Advanced Time Management

Default durations of activities are defined in the timed Petri nets and rep-
resented as activityDuration(T,D) in our program. This default duration
can be overwritten by d when any resource r that belongs to a resource
set rs is assigned to a certain activity a of the process b by using the
predicate rSetActDuration(rs,a,b,d). In a similar fashion, the default du-
ration can be overwritten by a new value d when a certain resource r

is assigned to a certain activity a of the process b by using the predi-
cate resActDuration(r,a,b,d). The order (>) preferred in activity time
is resActDuration>rSetActDuration>activityDuration. This is especially
useful when a resource or a resource set is known to execute a particular activity
in a particular amount of time, which can be different from the default duration
of the activity.

As one activity can be allocated to a group of resources (cf. Section 3.2), an
aggregation method might be needed. Our default aggregation method identifies
the maximum duration within the group and uses it for allocation. This method
can be modified with different aggregation options that fit in the purpose of
allocation scenario.

In many real-life projects, certain resources are only available during the
working periods (a.k.a. break calendars). We model this by break(rs, c1,c2)

that forbids allocation of resources in the resource set rs between time c1 and
c2, where c1 < c2.

For business process instances and their activities, (optionally, max. or min.)
starting or ending times can be defined using the following predicates:
actStarts(o,a,b,i,c), i.e. activity a in business process b of instance i, starts
<o> at c; actEnds(o,a,b,i,c), i.e. activity a in business process b of instance
i, ends <o> at c; bpiStarts(o,b,i,c), i.e. business process b of instance i,
starts <o> at c; bpiEnds(o,b,i,c), i.e. business process b of instance i, ends
<o> at c; where o∈ {strictly,earliest,latest}.
4.3 Advanced Resource Management

A cumulative resource has an integer value attribute describing the state of the
resource. This value can increase or decrease when the resource is consumed or

Resource Allocation with Dependencies in BPMS 11

te
st

-1
te

st
-2

8 66
a1 a2 a3a4

a5

a9a10a11

a6a8
a7 a12

.................................

lab
-1

lab
-2

18 32 42 56

Fig. 4: Optimal resource allocation for our industry scenario

generated by an activity requiring it. Definition of cumulative resource sets have
one extra term for this reason: resourceSet(R,V,id), where R is the set of
cumulative resources, V is the set of their initial value and id is the identifier of
the resource set. For example:
Lab space set:
resourceSet(R,V,lab space):-lab(R),hasSpace(R,V).

Resource requirements are defined like for discrete resources, where
n is the amount of resource consumed or generated. For instance,
requirement(a1,lab space,1) consumes 1 unit of lab space when a1 is al-
located, whereas requirement(a12,lab space,-6) releases 6 units of space by
the time a12 is completed.

Resource blocking functionality allows us to block some resources between
the execution of two activities in a process. A blocked resource is not allowed to
be allocated by an activity in this period. block(a1,a2,id,n) blocks n amount
of resources in the resource set id from the beginning of a1 to beginning of a2.

4.4 Optimization Function

As aforementioned, the ASP solver clasp allows defining objectives as cost func-
tions that are expressed through a sequence of #minimize statements. In our
encoding, we ensure time optimality of our solutions using a minimization state-
ment. The incremental solver finds an upper-bound time value cupper at step k.
A time optimal solution is guaranteed at step k’ where k’= cupper/min(D), D
is the set of activity durations. In a similar way, any objective that is quanti-
fied with an integer value (e.g. cost objectives, resource leveling, etc.) could be
introduced. When there is more than one objective, they should be prioritized.

Taking into account all the aforementioned functionality, using the encod-
ing summarized above and detailed in http://goo.gl/Q7B2t4, a time optimal
solution for our industry scenario is depicted in Fig. 4. The final allocation of
resources to each activity ai is as follows:

a1 {Amy,hw1a,lab-1(1)} a7 {Mary,hw2a,lab-2(1)}
a2 {Amy,hw1b,lab-1(1)} a8 {Amy,hw2d,lab-2(1)}
a3 {Glen,hw1c,lab-1(1)} a9 {Amy,hw3c,lab-2(1)}
a4 {Glen,hw2b,lab-1(1)} a10 {Mary,hw3b,lab-2(1)}
a5 {Glen,Drew,Ewan,Mary,lab-1(-4)} a11 {Kate,hw3a,lab-2(1)}
a6 {Kate,hw2c,lab-2(1)} a12 {Kate,Amy,lab-2(-6)}

12 Havur et al.

te
st

-1

8
a1 a2 a3

a4

a10

a9
a11

a6 a8
a7

a5

a12

.......................................
lab

-1
lab

-2
te

st
-2

18 32 42 56 66 80 85

Fig. 5: A greedy (suboptimal) resource allocation for our industry scenario
Optimal(Fig. 4) Greedy (Fig. 5)

TET 30 35

AEU 0.61 0.54

Table 5: Result quality comparison

5 Evaluation

Our resource allocation technique not only finds an optimal schedule for activities
in our industry scenario but also consequently optimizes the resource utilization.
We show the improvement in result quality by comparing an optimal allocation
of the scenario (cf. Fig 4) against a greedy allocation, depicted in Fig. 5. We use
the following two criteria for this comparison:
1. Total execution time (TET) corresponds to the end time of the last activity
for each process (e.g. a5 for process Test-1).
2. Average employee utilization (AEU): For any time unit c ∈ C, cstart is the
start time, cend is the end time of process execution, cstart≤c≤cend, a function
s : c → Rb returns an ordered set of billable employees Rb respecting Table 3.
For each element s ∈ Rb a function wc : r → {0, 1} returns whether the employee
r is working at time c. In other words, we first sum the ratio between the number
of employees allocated and the total number of employees that potentially can
take part at each time unit, and normalize this sum using the overall execution
time. AEU is calculated as described by (2).

AEU =

∑cend

i=cstart

∑
r∈s(i) wc(r)

|s(i)|
cend − cstart

(2)

For instance, in Fig. 5, s(8) = {Glen,Drew,Evan,Mary,Amy}. Note that
Kate is not in the set since she only takes part in Test-2 and Test-2 instances have
not started due to the deadline constraint bpStarts(earliest,test-2,12). At
time 8, only wc(Amy) and wc(Glen) have value of 1.

Table 5 summarizes the results obtained using the two aforementioned cri-
teria for the two allocation strategies. The execution of our industry scenario
finishes 5 TU before under optimal allocation, which corresponds to 14% of time
usage improvement while AEU improves 7%. We refer the reader to [5] for scal-

Resource Allocation with Dependencies in BPMS 13

Basic Resource Advanced Time Advanced
Allocation Management Res. Mgmt.

Approach Res. Type A. Level Calendar Aggreg. Dynamism Objective Formalism

[25] Both Low X - - Usage MIP
[26] Both Medium X - - Usage IP
[27] Both High X - - Any Ad-hoc

[28] Both Medium - X - Time&usage LIP
[29] Both Medium - X - Time&usage CP
[30] Both Medium - X - Makespan Ad-hoc

[31] Both Medium - X - - CP
[19] Both Medium - X - Makespan Petri N.
[5] Human Medium - X - Time ASP

Table 6: Representative approaches related to resource allocation

ability of our technique, where we demonstrated that ASP performs well for
resource allocation in the BPM domain.

6 Related Work

Resource allocation has been extensively explored in various domains for ad-
dressing everyday problems, such as room, surgery or patient scheduling in hos-
pitals, crew-job allocation or resource leveling in organizations. Table 6 collects a
set of recent, representative approaches of three related domains: operating room
scheduling [25–27], project scheduling [28–30] and resource allocation in business
processes [5, 19, 31]. The features described in Section 3 are used for comparing

them
3
. Specifically, column Res. Type specifies the type(s) of resource(s) consid-

ered for allocation (human, non-human or both); column A. Level indicates the
expressiveness of the restrictions that can be defined for the allocation, among:
(i) low, when a small range of resource assignment requirements are considered
and only one individual of each resource type (e.g., one person and one room)
is allocated to an activity, i.e., cardinality is disregarded; (ii) medium, when a
small range of resource assignment requirements are considered or cardinality
is disregarded; and (iii) high, when flexible resource assignment and cardinality
are supported; column Calendar refers to whether information about resource
availability is taken into account (a blank means it is not); column Aggreg. indi-
cates whether the execution time of an activity is determined by the resources
involved in it; column Advanced Res. Mgmt. shows the support for cumulative
resources that can be shared among several activities at the same time; column
Objective defines the variable to be optimized; and column Formalism specifies
the method used for resolving the problem.

The concept of process is not explicitly mentioned in the operating room
scheduling problem. Traditional approaches in this field tended to adopt a two-
step approach which, despite reducing the problem complexity, failed to ensure
optimal or even feasible solutions [27]. It is a property of the surgery scheduling

3
We have adopted the vocabulary used in BPM for resource allocation [19,31].

14 Havur et al.

problem that some resources, such as the operating rooms, can only be used in
one project at a time [27], so cardinality is disregarded [25,26]. However, it is im-
portant to take into account resource availability. The most expressive approach
in this domain [27] is an ad-hoc algorithm, whereas integer programming (IP)
stands out as a formalism to efficiently address this problem.

Project scheduling consists of assigning resources to a set of activities that
compose a project, so the concept of workflow is implicit. The approaches in
this domain support cardinality for resource allocation but they rely on only
the resource type for creating the resource sets assigned to an activity. These
approaches implement the so-called resource-time tradeoff, which assumes that
activity completion is faster if two resources of the same type work together
in its execution [28, 29] (cf. Section 3.2). However, they assume a constant per-
period availability of the resources [30], hence calendars are overlooked. The
project scheduling problem has been repeatedly addressed with formalisms like
linear integer programming (LIP) [28] and constraint programming (CP) [29],
yet ad-hoc solutions also exist [30].

Finally, in the domain of BPM, the state of the art in resource allocation
does not reach the maturity level of the other domains despite the acknowledged
importance of the problem [32] and the actual needs (cf. Section 2.1). Similar to
project scheduling, a constant availability of resources is typically assumed. In
addition, due to the computational cost associated to joint resource assignment
and scheduling problems [33], the existing techniques tend to search either for a
feasible solution without applying any optimizations [31]; or for a local optimal
at each process step using a greedy approach that might find a feasible but
not necessarily a globally optimal solution [19]. Nonetheless, recently it was
shown that global optimization is possible at a reasonable computational cost [5].
Moreover, driven by the limitations of current BPMS, which tend to disregard
collaborative work for task completion, cardinality has been unconsidered for
allocation, giving rise to less realistic solutions.

In general, the optimization function depends on the problem and the objec-
tive of the approach but it is generally based on minimizing time, makespan or
cost, or making an optimal use of the resources (a.k.a. resource leveling [34]).

7 Conclusions and Future Work

In this paper we have conceptualized the complex problem of resource allocation
under realistic dependencies that affect resources and activities as well as poten-
tial conflicts that may arise due to simultaneous requirement of resources. Our
implementation based on ASP and its evaluation show that optimal solutions
for this problem are possible, which extends the state of the art in BPM research
and could contribute to extend the support in existing BPMS. ASP has proved
to scale well [23] and can be easily integrated with RDF ontologies [24].

It is not the aim of this work to provide an end-user-oriented but an effective
solution. In order to reasonably use our ASP implementation with a BPMS, it
is required: (i) to map the notation used for process modeling along with the
durations associated with the activities to (timed) Petri nets, for which several

Resource Allocation with Dependencies in BPMS 15

techniques have been designed [35]; and (ii) the integration of languages for
defining all the requirements which could be used by non-technical users in the
system as well as their mapping to ASP. However, to the best of our knowledge,
there is not yet such an expressive end-user-oriented language but languages that
allow a partial definition of the requirements [14,16].

As future work we plan to compare our technique with existing approaches
on other optimal resource allocation techniques, explore the preemptive resource
allocation as well as to apply our technique in other domains.

References

1. G. A. Rummler and A. J. Ramias, “A framework for defining and designing the
structure of work,” in Handbook on Business Process Management 1, pp. 81–104,
Springer, 2015.

2. H. A. Reijers, I. T. P. Vanderfeesten, and W. M. P. van der Aalst, “The effective-
ness of workflow management systems: A longitudinal study,” Int J. Information
Management, vol. 36, no. 1, pp. 126–141, 2016.

3. M. Rosemann and J. vom Brocke, “The six core elements of business process man-
agement,” in Handbook on Business Process Management 1, pp. 105–122, Springer,
2015.

4. R. Mans, N. C. Russell, W. M. P. van der Aalst, A. J. Moleman, and P. J. M.
Bakker, “Schedule-aware workflow management systems,” Trans. Petri Nets and
Other Models of Concurrency, vol. 4, pp. 121–143, 2010.

5. G. Havur, C. Cabanillas, J. Mendling, and A. Polleres, “Automated Resource Allo-
cation in Business Processes with Answer Set Programming,” in BPM Workshops
(BPI), p. In press, 2015.

6. L. Popova-Zeugmann, “Time Petri Nets,” in Time and Petri Nets, pp. 139–140,
Springer Berlin Heidelberg, 2013.

7. D. S. Johnson and M. R. Garey, “Computers and Intractability: A Guide to the
Theory of NP-Completeness,” WH Free. Co., San Fr, 1979.

8. F. Buccafurri, N. Leone, and P. Rullo, “Enhancing disjunctive datalog by con-
straints,” IEEE Trans. on Knowledge and Data Engineering, vol. 12, no. 5, pp. 845–
860, 2000.

9. C. Ouyang, M. T. Wynn, C. Fidge, A. H. ter Hofstede, and J.-C. Kuhr, “Mod-
elling complex resource requirements in Business Process Management Systems,”
in ACIS 2010, 2010.

10. D. Brickley and R. Guha, “RDF Schema 1.1.” W3C Recommendation, Feb. 2014.
http://www.w3.org/TR/rdf-schema/.

11. D. Beckett, T. Berners-Lee, E. Prud’hommeaux, and G. Carothers, “Turtle – Terse
RDF Triple Language.” W3C Candidate Recommendation, Feb. 2014. https:

//www.w3.org/TR/turtle/.
12. OMG, “BPMN 2.0,” recommendation, OMG, 2011.
13. C. Cabanillas, M. Resinas, A. del Ŕıo-Ortega, and A. Ruiz-Cortés, “Specification

and Automated Design-Time Analysis of the Business Process Human Resource
Perspective,” Inf. Syst., vol. 52, pp. 55–82, 2015.

14. W. M. P. van der Aalst and A. H. M. ter Hofstede, “YAWL: Yet Another Workflow
Language,” Inf. Syst., vol. 30, no. 4, pp. 245–275, 2005.

15. L. J. R. Stroppi, O. Chiotti, and P. D. Villarreal, “A BPMN 2.0 Extension to
Define the Resource Perspective of Business Process Models,” in CIbS’11, 2011.

16 Havur et al.

16. C. Cabanillas, M. Resinas, J. Mendling, and A. R. Cortés, “Automated team se-
lection and compliance checking in business processes,” in ICSSP, pp. 42–51, 2015.

17. M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub, Answer Set Solving in
Practice. Morgan & Claypool Publishers, 2012.

18. D. Van Nieuwenborgh, M. De Cock, and D. Vermeir, “Fuzzy answer set program-
ming,” in Logics in Artificial Intelligence, pp. 359–372, Springer, 2006.

19. W. van der Aalst, “Petri net based scheduling,” Operations-Research-Spektrum,
vol. 18, no. 4, pp. 219–229, 1996.

20. R. Roose, “Automated Resource Optimization in Business Processes.” MSc. The-
sis.

21. T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres, “Answer set planning
under action costs,” J. Artif. Intell. Res. (JAIR), vol. 19, pp. 25–71, 2003.

22. G. Brewka, T. Eiter, and M. Truszczyński, “Answer set programming at a glance,”
Communications of the ACM, vol. 54, no. 12, pp. 92–103, 2011.

23. F. Calimeri, M. Gebser, M. Maratea, and F. Ricca, “Design and results of the fifth
answer set programming competition,” Artificial Intelligence, vol. 231, 2016.

24. T. Eiter, G. Ianni, T. Krennwallner, and A. Polleres, “Rules and Ontologies for
the Semantic Web,” in Reasoning Web 2008, vol. 5224, pp. 1–53, 2008.

25. P. M. Castro and I. Marques, “Operating room scheduling with generalized dis-
junctive programming,” Computers & Operations Research, vol. 64, pp. 262–273,
2015.

26. T. A. Silva, M. C. de Souza, R. R. Saldanha, and E. K. Burke, “Surgical scheduling
with simultaneous employment of specialised human resources,” European Journal
of Operational Research, vol. 245, no. 3, pp. 719–730, 2015.

27. A. Riise, C. Mannino, and E. K. Burke, “Modelling and solving generalised oper-
ational surgery scheduling problems,” Computers & Operations Research, vol. 66,
pp. 1–11, 2016.

28. M.-F. F. Siu, M. Lu, and S. AbouRizk, “Methodology for crew-job allocation op-
timization in project and workface scheduling,” in ASCE, pp. 652–659, 2015.

29. W. Menesi, M. Abdel-Monem, T. Hegazy, and Z. Abuwarda, “Multi-objective
schedule optimization using constraint programming,” in ICSC15, 2015.

30. A. Sprecher and A. Drexl, “Multi-mode resource-constrained project scheduling
by a simple, general and powerful sequencing algorithm1,” European Journal of
Operational Research, vol. 107, no. 2, pp. 431 – 450, 1998.

31. P. Senkul and I. H. Toroslu, “An Architecture for Workflow Scheduling Under
Resource Allocation Constraints,” Inf. Syst., vol. 30, pp. 399–422, July 2005.

32. M. Arias, E. Rojas, J. Munoz-Gama, and M. Sepúlveda, “A Framework for Recom-
mending Resource Allocation based on Process Mining,” in BPM 2015 Workshops
(DeMiMoP), p. In press, 2015.

33. M. Lombardi and M. Milano, “Optimal methods for resource allocation and
scheduling: a cross-disciplinary survey,” Constraints, vol. 17, pp. 51–85, 2012.

34. J. Rieck and J. Zimmermann, “Exact methods for resource leveling problems,” in
Handbook on Project Management and Scheduling Vol. 1, Springer, 2015.

35. N. Lohmann, E. Verbeek, and R. Dijkman, “Petri Net Transformations for Business
Processes - A Survey,” Transactions on Petri Nets and Other Models of Concur-
rency II, vol. 2, pp. 46–63, 2009.

