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Overview

Introduction

Answer Set Programming in a nutshell

Planning in Logic Programming (an adhoc solution).

Planning & Knowledge Representation in Action
Language K,

Syntax & Semantics
Knowledge State vs. World State Encodings

(short) Translations to LP, the DLVK Planning System
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Introduction

What is Planning?

Start: initial situation (or state)

Desired: reach a goal

At disposal: actions

Problem: Find a suitable sequence of actions (a plan)
whose execution brings about the goal.
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Planning and AI

Planning is a challenging problem for AI since 1950’s

McCarthy: Missionaries and Cannibals (1959)

Logic-based approaches

Heuristic search methods

ad hoc approaches

Graphplan

Planning as Model-Checking

. . .

Planning as Satisfiability (SAT Planning)

Answer Set Planning (Planning using Answer Set
Programming)
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Answer Set Programming in a nutshell

Classical logic Programming extended with

Disjunction

Default negation

Strong (classical) negation

Integrity constraints

No function symbols (finiteness)
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Answer Set Programming: Idea

Fundamental concept:
Models, not proofs, represent solutions!

Need techniques to compute models (not to compute
proofs)

What is this good for?
Solve search problems

Compute, e.g., one/all solutions of the N-queens problem,

SAT, one/all routes to reach the airport; . . . compute plans!
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ASP: Syntax

Rules:
a1 ∨ . . . ∨ an :- b1, . . . , bk, not bk+1, . . . , not bl.
Constraints: :- b1, . . . , bk, not bk+1, . . . , bl.

as and bs are atoms (p) or strongly negated atoms (−p)
variables are allowed in arguments of atoms

a program is a set of rules and constraints

order of literals and rules does not matter

interested(X) v curious(X) :- attendsTalk(X).

attendsTalk(X) :- staff(X), not onVacation(X).
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Answer Set Semantics 1/2

Let M be a (consistent) set of literals
A Rule
a1 ∨ . . . ∨ an :- b1, . . . , bk, not bk+1, . . . , not bl.
is called satisfied wrt. M iff:
If b1, . . . , bk ∈M and bk+1, . . . , bl 6∈M then

at least one of a1, . . . , an ∈M .
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Answer Set Semantics 2/2

P — logic program

M — (consistent) set of literals

Reduct PM (Gelfond, Lifschitz)
for each l ∈M remove rules with not l in the body
remove literals not l from all other rules

M is called answer set iff it is a minimal set such that all
rules of PM are satisfied wrt. M
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Example 1 – Positive Program

interested(you) v curious(you) :- attendsTalk(you).

attendsTalk(you).

M1 = {attendsTalk(you), curious(you)} (Answer Set)
M2 = {attendsTalk(you), interested(you)} (Answer Set)
M3 = {attendsTalk(you)} (first rule not satisfied)

M4 = {attendsTalk(you), interested(you), curious(you)} (not minimal)
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Example 2 – Constraints

Constraints “prohibit” Answer Sets:
interested(you) v curious(you) :- attendsTalk(you).

attendsTalk(you).

:- bored(you), interested(you).

bored(you).

Only one answer set:

M = {attendsTalk(you), curious(you), bored(you)}
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Example 3 – Default Negation

interested(you) :- not sleepy(you).

M = {interested(you)}
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Example 4 – Default Negation

interested(you) :- not sleepy(you).

sleepy(you).

M = {sleepy(you)}

Nonmonotonic Reasoning!
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Example 5 – Default Negation

interested(you) :- not sleepy(you).

sleepy(you) :- not interested(you).

M1 = {sleepy(you)}

M2 = {interested(you)}
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Example 6 – Strong Negation

interested(you) :- not -interested(you).

-interested(you) :- not interested(you).

M1 = {-interested(you)}

M2 = {interested(you)}

Literals can be true, false or unknown in an answer set if the

literal appears in positive and negative form!
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Answer Set Planning

First attempt: adhoc encoding

Idea: Use expressiveness of Answer Set Semantics for
guessing plans.

NP (ΣP
2 =NPNP) for normal (disjunctive) logic programs

Method: (by e.g. Subrahmanian & Zaniolo, Dimopoulos et al.,
Lifschitz . . . ...)

Formulate planning problem as a logic program Π

(describe trajectories)

Compute any answer sets (i.e. models) of Π, which
encode possible plans.

Advantage: Declarative problem solving – p.16/53



High-level View

Input: Fluents (state variables) F
Actions (that usually modify fluents) A
Initial state I, goal state G
State constraints, action descriptions

Evolution: Discrete steps of time (stages), 0,1,. . . ,n

Output: A sequence of action sets (or single actions)
〈A0,A1,. . . ,An〉 which transforms I into G

I S1 G
A0 A1 An
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Example: Blocks World

initial:

b
c
a

c
b
a

goal:

Actions: Move a block from one location to another (move(b,a), ...)
Fluents: Predicates describing the state (clear(b,0), on(c,a,0),

...))
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Example: Blocks World

Background Knowledge:
block(a). block(b). block(c).

location(X):- block(X). location(table).

Use discrete time 0,1,2,. . . Here: 3 Steps
act_time(0). act_time(1). act_time(2). % 3 time stamps

% Initial state:
on(a, table, 0). on(b, table, 0). on(c, a, 0).

% Goal:
goal:- on(a, table, 3), on(b, a, 3), on(c, b, 3).

:- not goal.

% The meat of the program ...
%Guess: At any action time T, move a block B to some location L or not
move(B, L, T) v − move(B, L, T):- block(B), location(L),

act_time(T), B != L.
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% Effects of moving a block: The block is now at the new location...
on(B, L, T1):- move(B, L, T), T1 = T + 1.

% ... and it is no longer at the old location.
−on(B, L, T1):- move(B, L1, T), on(B, L, T), T1 = T + 1,

L1 <> L.

% Inertia: Unless a block is known to be moved, assume it is still at old
place.
on(B, L, T1):- on(B, L, T), not− on(B, L, T1), T1 = T + 1.

% Constraints
:- move(B, L, T), on(_, B, T). % A block can only be moved if it’s clear.

:- move(B, B1, T), on(_, B1, T), block(B1). % No move onto an occupied
block

:- move(B, _, T), move(B1, _, T), B != B1. % Move only one block at each step

:- move(_, L, T), move(_, L1, T), L != L1. % No move to different locations
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Disadvantages of the Method

Ad hoc encoding

Semantics is implicit in the encoding

Inflexible (changes, etc)

. . .

Better: Provide genuine action / planning language.

Syntax and first class citizen semantics

Compile to logic engines (e.g., to Answer Set solvers
like DLV, smodels)
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Planning & Knowledge Representation in
Action Language K
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Planning Languages

Early attempts

Deductive Planning (Green, 1969)

Situation Calculus (McCarthy & Hayes, 1969)

STRIPS (Fikes et al., 1971) + descendants (e.g. PDDL)

Temporal Logic (McDermott, 1982)

Event Calculus (Kowalski & Sergot, 1986; Eshghi 1988)

Fluent Calculus (Thielscher, 2000)

. . .

Action Languages, e.g. A, AR, AK , C, K,. . .
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Action Language K

A relative of action languages A (Gelfond & Lifschitz, 1993)
and C (Giunchiglia & Lifschitz, 1998)

Divide predicates in

state predicates, further divided in
rigid predicates (constants)
fluent predicates (variables)

action predicates (variables)

Formulate axioms about transitions rather than operators
like in “classical” planning languages.
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Main Features of K
Incomplete states (“knowledge states”)

Default (nonmonotonic) negation and strong (classical)
negation

Typed fluents and actions

Initial state constraints

Conditional executability

Causation rules

Inertia

Nondeterministic action effects
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K Planning Domains and Problems

Background Knowledge Π: A logic program Π with a single
model,

(answer set) defining type information and static knowledge.

K Action Description AD:

fluents: DF % fluent defs
actions:DA % action type defs
always: CR % causation rules + exec. cond’s
initially: CI % initial state constraints

K Planning Domain: 〈Π, AD〉

K Planning Problem: additional goal

goal: G?(i) ground literal(s) G; plan length i ≥ 0.
– p.26/53



Blocksworld – K Representation

Background knowledge

Π = {block(a). block(b). block(c).

location(table).

location(L) :- block(L).}

Note: Syntactic and/or other restrictions might help ensure that Π

has a single model (answer set).
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Action Description

AD:

fluents : on(B, L) requires block(B), location(L).

occupied(B) requires location(B).

actions : move(B, L) requires block(B), location(L).

always : executable move(B, L) if not occupied(B),

not occupied(L), B <> L.

inertial on(B, L).

caused on(B, L) after move(B, L).

caused − on(B, L1) after move(B, L), on(B, L1), L <> L1.

caused occupied(B) if on(B1, B), block(B).

noConcurrency.

initially : on(a, table). on(b, table). on(c, a).
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AD – Fluent and Action Type Defs

fluents : on(B, L) requires block(B), location(L).

occupied(B) requires location(B).

actions : move(B, L) requires block(B), location(L).

always : executable move(B, L) if not occupied(B),

not occupied(L), B <> L.

inertial on(B, L).

caused on(B, L) after move(B, L).

caused − on(B, L1) after move(B, L), on(B, L1), L <> L1.

caused occupied(B) if on(B1, B), block(B).

noConcurrency.

initially : on(a, table). on(b, table). on(c, a).
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AD – Action Executability

fluents : on(B, L) requires block(B), location(L).

occupied(B) requires location(B).

actions : move(B, L) requires block(B), location(L).

always : executable move(B, L) if not occupied(B),

not occupied(L), B <> L.

inertial on(B, L).

caused on(B, L) after move(B, L).

caused − on(B, L1) after move(B, L), on(B, L1), L <> L1.

caused occupied(B) if on(B1, B), block(B).

noConcurrency.

initially : on(a, table). on(b, table). on(c, a).
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AD – Transition Rules (Causality)

fluents : on(B, L) requires block(B), location(L).

occupied(B) requires location(B).

actions : move(B, L) requires block(B), location(L).

always : executable move(B, L) if not occupied(B),

not occupied(L), B <> L.

inertial on(B, L).

caused on(B, L) after move(B, L).

caused − on(B, L1) after move(B, L), on(B, L1), L <> L1.

caused occupied(B) if on(B1, B), block(B).

noConcurrency.

initially : on(a, table). on(b, table). on(c, a).

Remark: Causation Rules describe valid transitions rather than operator
descriptions in languages like STRIPS or PDDL!
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AD – Initial State Constraints

fluents : on(B, L) requires block(B), location(L).

occupied(B) requires location(B).

actions : move(B, L) requires block(B), location(L).

always : executable move(B, L) if not occupied(B),

not occupied(L), B <> L.

inertial on(B, L).

caused on(B, L) after move(B, L).

caused− on(B, L1) after move(B, L), on(B, L1), L <> L1.

caused occupied(B) if on(B1, B), block(B).

noConcurrency.

initially : on(a, table). on(b, table). on(c, a).
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Goal

goal : on(c, b), on(b, a), on(a, table)?(3)

initial:

b
c
a

c
b
a

goal:

Intuitively: Feasible plan is

move(c, table); move(b, a); move(c, b)
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Features 1/3:

Qualification Problem:

Overriding by exceptions to executability

executable act if < cond1 >

nonexecutable act if < cond2 >

Example:

executable move(B, L) if B != L.

nonexecutable move(B, L) if occupied(B).

nonexecutable move(B, L) if occupied(L).

– p.34/53



Features 2/3

Frame Problem/Inertia:

inertial on(B, L).

short for
caused on(B, L) if not − on(B, L) after on(B, L).

Uncertainty: in general by unstratified negation.

total loaded(gun).

short for
caused loaded(gun) if not − loaded(gun).

caused − loaded(gun) if not loaded(gun).
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Features 3/3

Ramifications/State Axioms:

Simple by causal rules:

caused supported(B1) if on(B1, table).

caused supported(B1) if on(B1, B2), supported(B2).

Note:
transitive closure naturally expressed
(LP-flavored semantics of K)
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Semantics of K – Principles

transition-based semantics

caused fl if Cond1 after Cond2

A 1s s0

A . . . set of actions (executable)

Cond2 is evaluated in s0, might include actions.

fl and Cond1 are evaluated in s1

Define new state s1 by a non-monotonic logic program of rules!

fl :- Cond1

Remark: several answer sets⇔ several possible succ. states
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Incomplete states

Usual assumption for action language: total states

State s is total⇔ For each fluent f , either f or ¬f must be
in s.

f
−g

−f
−g

f
g

−f
g

the two atoms f and g
set of total states for

Total states correspond to total (w.r.t. strong negation!)
interpretations
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Incomplete state: values of some fluents are unknown.

f
−g

−f
−g

f
g

−f
g

for the two atoms f and g
consistent partial interpretations

g −g

−f

f

Handle incompleteness using principles from nonmonotonic
Logic Programming

Note: Differs from Kripke-style AK (Baral & Son, 2001)
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Plans

Trajectories:

T = 〈s0, A1, s1, . . . , sn−1, An, sn〉, n ≥ 0

s0 is initial state

each si+1 is reached by “legal” transition si, Ai+1, si+1

“Optimistic” Plan:

project T where sn satisfies the goal to A1, A2, . . . , An

Example: P = move(c, table); move(b, a); move(c, b)
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Planning under uncertainty in K
Incomplete states

Use of default principles: Express “Unknown”

executable check_door if not open, not − open.

forbidden not on(B, L), not − on(B, L).

“Totalize” fluents (case distinction)

total on(B, L).

“secure” plans (= conformant plans)
Always reach the goal by the plan, no matter what happens

“optimal” plans
action cost declarations, minimize overall cost (not covered here)

– p.41/53



Special Plans – Secure Plans

21

Trajectories: spanning paths, labels form plans

Optimistic Plans: at least one trajectory to goal

Secure Plans: each trajectory from each initial state to goal
no “dead-end” trajectories

– p.42/53



Example: Bomb in the Toilet

Π = {package(1). package(2). . . . package(p).}

fluents : armed(P) requires package(P).

unsafe.

actions : dunk(P) requires package(P).

always : executable dunk(P).

inertial armed(P).

caused − armed(P) after dunk(P).

caused unsafe if armed(P).

initially : total armed(P). % 3 lines: one package is armed

forbidden armed(P), armed(P1), P <> P1.

forbidden not unsafe.

goal : not unsafe ? (p)

Encodes ALL possible world states!

Variant: At least one package is armed. What changes?

– p.43/53



Example: Bomb in the Toilet

Π = {package(1). package(2). . . . package(p).}

fluents : armed(P) requires package(P).

unsafe.

actions : dunk(P) requires package(P).

always : executable dunk(P).

inertial armed(P).

caused − armed(P) after dunk(P).

caused unsafe if armed(P).

initially : total armed(P). % 3 lines: one package is armed

forbidden armed(P), armed(P1), P <> P1.

forbidden not unsafe.

goal : not unsafe ? (p)

Encodes ALL possible world states!
Variant: At least one package is armed. What changes?

– p.43/53



Avoiding Totalization

Change view: "unsafe = known that one package is armed"

⇒ ”unsafe = not known that all packages are unarmed".

fluents : armed(P) requires package(P).

unsafe.

actions : dunk(P) requires package(P).

always : executable dunk(P).

inertial − armed(P).

caused − armed(P) after dunk(P).

caused unsafe if not− armed(P).

initially : % tabula rasa, nothing is known

goal : not unsafe ? (p)

Encodes only what is KNOWN! - Knowledge States

Single initial state, only det. actions⇒ need no security check
– p.44/53



Action Language K- “Forgetting”

Similar to “unknown” fluents in the initial state, we can use knowledge
state encodings to “forget” about certain facts by overriding intertia.
Example: non-deterministic “clogging” in Bomb in the toilet.

total clogged(T) after flush(T)

inertial -clogged(T).

“The toilet might be clogged or unclogged after being flushed”. “It stays
unclogged normally.”

Alternative:

inertial -clogged(T) after not flush(T).

“The toilet stays unclogged unless it has been flushed”
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Action Language K- Another example

Avoiding totalization is not always possible: example SQUARE
[Bonet-Geffner, 2000]:
fluents: atX(P) requires index(P). atY(P) requires index(P). anywhere.

actions: up. down. left. right.

always: executable up. executable right. executable left. executable down.

nonexecutable up if down. nonexecutable left if right.

inertial atX(X). inertial atY(Y).

caused atX(X) after atX(X1), next(X,X1), left.

caused atX(X1) after atX(X), next(X,X1), right.

caused -atX(X) if atX(X1), X1 != X after atX(X).

[...]

initially: total atX(X). total atY(Y).

forbidden atX(X), atX(X1), X != X1.

forbidden atY(Y), atY(Y1), Y != Y1.

caused anywhere if atX(X), atY(Y).

forbidden not anywhere.

goal: atX(0),atY(0)? ($n$)

We can not make use of “unknown” in case of conditional effects. – p.46/53



Translations to Disjunctive Datalog - The DLVK Planning
System
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Translation

caused on(B,L) after move(B,L).

⇒ on(B, L, T1) :- move(B, L, T), T1 = T + 1.

inertial on(B,L).

(= caused on(B,L) if not -on(B,L) after on(B,L).)

⇒ on(B, L, T1) :- on(B, L, T), not − on(B, L, T1), T1 = T + 1.

initially caused on(a,table).

⇒ on(a, table, 0).

executable move(B,L) if B !=L.

⇒ move(B, L, T) ∨ −move(B, L, T) :- B != L, block(B), location(L),

actiontime(T).

goal: on(c,b), on(b,a), on(a,table)? (3)

⇒ goal:- on(a, table, 3), on(b, a, 3), on(c, b, 3).

:- not goal.

actiontime(0).actiontime(1).actiontime(2).

Projection of answer sets to positive action literals yields optimistic plans.

Actions/Fluents are time-stamped.
– p.48/53



Translation - Secure check

Secure planning: Check plan by rewriting this program
wrt. plan.

Hard-code an optimistic plan p inside the translated
program and try to find an answer set where the goal
does not hold Πcheck(p), or an action of p is not
executable.

Algorithm for secure planning:
compute optimistic plans (i.e. answer sets)
Create Πcheck for optimistic plan) found, if has no
answer set, the plan is secure (i.e. conformant).
use caching.

Integrated encodings: cf. [Eiter, Polleres, 2004],
[Polleres, 2003]
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DLVK System

Architecture:

Control Flow
Data Flow

Datalog Parser

K Parser

Plan Generator Plan Checker Plan Printer

DLV Core

K Core Controller

Knowledge
Background

K input
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Some - old - benchmarks
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Conclusions

Expressive action language, based on principles of LP

Competitive implementation with suitable encodings (without
specialized heuristics (yet)).

The idea is similar to SAT Planning or CPlan (Castellini, et al. 2001):
Translate to a declarative formalism and use existing solvers (dlv,
smodels, etc.).

Improvements (Magic Sets, Heuristics?), etc.

Further steps: Integrated encodings, Conditional Planning(?) Plan
Repair.
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