
Towards Formal Semantics for ODRL Policies⋆

Simon Steyskal1,2 and Axel Polleres1

1 Vienna University of Economics and Business, Austria
[firstname.lastname]@wu.ac.at

2 Siemens AG, Vienna, Austria
[firstname.lastname]@siemens.com

Abstract. Most policy-based access control frameworks explicitly
model whether execution of certain actions (read, write, etc.) on certain
assets should be permitted or denied and usually assume that such ac-
tions are disjoint from each other, i.e. there does not exist any explicit or
implicit dependency between actions of the domain. This in turn means,
that conflicts among rules or policies can only occur if those contradic-
tory rules or policies constrain the same action. In the present paper -
motivated by the example of ODRL 2.1 as policy expression language -
we follow a different approach and shed light on possible dependencies
among actions of access control policies. We propose an interpretation of
the formal semantics of general ODRL policy expressions and motivate
rule-based reasoning over such policy expressions taking both explicit
and implicit dependencies among actions into account. Our main contri-
butions are (i) an exploration of different kinds of ambiguities that might
emerge based on explicit or implicit dependencies among actions, and (ii)
a formal interpretation of the semantics of general ODRL policies based
on a defined abstract syntax for ODRL which shall eventually enable to
perform rule-based reasoning over a set of such policies.

1 Introduction

ODRL (Open Digital Rights Language) [7] is a comprehensive policy expression
language that aims to develop and promote an open international specification
for interchangeable policy expressions. As shown in [1, 12], ODRL has proven
to be suitable to express fine-grained access restrictions, access policies, as well
as licensing information for Linked Data. It was recently published as version
2.1 and allows to not only model permission or prohibitions of actions over
assets, but also to define (optional) obligations for permission rules which need
to be fulfilled in order for associated permissions to become active.3 By using
obligations, data owners would be able to define preconditions for using their
⋆ Simon Steyskal has been partially funded by the Vienna Science and Technology

Fund (WWTF) through project ICT12-015 and by the Austrian Research Promotion
Agency (FFG) grant 845638 (SHAPE).

3 We note that the specification so far does not define obligations in the form of
contractual debts referring to the future upon using the permission, which may be
a potential extension.

data, e.g. paying a certain amount of money, which might in turn serve as an
incentive to publish their data in the first place as well as duties to be fulfilled
when re-sharing the data. Obviously, if there is no possibility to protect or regain
some of the expenses made during creating and curating a dataset, data owners
might not see any benefit from publishing it.

In order to be able to use ODRL in an automated environment where requests
against a set of control policies can be automatically processed and inconsisten-
cies/conflicts among policies automatically detected, a formal specification of
the semantics of policies expressed in ODRL is necessary. Unfortunately, there
does not exist such an official formal specification, which is primarily caused by
the fact that ODRL claims to follow an open design approach which shall allow
applications using ODRL to each impose their own concrete interpretation of its
semantics [8]. This, however, leads to difficulties when trying to process and con-
sume ODRL policies automatically (i.e. perform reasoning over them), especially
because natural language definitions usually leave a margin for interpretation.

Another issue we want to address within the present paper came up during
our work on defining the formal semantics of ODRL policies. Most policy-based
access control frameworks (e.g. PROTUNE [2]) consider conflicts among policies
to only occur between ones that constrain the same action(s) contradictorily (e.g.
by prohibiting and permitting a specific action at the same time), but do not take
potential dependencies among different actions into account when checking for
conflicts. Such dependencies can occur in different manifestations (cf. Section 3)
and should be taken into account appropriately when processing requests.

In the present paper we aim to close those gaps of (i) a missing formal
specification of ODRL and (ii) resolving ambiguities when handling explicit or
implicit dependencies among actions. In particular, our contributions can be
summarized as follows:

1. Definition of an abstract syntax for expressing ODRL policies.
2. Formalization of a possible interpretation of ODRL policy semantics.
3. Discussion of a solution proposal for handling implicit dependencies between

ODRL actions.

The remainder of this paper is structured as follows: Section 2 provides a brief
introduction into ODRL and defines an abstract syntax for expressing ODRL
policies. Section 3 discusses the relationship between explicit and implicit depen-
dencies among ODRL actions, and their impact on processing potential query
requests, while Section 4 introduces a possible formal interpretation of ODRL
policy semantics and Section 5 discusses proposed extended semantics of ODRL
conflict resolution strategies. Finally, we discuss related work in Section 6 before
we conclude our paper in Section 7.

2 Abstract Syntax of ODRL

The Open Digital Rights Language (ODRL) was invented to provide an open
standard for defining policy expressions for digital content and media. The

Fig. 1. ODRL Core Model Version 2.1 taken from http://www.w3.org/community/
odrl/model/2.1/

ODRL Core Model (cf. Figure 1) contains all major components of an ODRL
policy expression.

To the best of our knowledge, there exists no officially agreed on abstract
syntax of ODRL that covers all main concepts of the ODRL core model. In the
following, we will introduce such an abstract syntax of ODRL that covers its
main concepts and continue with utilizing this concise representation to propose
a potential interpretation of the formal semantics of ODRL.

Table 1 represents the abstract syntax of ODRL, which was inspired by an
approach to formalize XACML used in [9] and can be read as follows:

– text in bold represents non-terminal symbols
– text in typewriter represents terminal symbols
– text in italic represents functions and identifiers
– 𝐴* indicates zero or more occurrences of symbol 𝐴
– 𝐴+ indicates one or more occurrences of symbol 𝐴
– 𝐴? indicates zero or one occurrence of symbol 𝐴

A Policy contains at least one PermissionRule or ProhibitionRule and has
an associated ODRL ConflictResolutionStrategy which is either permit overrides
(perm), prohibition overrides (prohibit), or no conflicts allowed (invalid). A
Policy is applicable, if at least one of the Rules it contains matches with the
request.

A ProhibitionRule defines the prohibition of performing an Action on an asset
by a particular party which are both declared in the RuleMatch component of the
ProhibitionRule. When its RuleMatch and Action components match a particular
request, the applicability of the ProhibitionRule can be further constrained by a

http://www.w3.org/community/odrl/model/2.1/
http://www.w3.org/community/odrl/model/2.1/

ODRL Policy Components

Policy 𝒫 ::= 𝒫𝑖𝑑 = [⟨(𝒫ℛℛ𝑖𝑑|𝒫ℰℛ𝑖𝑑)+⟩,𝒜ℒ𝒢]
ProhibitionRule 𝒫ℛℛ ::= 𝒫ℛℛ𝑖𝑑 = [ℛℳ, 𝒜, 𝒞𝒪𝒩𝒮]
PermissionRule 𝒫ℰℛ ::= 𝒫ℰℛ𝑖𝑑 = [ℛℳ, 𝒜, ⟨𝒟𝒰ℛ*

𝑖𝑑⟩, 𝒞𝒪𝒩𝒮]
DutyRule 𝒟𝒰ℛ ::= 𝒟𝒰ℛ𝑖𝑑 = [ℛℳ, 𝒜, 𝒞𝒪𝒩𝒮]
ConstraintSet 𝒞𝒪𝒩𝒮 ::= 𝒞𝒪𝒩 𝒮𝑖𝑑 = ⟨𝒞𝒪𝒩 *

𝑖𝑑⟩
Constraint 𝒞𝒪𝒩 ::= 𝒞𝒪𝒩 𝑖𝑑 = 𝑓𝑏𝑜𝑜𝑙(𝑠𝑡𝑎𝑡𝑢𝑠(𝑎), 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟(𝑜), 𝑏𝑜𝑢𝑛𝑑(𝑎))
RuleMatch ℛℳ ::= ℛℳ𝑖𝑑 = ⟨ℳ+⟩
Match ℳ ::= ℳ𝑖𝑑 = 𝜑(𝑎)
Action 𝒜 ::= 𝒜𝑖𝑑 = action(𝑎)

𝜑(𝑎) ::= party(𝑎) | asset(𝑎)
𝑎 ::= value
o ::= eq | neq | lt | lteq | gt | gteq

ConflictRes.Strat. 𝒜ℒ𝒢 ::= perm | prohibit| invalid

Query & Proof

QueryRequest 𝒬 ::= 𝒬𝑖𝑑 = ⟨party(𝑎)?, action(𝑎), asset(𝑎)⟩
DutyTarget 𝒟𝒯 ::= 𝒟𝒯 𝑖𝑑 = ⟨party(𝑎)?, action(𝑎), asset(𝑎)?⟩
DutyProof 𝒟𝒫ℱ ::= 𝒟𝒫ℱ 𝑖𝑑 = [𝒟𝒯 ,𝒞𝒪𝒩 𝑖𝑑,status(a)]
Proof 𝒫ℱ ::= 𝒫ℱ 𝑖𝑑 = [𝒞𝒪𝒩 𝑖𝑑,status(a)]
ProofSet 𝒫ℱ𝒮 ::= ⟨(𝒟𝒫ℱ 𝑖𝑑|𝒫ℱ 𝑖𝑑)*⟩

Table 1. Abstract Syntax of ODRL

set of Constraints. Constraints are represented as boolean formulas that compare
a status according to an operator4 with a respective bound. The status of a
particular Constraint is provided by a respective Proof or DutyProof that serve
as input for the Constraint.

PermissionRules are similarly defined as ProhibitionRules, but instead of
prohibiting the execution of an Action they permit it. Furthermore, a sequence
of DutyRules can be associated with PermissionRules. All associated DutyRules
must be fulfilled in order for the respective PermissionRule to become valid.

A QueryRequest contains a particular access request that consists of an ac-
tion and the respective asset it should be performed on, as well as optional
information about the party which shall be performing the action.

3 Explicit and Implicit Dependencies among Actions in
ODRL

Policy-based access control frameworks allow to explicitly model whether the
execution of certain actions on certain assets should be permitted or prohibited
and usually consider those actions to be disjoint from each other, i.e. there does
not exist any explicit or implicit dependency between actions of the domain.
4 Note, that we do not take set operators into account, but see them as a potential

extension for further work

Which in turn means, that conflicts among rules or policies can only occur if
those contradictory rules or policies constrain the same action. However, in some
situations there might indeed be interferences between different actions which
have to be taken into account. Therefore, we have identified two different types of
dependencies among actions of ODRL policies, namely: (i) implicit dependencies,
and (ii) explicit dependencies.

In the following, we will discuss those dependencies in more detail.

3.1 Implicit Dependencies among ODRL Actions

The first dependency we discuss, defines a part-of relationship between actions
which is related to Aggregations in UML [3].

Definition 1. Let 𝐴1 and 𝐴2 be two arbitrary ODRL actions, then 𝐴1 requires
the permission of 𝐴2 for its execution, requires(𝐴1,𝐴2), if the execution of 𝐴1
involves the execution of 𝐴2.

That means, if the execution of an action 𝐴1 implies, that an action 𝐴2 must
be executable (i.e. execution of 𝐴2 is not denied), then requires(𝐴1,𝐴2) holds. To
illustrate this relationship, consider the definition of odrl:share given in Figure 2,
where its natural language semantics definition is taken from the official ODRL
2.0 specification [6].

odrl:share: The act of
the non-commercial re-
production and distri-
bution of the asset to
third-parties.

odrl:share

odrl:distribute odrl:copy odrl:reproduce

requires requires

equals

Fig. 2. Implicit dependencies of odrl:share (ODRL 2.0).

According to its semantics, odrl:share defines the non-commercial reproduc-
tion and distribution of an asset to third-parties. Which obviously would lead
to a conflict when considering a policy as defined in Listing 1 which gener-
ally permits to share dataset :dataset1 but at the same time denies Assignee
:alice to distribute it. A naive evaluation approach would allow :alice to share
:dataset1 because there does not exist any rule that prohibits her from performing
odrl:share on :dataset1. But since odrl:share defines the non-commercial reproduc-
tion (odrl:reproduce) and distribution (odrl:distribute) of an asset, it requires their
execution permission to become valid itself, i.e. requires(odrl:share,odrl:reproduce)
and requires(odrl:share,odrl:distribute) hold.

@prefix odrl: <http://w3.org/ns/odrl/2/> .
@prefix : <http://www.example.com/> .

:sharePolicy a odrl:Set ;

odrl:permission [
a odrl:Permission ;
odrl:action odrl:share ;
odrl:target :dataset1] ;

odrl:prohibition [
a odrl:Prohibition ;
odrl:assignee :alice ;
odrl:action odrl:distribute ;
odrl:target :dataset1] .

Listing 1. Prohibition of action odrl:distribute causes a conflict with permission of
odrl:share.

Furthermore, some actions are defined to be equal according to the ODRL
2.0 specification [6] which means that they can be used interchangeably5.

Definition 2. Let 𝐴1 and 𝐴2 be two arbitrary ODRL actions, then 𝐴1 is equal
to 𝐴2, equals(𝐴1,𝐴2), if 𝐴1 and 𝐴2 represent the same functionality according
to the official ODRL specification.

For the example of odrl:share given in Figure 2, this means that odrl:share
depends not only on the explicitly mentioned action odrl:reproduce but also
on its equivalent action odrl:copy, i.e. equals(odrl:reproduce,odrl:copy) and re-
quires(odrl:share,odrl:copy) hold both.

3.2 Explicit Dependencies among ODRL Actions

In contrast to the aforementioned implicit part-of dependencies among actions
in ODRL which are based on their natural language description, there also exist
explicit relationships which are indicated by a subsumption hierarchy in the
ODRL specification.

Definition 3. Let 𝐴1 and 𝐴2 be two arbitrary ODRL actions, then
broader(𝐴1,𝐴2) holds, if 𝐴1 represents a broader term for 𝐴2,

In contrast to the previous defined part-of dependency, this explicit depen-
dency imposes different semantics for the evaluation of ODRL policy expressions.
Whenever broader(𝐴1,𝐴2) holds and both 𝐴1 and 𝐴2 have different access rights
(i.e. permission or prohibition), then either 𝐴1 or 𝐴2 has to adapt its rights,
according to the respective conflict resolution strategy in place.

Consider the excerpt of the subsumption hierarchy between actions illus-
trated in Figure 3. Based on the chosen conflict resolution strategy, if e.g. action
odrl:use is prohibited then there cannot exist any other action that represents
a narrower term of odrl:use and is permitted (cf. Section 5 for a more detailed
discussion).

5 Note that one of each pair of equivalent terms was defined as deprecated in ODRL
2.1

odrl:useodrl:distribute odrl:copy

odrl:presentodrl:display odrl:play

odrl:print

narrower narrower

narrower

narrower narrower

narrower

broader broader

broader

broader broader

broader

Fig. 3. Excerpt of explicit subsumption hierarchy between actions.

4 Basic Semantics of ODRL Policies

The following section proposes a possible interpretation of the formal semantics
of ODRL which differs from earlier approaches defined in [5,10]. Starting from a
potential request that was issued against a system, we first evaluate which rules
are triggered by the request, and then check whether those rules hold according
to potential duties or constraints they might have attached6. Eventually, all
policies that contain rules which have matched are evaluated by following one
of the three proposed ODRL conflict resolution strategies.

Match and RuleMatch. Let ℳℛℳ be either a Match or a RuleMatch compo-
nent and let 𝒬𝒟𝒯 either be a set of all possible QueryRequests or DutyTargets.
A match semantic function is a mapping [[ℳℛℳ]] : 𝒬𝒟𝒯 → {m, nm}, where
m and nm denote match and no match respectively.

A certain Match component ℳ (i.e. the attribute value it represents)
matches, whenever it is part of a particular Query or DutyTarget.

[[ℳ]](𝒬𝒟𝒯) =
{︃

m if ℳ ∈ 𝒬𝒟𝒯
nm if ℳ /∈ 𝒬𝒟𝒯

(1)

A RuleMatch component ℛℳ (i.e. a set of Match components defined as
⟨ℳ1, . . . , ℳ𝑛⟩) only matches, if all of its Match components are evaluated to m.

[[ℛℳ]](𝒬𝒟𝒯) =
{︃

m if ∀𝑖 : [[ℳ𝑖]](𝒬𝒟𝒯) = m
nm if ∃𝑖 : [[ℳ𝑖]](𝒬𝒟𝒯) = nm

(2)

6 For now, we assume to have evidence of the fulfillment or violation of con-
straints/obligations available denoted as proofs. Future work will tackle the issue
of actually generating or providing those evidences.

Action. Let 𝒜 be an Action component and let 𝒬𝒟𝒯 either be a set of all pos-
sible QueryRequests or DutyTargets. An action semantic function is a mapping
[[𝒜]] : 𝒬𝒟𝒯 → {m, broadm, narm, reqm, partm, nm}, where m denotes match,
broadm match of broader action, narm match of narrower action, reqm match of
requiring action, partm match of required action, and nm denotes no match.

A certain Action component (i.e. the action it represents) matches, whenever
it is part of a particular QueryRequest or DutyTarget or if an equivalent action
is part of a particular QueryRequest or DutyTarget. Otherwise, it evaluates to
broadm if it is related to a broader action that is part of the QueryRequest or
DutyTarget, or to narm if it is related to a narrower action that is part of the
QueryRequest or DutyTarget, or to partm if it is related to an action that is part of
the QueryRequest or DutyTarget and this action requires the Action component
for its execution, or to reqm if it requires another action for its execution and this
required action is part of the QueryRequest or DutyTarget, or to nm otherwise.

[[𝒜]](𝒬𝒟𝒯) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m if 𝒜 ∈ 𝒬𝒟𝒯 or
∃𝑖 : equals(𝒜, 𝒜𝑖) ∧ 𝒜𝑖 ∈ 𝒬𝒟𝒯

narm if ∃𝑖 : broader(𝒜𝑖, 𝒜) ∧ 𝒜𝑖 ∈ 𝒬𝒟𝒯
broadm if ∃𝑖 : broader(𝒜, 𝒜𝑖) ∧ 𝒜𝑖 ∈ 𝒬𝒟𝒯
partm if ∃𝑖 : requires(𝒜𝑖, 𝒜) ∧ 𝒜𝑖 ∈ 𝒬𝒟𝒯
reqm if ∃𝑖 : requires(𝒜, 𝒜𝑖) ∧ 𝒜𝑖 ∈ 𝒬𝒟𝒯
nm otherwise

(3)

Constraint and ConstraintSet. Let 𝒞𝒪𝒩 be a Constraint component,
𝒞𝒪𝒩 𝒮 = ⟨𝒞𝒪𝒩 1, . . . , 𝒞𝒪𝒩 𝑛⟩ a ConstraintSet component, and let 𝒫ℱ𝒮 =
⟨𝒟𝒫ℱ1, . . . , 𝒟𝒫ℱ𝑚, 𝒫ℱ1, . . . , 𝒫ℱ𝑛⟩ represent all possible ProofSets. A con-
straint semantic function is a mapping [[𝒞𝒪𝒩]] : 𝒫ℱ𝒮 → {t, f}, where t and f
indicate whether the boolean formula represented by 𝒞𝒪𝒩 holds, given a Proof-
Set 𝒫ℱ𝒮 as input.

This boolean formula is evaluated, if the provided ProofSet 𝒫ℱ𝒮 contains a
Proof 𝒫ℱ that is associated with the respective Constraint of the formula. If no
associated Proof exists, it is evaluated to f.

[[𝒞𝒪𝒩]](𝒫ℱ𝒮) =
{︃

𝑓𝑏𝑜𝑜𝑙(𝒫ℱ𝑖, 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟(𝑜), 𝑏𝑜𝑢𝑛𝑑(𝑎)) if ∃𝑖 : 𝒫ℱ 𝑖 ∧ 𝑖 = 𝑖𝑑

f otherwise
(4)

A ConstraintSet component only evaluates to t, if all of its Constraint com-
ponents are evaluated to t or the ConstraintSet is empty, i.e. there do not exist
any associated Constraints at all.

[[𝒞𝒪𝒩 𝒮]](𝒫ℱ𝒮) =

⎧⎪⎨⎪⎩
t if ∀𝑖 : [[𝒞𝒪𝒩 𝑖]](𝒫ℱ𝒮) = t or

𝒞𝒪𝒩 𝒮 = ∅
f if ∃𝑖 : [[𝒞𝒪𝒩 𝑖]](𝒫ℱ𝒮) = f

(5)

DutyRule. Let 𝒟𝒰ℛ = [ℛℳ, 𝒞𝒪𝒩 𝒮] be a DutyRule component and let
𝒫ℱ𝒮 = ⟨𝒟𝒫ℱ1, . . . , 𝒟𝒫ℱ𝑚, 𝒫ℱ1, . . . , 𝒫ℱ𝑛⟩ represent all possible ProofSets.
A duty rule semantic function is a mapping [[𝒟𝒰ℛ]] : 𝒫ℱ𝒮 → {t, f}, where t
represents the fulfillment of 𝒟𝒰ℛ, and f the opposite.

𝒟𝒰ℛ evaluates to t, if there exists at least one DutyProof 𝒟𝒫ℱ in the pro-
vided ProofSet 𝒫ℱ𝒮 whose DutyTarget 𝒟𝒯 ∈ 𝒟𝒫ℱ matches with the RuleMatch
component of 𝒟𝒰ℛ, and its ConstraintSet returns true. It evaluates to f in any
other case.

[[𝒟𝒰ℛ]](𝒫ℱ𝒮) =

⎧⎪⎨⎪⎩
t if ∃𝑖 : 𝒟𝒫ℱ 𝑖 ∈ 𝒫ℱ𝒮 ∧ [[ℛℳ]](𝒟𝒯) = m ∧

[[𝒜]](𝒟𝒯) = m ∧ [[𝒞𝒪𝒩 𝒮]](𝒫ℱ𝒮) = t
f otherwise

(6)

PermissionRule. Let 𝒫ℰℛ be a PermissionRule component of the form
𝒫ℰℛ = [ℛℳ, 𝒜,𝒟𝒰ℛ, 𝒞𝒪𝒩 𝒮] where 𝒟𝒰ℛ = ⟨𝒟𝒰ℛ1, . . . , 𝒟𝒰ℛ𝑛⟩, let 𝒬
be a set of all possible QueryRequests, and let 𝒫ℱ𝒮 denote all possible Proof-
Sets. A permission rule semantic function is a mapping [[𝒫ℰℛ]] : 𝒬,𝒫ℱ𝒮 →
{permission, cper, cpro, na, nm}, where given 𝒫ℱ𝒮 as input, permission repre-
sents permission of 𝒬, cper denotes conditional permission of 𝒬, cpro indicates
conditional prohibition of 𝒬, and na, nap represent that 𝒫ℰℛ is not active or
not applicable respectively.

𝒫ℰℛ evaluates to permission, if its RuleMatch component matches with pro-
vided QueryRequest 𝒬, its ConstraintSet component returns true, and if it has
no associated duties. It evaluates to cpro if its RuleMatch component matches
with 𝒬, its ConstraintSet component returns true, but it has at least one associ-
ated DutyRule component that evaluates to false given a specific ProofSet 𝒫ℱ𝒮
as input. It evaluates to cper if its RuleMatch component matches with 𝒬, its
ConstraintSet component returns true, and all associated DutyRule components
evaluate to true given 𝒫ℱ𝒮 as input. Finally, a PermissionRule component eval-
uates to na if its RuleMatch component matches with 𝒬 but its ConstraintSet
component returns false, and it evaluates to nap if its RuleMatch component
does not match with 𝒬.

[[𝒫ℰℛ]](𝒬, 𝒫ℱ𝒮) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

permission if [[ℛℳ]](𝒬) = m, [[𝒜]](𝒬) ̸= nm,
[[𝒞𝒪𝒩 𝒮]](𝒫ℱ𝒮) = t and 𝒟𝒰ℛ = ∅

cpro if [[ℛℳ]](𝒬) = m, [[𝒜]](𝒬) ̸= nm,
[[𝒞𝒪𝒩 𝒮]](𝒫ℱ𝒮) = t and ∃𝑖 : [[𝒟𝒰ℛ𝑖]](𝒫ℱ𝒮) = f

cper if [[ℛℳ]](𝒬) = m, [[𝒜]](𝒬) ̸= nm,
[[𝒞𝒪𝒩 𝒮]](𝒫ℱ𝒮) = t and ∀𝑖 : [[𝒟𝒰ℛ𝑖]](𝒫ℱ𝒮) = t

na if [[ℛℳ]](𝒬) = m, [[𝒜]](𝒬) ̸= nm and
[[𝒞𝒪𝒩 𝒮]](𝒫ℱ𝒮) = f

nap otherwise
(7)

ProhibitionRule. Let 𝒫ℛℛ be a ProhibitionRule component of the form 𝒫ℛℛ
= [ℛℳ, 𝒜, 𝒞𝒪𝒩 𝒮], let 𝒬 be a set of all possible QueryRequests, and let 𝒫ℱ𝒮
denote all possible ProofSets. A prohibition rule semantic function is a mapping
[[𝒫ℛℛ]] : 𝒬,𝒫ℱ𝒮 → {prohibition, na, nm}, where given 𝒫ℱ𝒮 as input, prohi-
bition represents the prohibition of 𝒬, na denotes that 𝒫ℛℛ is not active, and
nap states that 𝒫ℛℛ is not applicable.

𝒫ℛℛ evaluates to prohibition, if its RuleMatch component matches with the
QueryRequest𝒬 and its ConstraintSet component returns true given a specific
ProofSet 𝒫ℱ𝒮 as input. It evaluates to na if its RuleMatch component matches
with 𝒬 but its ConstraintSet component returns false, and it evaluates to nap if
its RuleMatch component does not match with 𝒬 (i.e. the rule is not applicable).

[[𝒫ℛℛ]](𝒬, 𝒫ℱ𝒮) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

prohibition if [[ℛℳ]](𝒬) = m, [[𝒜]](𝒬) ̸= nm and
[[𝒞𝒪𝒩 𝒮]](𝒫ℱ𝒮) = t

na if [[ℛℳ]](𝒬) = m, [[𝒜]](𝒬) ̸= nm and
[[𝒞𝒪𝒩 𝒮]](𝒫ℱ𝒮) = f

nap otherwise

(8)

Policy. Let 𝒫 be a Policy component of the form 𝒫 = [ℛ,𝒜ℒ𝒢], where
ℛ = ⟨ℛ1, . . . , ℛ𝑛⟩ is the set of all Rules of 𝒫 with ℛ𝑖, ℛ𝑗 ∈ ℛ representing
either a ProhibitionRule or a PermissionRule, and 𝒜ℒ𝒢 is denoting the con-
flict resolution strategy of the Policy. Further, let 𝒬 be a set of all possible
QueryRequests, and let 𝒫ℱ𝒮 denote all possible ProofSets. A policy semantic
function is a mapping [[𝒫]] : 𝒬,𝒫ℱ𝒮 → {permission, prohibition, cpro, na, nm},
where given 𝒫ℱ𝒮 as input, permission represents permission of 𝒬, prohibition
represents prohibition of 𝒬, cpro indicates conditional prohibition of 𝒬, and na,
nap represent that 𝒫 is not active or not applicable respectively.

A Policy 𝒫 is not active, if all ℛ in 𝒫 are evaluated to na. 𝒫 is not applicable
(nap), if all ℛ in 𝒫 are evaluated to nap. If there is at least one ℛ in 𝒫 which
is neither evaluated to na nor nap, 𝒫 is evaluated to the result returned by
the respective conflict resolution strategy 𝒜ℒ𝒢 that takes ℐ = [ℛ, 𝒬, 𝒫ℱ𝒮] as
input.

[[𝒫]](𝒬, 𝒫ℱ𝒮) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

na if ∀𝑖 : [[ℛ𝑖]](𝒬, 𝒫ℱ𝒮) = na
na if ∃𝑖 : ¬([[ℛ𝑖]](𝒬, 𝒫ℱ𝒮) = (permission|prohibition))

∧ ∃𝑗 : [[ℛ𝑗]](𝒬, 𝒫ℱ𝒮) = na
nap if [[ℛℳ]](𝒬) = nm and [[𝒜]](𝒬) = nm
⊗𝒜ℒ𝒢(ℐ) otherwise

(9)

5 Proposed Semantics of ODRL Conflict Resolution
Strategies

Sometimes, it may be the case that an unambiguous answer to a certain query
request cannot be computed. Which is usually the case, if two or more mutu-
ally exclusive rules are triggered and thus produce multiple (possibly mutually
exclusive) answers. Such a potential conflict is illustrated in Listing 2 where ex-
ecution of action odrl:use on asset :dataset1 is both permitted and prohibited at
the same time.

@prefix odrl: <http://w3.org/ns/odrl/2/> .
@prefix : <http://www.example.com/> .

:policy1 a odrl:Set ;
odrl:permission [

a odrl:Permission ;
odrl:action odrl:use ;
odrl:target :dataset1] ;

odrl:prohibition [
a odrl:Prohibition ;
odrl:action odrl:use ;
odrl:target :dataset1] .

Listing 2. Two conflicting rules of a policy.

To deal with this issue, the official ODRL specification defines an optional at-
tribute for policies called conflict, that represents the conflict resolution strategy
a policy must adhere to. There are three different conflict resolution strategies
defined, namely:

perm: Permissions always take precedence over prohibitions.
prohibit: Prohibitions always take precedence over permissions.
invalid: Any conflicts cause invalidity of the policy.

In case attribute conflict is omitted, the default conflict resolution strategy is set
to invalid.

Apart from their rather concise natural language description listed above,
there does not exist any detailed definition of the semantics of ODRL conflict
resolution strategies. Although, they all might seem quite straightforward to real-
ize, there are some specific scenarios where a more elaborate semantics definition
is necessary. For example, consider the policy illustrated in Listing 3, where ac-
tions odrl:use and odrl:delete are prohibited and action odrl:give is permitted to
be performed on :dataset1.

@prefix odrl: <http://w3.org/ns/odrl/2/> .
@prefix : <http://www.example.com/> .

:policy2 a odrl:Set ;
odrl:prohibition [

a odrl:Prohibition ;

odrl:action odrl:use ;
odrl:target :dataset1] ;

odrl:permission [
a odrl:Permission ;
odrl:action odrl:give ;
odrl:target :dataset1] .

odrl:prohibition [
a odrl:Prohibition ;
odrl:action odrl:delete ;
odrl:target :dataset1] .

Listing 3. Two conflicting rules of a policy.

In the following, we will propose and explain suitable semantics for each
ODRL conflict resolution strategy.

Note, that we (i) value evaluation results obtained by duties, i.e. cper or cpro
higher than any conflict resolution strategy, and (ii) do not treat Rules assigned
to a specific party different from those having no associated party. Furthermore,
we abbreviate QueryRequests with 𝒬, Rules with ℛ, and Actions with 𝒜.

5.1 Permission Overrides (perm)

First conflict resolution strategy values permissions more than prohibitions thus,
whenever there are two Rules in conflict with each other, the one granting per-
mission to execute an action 𝑎 on a particular asset cannot be overwritten.
Nevertheless, there are some exceptions:

1. If there exists a rule which constrains an action that is either (i) equal to
the one contained in the query request, (ii) a broader term for the action
contained in the query request, or (iii) an action which is required to be
executable in order to perform the one contained in the query request, and
this rule evaluates to cpro, return cpro.

2. If 1. does not hold and there exists a rule which constrains an action that
is either (i) equal to the one contained in the query request, (ii) a broader
term for the action contained in the query request, or (iii) an action which
requires the one contained in the query request to be executable, and this
rule evaluates to cper or permission, return permission.

3. If all rules contain the same or equal actions to the ones queried and all rules
evaluate to the same result 𝑟, then return 𝑟.

4. Otherwise, return na.

⨂︁
𝑝𝑒𝑟𝑚

(ℐ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

cpro if ∃𝑖 : [[𝐴𝑖]](𝒬) = (m|broadm|partm) ∧ [[𝑅𝑖]](𝒬, 𝒫ℱ𝒮) = cpro

permission if ∃𝑖 : [[𝐴𝑖]](𝒬) = (m|broadm|reqm) ∧ [[𝑅𝑖]](𝒬, 𝒫ℱ𝒮) = (permission|cper)

and ¬∃𝑗 : [[𝐴𝑗]](𝒬) = (m|broadm|partm) ∧ [[𝑅𝑗]](𝒬, 𝒫ℱ𝒮) = cpro

𝑟 if ∀𝑖 : [[𝐴𝑖]](𝒬) = m ∧ [[𝑅𝑖]](𝒬, 𝒫ℱ𝒮) = 𝑟

na otherwise
(10)

5.2 Prohibition Overrides (prohibit)

Second conflict resolution strategy values prohibitions more than permissions
thus, whenever there are two Rules in conflict with each other the one prohibiting
the execution of an action 𝑎 on a particular asset cannot be overwritten. Again,
there are some exceptions:

1. If there exists a rule which constrains an action that is either (i) equal to
the one contained in the query request, (ii) a broader term for the action
contained in the query request, or (iii) an action which is required to be
executable in order to perform the one contained in the query request, and
this rule evaluates to cpro, return cpro.

2. If 1. does not hold and there exists a rule which constrains an action that
is either (i) equal to the one contained in the query request, (ii) a broader
term for the action contained in the query request, or (iii) an action which
requires the one contained in the query request to be executable, and this
rule evaluates to cper, return permission.

3. If 1. and 2. does not hold and there exists a rule which constrains an action
that is either (i) equal to the one contained in the query request, (ii) a
broader term for the action contained in the query request, or (iii) an action
which is required to be executable in order to perform the one contained in
the query request, and this rule evaluates to prohibition, return prohibition.

4. If all rules contain the same or equal actions to the ones queried and all rules
evaluate to the same result 𝑟, then return 𝑟.

5. Otherwise, return na.

⨂︁
𝑝𝑟𝑜ℎ𝑖𝑏𝑖𝑡

(ℐ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cpro if ∃𝑖 : [[𝐴𝑖]](𝒬) = (m|broadm|partm) ∧ [[𝑅𝑖]](𝒬, 𝒫ℱ𝒮) = cpro

permission if ∃𝑖 : [[𝐴𝑖]](𝒬) = (m|broadm|reqm) ∧ [[𝑅𝑖]](𝒬, 𝒫ℱ𝒮) = cper

and ¬∃𝑗 : [[𝐴𝑗]](𝒬) = (m|broadm|partm) ∧ [[𝑅𝑗]](𝒬, 𝒫ℱ𝒮) = cpro

prohibition if ∃𝑖 : [[𝐴𝑖]](𝒬) = (m|broadm|partm) ∧ [[𝑅𝑖]](𝒬, 𝒫ℱ𝒮) = prohibition

and ¬∃𝑗 : [[𝐴𝑗]](𝒬) = (m|broadm|reqm) ∧ [[𝑅𝑗]](𝒬, 𝒫ℱ𝒮) = cper

and ¬∃𝑘 : [[𝐴𝑘]](𝒬) = (m|broadm|partm) ∧ [[𝑅𝑘]](𝒬, 𝒫ℱ𝒮) = cpro

𝑟 if ∀𝑖 : [[𝐴𝑖]](𝒬) = m ∧ [[𝑅𝑖]](𝒬, 𝒫ℱ𝒮) = 𝑟

na otherwise
(11)

5.3 No Conflicts Allowed (invalid)

Third conflict resolution strategy does not allow any conflicting Rules, therefore
whenever there are two Rules returning inconsistent answers, no results can be
provided.

1. All rules must evaluate to the same result. If two rules evaluate to different
results, those results must be one of cper or permission.

2. Otherwise, return an error.

⨂︁
𝑖𝑛𝑣𝑎𝑙𝑖𝑑

(ℐ) =

⎧⎪⎨⎪⎩
𝑟𝑖 ∀𝑖∀𝑗 : ([[𝑅𝑖]](𝒬, 𝒫ℱ𝒮) = 𝑟𝑖 ∧ [[𝑅𝑗]](𝒬, 𝒫ℱ𝒮) = 𝑟𝑗) → (𝑟𝑖 = 𝑟𝑗∨

𝑟𝑖 ̸= 𝑟𝑗 → (𝑟𝑖 = (cper|permission) ∧ 𝑟𝑗 = (cper|permission)))
error otherwise

(12)

6 Related Work

Over the last couple of years, very little research has been conducted into the
formal semantics for ODRL. While in [10] the authors propose formal semantics
to a fragment of ODRL based on First-Order Logic and limit themselves to a
very small subset of supported actions, the authors of [5] use finite-automata
like structures to model permissions and their respective actions they permit. In
contrast to both of those approaches, we defined an abstract syntax for all basic
concepts of ODRL and formalized their semantics together with the semantics
of conflict resolution strategies accordingly. Other approaches try to capture the
semantics of ODRL in terms of ontologies [4, 8] which is very similar to the se-
mantics definition of our approach but differs in terms of treatment of implicit
dependencies between actions as well as the proposed abstract syntax. Comple-
mentary our work, there has been work to formalize licence compatibility [11],
which though was not embedded in the framework of ORDL, but might be an
interesting direction to look into for formally grounding our semantics likewise
into Deontic logic.

7 Conclusion

In the present paper, we defined an abstract syntax for expressing ODRL policies
which served as a foundation for formalizing a possible interpretation of basic
ODRL policy semantics. We furthermore discussed the impact of explicit and im-
plicit dependencies among ODRL actions on the evaluation of policy expressions.
While the former is explicitly defined in the ODRL specification and modeled
as subsumption hierarchy between actions, the latter can only be implicitly de-
rived from the natural language semantics definition of actions and expressed
as part-of relationship among actions. Which we both took into account when
formalizing ODRL’s semantics.

First point to be addressed is to introduce the concept of PolicySets as con-
tainer for policies which allows to combine the evaluation results of policies
independently of their respective chosen conflict resolution strategy. Second, we
want to formalize and extend the mapping between ODRL policies and logic pro-
grams, which enables basic, rule-based reasoning tasks and was omitted in the
present paper because of page restrictions. Finally, we will address the elaborate
provision of proofs for constraints and duties which are currently assumed to

be provided by the requester itself. Especially addressing the latter point, offers
interesting new research directions and allows for possible collaborations with
other research fields like Business Process Management, where correct comple-
tion of a business process that was automatically generated based on a constraint
or duty serves as a proof of their fulfillment.

References

1. Elena Cabrio, Alessio Palmero Aprosio, and Serena Villata. These are your rights
- A natural language processing approach to automated RDF licenses generation.
In The Semantic Web: Trends and Challenges - 11th International Conference,
ESWC 2014, Anissaras, Crete, Greece, May 25-29, 2014. Proceedings, pages 255–
269, 2014.

2. Juri Luca De Coi, Daniel Olmedilla, Piero A Bonatti, and Luigi Sauro. Protune: A
framework for semantic web policies. In International Semantic Web Conference
(Posters & Demos), volume 401, page 128, 2008.

3. Martin Fowler and Kendall Scott. UML distilled - a brief guide to the Standard
Object Modeling Language (2. ed.). Addison-Wesley-Longman, 2000.

4. Roberto García, Rosa Gil, Isabel Gallego, and Jaime Delgado. Formalising odrl
semantics using web ontologies. In Proc. 2nd Intl. ODRL Workshop, pages 1–10,
2005.

5. Markus Holzer, Stefan Katzenbeisser, and Christian Schallhart. Towards formal
semantics for ODRL. In Proceedings of the First International Workshop on the
Open Digital Rights Language (ODRL), Vienna, Austria, April 22-23, 2004, pages
137–148, 2004.

6. Renato Iannella and Susanne Guth. Odrl version 2.0 common vocabulary. W3C
ODRL Community Group, 2012. https://www.w3.org/community/odrl/two/
vocab/.

7. Renato Iannella, Susanne Guth, Daniel Pähler, and Andreas Kasten. Odrl: Open
digital rights language 2.1. W3C ODRL Community Group, 2012. http://www.
w3.org/community/odrl/.

8. Andreas Kasten and Rüdiger Grimm. Making the Semantics of ODRL and URM
Explicit Using Web Ontologies. Virtual Goods, pages 77–91, 2010.

9. CarrolineDewiPuspa Kencana Ramli, HanneRiis Nielson, and Flemming Nielson.
XACML 3.0 in Answer Set Programming. In Elvira Albert, editor, Logic-Based
Program Synthesis and Transformation, volume 7844 of Lecture Notes in Computer
Science, pages 89–105. Springer Berlin Heidelberg, 2013.

10. Riccardo Pucella and Vicky Weissman. A Formal Foundation for ODRL. CoRR,
abs/cs/0601085, 2006.

11. Antonino Rotolo, Serena Villata, and Fabien Gandon. A deontic logic semantics
for licenses composition in the web of data. In Int’l Conf. on Artificial Intelligence
and Law ICAIL, pages 111–120, 2013.

12. Simon Steyskal and Axel Polleres. Defining expressive access policies for linked data
using the ODRL ontology 2.0. In Proceedings of the 10th International Conference
on Semantic Systems, SEMANTICS 2014, Leipzig, Germany, September 4-5, 2014,
pages 20–23, 2014.

https://www.w3.org/community/odrl/two/vocab/
https://www.w3.org/community/odrl/two/vocab/
http://www.w3.org/community/odrl/
http://www.w3.org/community/odrl/

	Towards Formal Semantics for ODRL Policies
	Introduction
	Abstract Syntax of ODRL
	Explicit and Implicit Dependencies among Actions in ODRL
	Implicit Dependencies among ODRL Actions
	Explicit Dependencies among ODRL Actions

	Basic Semantics of ODRL Policies
	Proposed Semantics of ODRL Conflict Resolution Strategies
	Permission Overrides (perm)
	Prohibition Overrides (prohibit)
	No Conflicts Allowed (invalid)

	Related Work
	Conclusion

