
dlvhex-sparql:
A SPARQL-compliant Query Engine based on

dlvhex

Axel Polleres1

1Digital Enterprise Research Institute (DERI), National University of Ireland,
Galway

axel.polleres@deri.org

ALPSWS 2007

joint work with Roman Schindlauer
Univ. della Calabria, Rende, Italy and Vienna Univ. of Technology,

Austria

Supported by EU FP6 project inContext, and SFI Lion project

A. Polleres – dlvhex-sparql 1 / 26

Outline

Preliminaries
dlvhex
From SQL to Datalog
RDF

From SPARQL to dlvhex
Basic Graph Patterns
GRAPH Patterns
FILTERs
UNION Patterns
OPTIONAL

SPARQL Specification compliance
ORDER BY, LIMIT, OFFSET
Multi-set semantics
FILTERs in OPTIONALs
CONSTRUCTs and blank nodes

Summary

A. Polleres – dlvhex-sparql 2 / 26

Outline

Preliminaries
dlvhex
From SQL to Datalog
RDF

From SPARQL to dlvhex
Basic Graph Patterns
GRAPH Patterns
FILTERs
UNION Patterns
OPTIONAL

SPARQL Specification compliance
ORDER BY, LIMIT, OFFSET
Multi-set semantics
FILTERs in OPTIONALs
CONSTRUCTs and blank nodes

Summary

A. Polleres – dlvhex-sparql 3 / 26

dlvhex

I a flexible plugin-framework for the DLV engine

I extends Answer Set Programming by external atoms
I implemented plugins

I for importing Semantic Web data (RDF)
I for calling DL reasoners (OWL)
I etc.

A. Polleres – dlvhex-sparql 4 / 26

dlvhex Syntax

I external atoms

&g [Y1, . . . ,Yn](X1, . . . ,Xm)

where Y1, . . . ,Yn are “input” parameters and (X1, . . . ,Xm) is
the output tuple.

I Rules:
h :- b1, . . . , bm, not bm+1, . . . not bn.

where h and bi (1 ≤ i ≤ n) are atoms, bk (1 ≤ k ≤ m) either
atoms or external atoms

A. Polleres – dlvhex-sparql 5 / 26

dlvhex Syntax

I external atoms

&g [Y1, . . . ,Yn](X1, . . . ,Xm)

where Y1, . . . ,Yn are “input” parameters and (X1, . . . ,Xm) is
the output tuple.

I Rules:
h :- b1, . . . , bm, not bm+1, . . . not bn.

where h and bi (1 ≤ i ≤ n) are atoms, bk (1 ≤ k ≤ m) either
atoms or external atoms

A. Polleres – dlvhex-sparql 5 / 26

dlvhex Semantics

I semantics of dlvhex generalizes the answer-set semantics

I external predicates similar to function calls, but can have
multiple “return” tuples

I We use particularly 2 external predicates in this work:
I &rdf[i](s, p, o) is true if (s, p, o) is an RDF triple entailed by

the RDF graph which is accessibly at IRI i .
I &sk[id , v1, . . . , vn](skn+1) computes a unique, new

“Skolem”-like term id(v1, . . . , vn), from its input parameters.

A. Polleres – dlvhex-sparql 6 / 26

dlvhex Semantics

I semantics of dlvhex generalizes the answer-set semantics

I external predicates similar to function calls, but can have
multiple “return” tuples

I We use particularly 2 external predicates in this work:
I &rdf[i](s, p, o) is true if (s, p, o) is an RDF triple entailed by

the RDF graph which is accessibly at IRI i .
I &sk[id , v1, . . . , vn](skn+1) computes a unique, new

“Skolem”-like term id(v1, . . . , vn), from its input parameters.

A. Polleres – dlvhex-sparql 6 / 26

dlvhex Semantics

I semantics of dlvhex generalizes the answer-set semantics

I external predicates similar to function calls, but can have
multiple “return” tuples

I We use particularly 2 external predicates in this work:
I &rdf[i](s, p, o) is true if (s, p, o) is an RDF triple entailed by

the RDF graph which is accessibly at IRI i .
I &sk[id , v1, . . . , vn](skn+1) computes a unique, new

“Skolem”-like term id(v1, . . . , vn), from its input parameters.

A. Polleres – dlvhex-sparql 6 / 26

dlvhex Semantics

I semantics of dlvhex generalizes the answer-set semantics

I external predicates similar to function calls, but can have
multiple “return” tuples

I We use particularly 2 external predicates in this work:
I &rdf[i](s, p, o) is true if (s, p, o) is an RDF triple entailed by

the RDF graph which is accessibly at IRI i .
I &sk[id , v1, . . . , vn](skn+1) computes a unique, new

“Skolem”-like term id(v1, . . . , vn), from its input parameters.

A. Polleres – dlvhex-sparql 6 / 26

dlvhex Semantics

I semantics of dlvhex generalizes the answer-set semantics

I external predicates similar to function calls, but can have
multiple “return” tuples

I We use particularly 2 external predicates in this work:
I &rdf[i](s, p, o) is true if (s, p, o) is an RDF triple entailed by

the RDF graph which is accessibly at IRI i .
I &sk[id , v1, . . . , vn](skn+1) computes a unique, new

“Skolem”-like term id(v1, . . . , vn), from its input parameters.

A. Polleres – dlvhex-sparql 6 / 26

dlvhex Semantics

I semantics of dlvhex generalizes the answer-set semantics

I external predicates similar to function calls, but can have
multiple “return” tuples

I We use particularly 2 external predicates in this work:
I &rdf[i](s, p, o) is true if (s, p, o) is an RDF triple entailed by

the RDF graph which is accessibly at IRI i .
I &sk[id , v1, . . . , vn](skn+1) computes a unique, new

“Skolem”-like term id(v1, . . . , vn), from its input parameters.

A. Polleres – dlvhex-sparql 6 / 26

SQL and Datalog

I Starting point: SQL can (to a large extent) be encoded in Datalog
with negation as failure (=Datalognot)

Example: Two tables containing adressbooks
myAddr(Name, Street, City, Telephone)
yourAddr(Name, Address)

SELECT name FROM myAddr WHERE City = "Innsbruck"

UNION

SELECT name FROM yourAddresses

answer1(Name) :- myAddr(Name, Street, "Innsbruck", Tel).

answer1(Name) :- yourAddr(Name, Address).

?- answer1(Name).

I That was easy... Now what about SPARQL?

A. Polleres – dlvhex-sparql 7 / 26

SQL and Datalog

I Starting point: SQL can (to a large extent) be encoded in Datalog
with negation as failure (=Datalognot)

Example: Two tables containing adressbooks
myAddr(Name, Street, City, Telephone)
yourAddr(Name, Address)

SELECT name FROM myAddr WHERE City = "Innsbruck"

UNION

SELECT name FROM yourAddresses

answer1(Name) :- myAddr(Name, Street, "Innsbruck", Tel).

answer1(Name) :- yourAddr(Name, Address).

?- answer1(Name).

I That was easy... Now what about SPARQL?

A. Polleres – dlvhex-sparql 7 / 26

SQL and Datalog

I Starting point: SQL can (to a large extent) be encoded in Datalog
with negation as failure (=Datalognot)

Example: Two tables containing adressbooks
myAddr(Name, Street, City, Telephone)
yourAddr(Name, Address)

SELECT name FROM myAddr WHERE City = "Innsbruck"

UNION

SELECT name FROM yourAddresses

answer1(Name) :- myAddr(Name, Street, "Innsbruck", Tel).

answer1(Name) :- yourAddr(Name, Address).

?- answer1(Name).

I That was easy... Now what about SPARQL?

A. Polleres – dlvhex-sparql 7 / 26

SQL and Datalog

I Starting point: SQL can (to a large extent) be encoded in Datalog
with negation as failure (=Datalognot)

Example: Two tables containing adressbooks
myAddr(Name, Street, City, Telephone)
yourAddr(Name, Address)

SELECT name FROM myAddr WHERE City = "Innsbruck"

UNION

SELECT name FROM yourAddresses

answer1(Name) :- myAddr(Name, Street, "Innsbruck", Tel).

answer1(Name) :- yourAddr(Name, Address).

?- answer1(Name).

I That was easy... Now what about SPARQL?

A. Polleres – dlvhex-sparql 7 / 26

SQL and Datalog

I Starting point: SQL can (to a large extent) be encoded in Datalog
with negation as failure (=Datalognot)

Example: Two tables containing adressbooks
myAddr(Name, Street, City, Telephone)
yourAddr(Name, Address)

SELECT name FROM myAddr WHERE City = "Innsbruck"

UNION

SELECT name FROM yourAddresses

answer1(Name) :- myAddr(Name, Street, "Innsbruck", Tel).

answer1(Name) :- yourAddr(Name, Address).

?- answer1(Name).

I That was easy... Now what about SPARQL?

A. Polleres – dlvhex-sparql 7 / 26

RDF

I SPARQL (W3C Candidate Recommentation), a query language for RDF

I RDF is sets of (S, P, O) triples, often written in the following notation:

<axel> <foaf:knows> _:x .

_:x foaf:name "Roman" .

<axel> <rdf:type> <foaf:Person> .

<axel> <:age> "33"^^<xsd:integer> .

I special thing: “blank” nodes (:x) are kind of existential variables in the
data, to represent incomplete data, may be read:

∃X .triple(axel , foaf :knows,X)∧ triple(X , foaf :name, ”Roman”)∧ . . .

I this is somewhat different from SQL.

I How to get RDF data into dlvhex? We use the &rdf external atom:

{triple(S,P,O) :- &rdf["http://ex.org/bob.rdf"](S,P,O).}

A. Polleres – dlvhex-sparql 8 / 26

RDF

I SPARQL (W3C Candidate Recommentation), a query language for RDF

I RDF is sets of (S, P, O) triples, often written in the following notation:

<axel> <foaf:knows> _:x .

_:x foaf:name "Roman" .

<axel> <rdf:type> <foaf:Person> .

<axel> <:age> "33"^^<xsd:integer> .

I special thing: “blank” nodes (:x) are kind of existential variables in the
data, to represent incomplete data, may be read:

∃X .triple(axel , foaf :knows,X)∧ triple(X , foaf :name, ”Roman”)∧ . . .

I this is somewhat different from SQL.

I How to get RDF data into dlvhex? We use the &rdf external atom:

{triple(S,P,O) :- &rdf["http://ex.org/bob.rdf"](S,P,O).}

A. Polleres – dlvhex-sparql 8 / 26

RDF

I SPARQL (W3C Candidate Recommentation), a query language for RDF

I RDF is sets of (S, P, O) triples, often written in the following notation:

<axel> <foaf:knows> _:x .

_:x foaf:name "Roman" .

<axel> <rdf:type> <foaf:Person> .

<axel> <:age> "33"^^<xsd:integer> .

I special thing: “blank” nodes (:x) are kind of existential variables in the
data, to represent incomplete data, may be read:

∃X .triple(axel , foaf :knows,X)∧ triple(X , foaf :name, ”Roman”)∧ . . .

I this is somewhat different from SQL.

I How to get RDF data into dlvhex? We use the &rdf external atom:

{triple(S,P,O) :- &rdf["http://ex.org/bob.rdf"](S,P,O).}

A. Polleres – dlvhex-sparql 8 / 26

Outline

Preliminaries
dlvhex
From SQL to Datalog
RDF

From SPARQL to dlvhex
Basic Graph Patterns
GRAPH Patterns
FILTERs
UNION Patterns
OPTIONAL

SPARQL Specification compliance
ORDER BY, LIMIT, OFFSET
Multi-set semantics
FILTERs in OPTIONALs
CONSTRUCTs and blank nodes

Summary

A. Polleres – dlvhex-sparql 9 / 26

From SPARQL to dlvhex: Basic Graph Patterns

I We import all triples in a predicate triple(Subj,Pred,Object,Graph)

which carries an additional argument for the dataset.

Basic Graph patterns = simple conjunctive queries:

“select persons and their names”

SELECT ?X ?Y
FROM <http://alice.org>
FROM <http://ex.org/bob>
WHERE { ?X a foaf:Person . ?X foaf:name ?Y . }

triple(S,P,O,def) :- &rdf["http://ex.org/bob"](S,P,O).
triple(S,P,O,def) :- &rdf["http://alice.org"](S,P,O).
answer1(X,Y,def) :- triple(X,"rdf:type","foaf:Person",def),

triple(X,"foaf:name",Y,def).

?- answer1(X,Y,def).

A. Polleres – dlvhex-sparql 10 / 26

From SPARQL to dlvhex: Basic Graph Patterns

I We import all triples in a predicate triple(Subj,Pred,Object,Graph)

which carries an additional argument for the dataset.

Basic Graph patterns = simple conjunctive queries:

“select persons and their names”

SELECT ?X ?Y
FROM <http://alice.org>
FROM <http://ex.org/bob>
WHERE { ?X a foaf:Person . ?X foaf:name ?Y . }

triple(S,P,O,def) :- &rdf["http://ex.org/bob"](S,P,O).
triple(S,P,O,def) :- &rdf["http://alice.org"](S,P,O).
answer1(X,Y,def) :- triple(X,"rdf:type","foaf:Person",def),

triple(X,"foaf:name",Y,def).

?- answer1(X,Y,def).

A. Polleres – dlvhex-sparql 10 / 26

From SPARQL to dlvhex: Basic Graph Patterns

I We import all triples in a predicate triple(Subj,Pred,Object,Graph)

which carries an additional argument for the dataset.

Basic Graph patterns = simple conjunctive queries:

“select persons and their names”

SELECT ?X ?Y
FROM <http://alice.org>
FROM <http://ex.org/bob>
WHERE { ?X a foaf:Person . ?X foaf:name ?Y . }

triple(S,P,O,def) :- &rdf["http://ex.org/bob"](S,P,O).
triple(S,P,O,def) :- &rdf["http://alice.org"](S,P,O).
answer1(X,Y,def) :- triple(X,"rdf:type","foaf:Person",def),

triple(X,"foaf:name",Y,def).

?- answer1(X,Y,def).

A. Polleres – dlvhex-sparql 10 / 26

From SPARQL to dlvhex: Basic Graph Patterns

I We import all triples in a predicate triple(Subj,Pred,Object,Graph)

which carries an additional argument for the dataset.

Basic Graph patterns = simple conjunctive queries:

“select persons and their names”

SELECT ?X ?Y
FROM <http://alice.org>
FROM <http://ex.org/bob>
WHERE { ?X a foaf:Person . ?X foaf:name ?Y . }

triple(S,P,O,def) :- &rdf["http://ex.org/bob"](S,P,O).
triple(S,P,O,def) :- &rdf["http://alice.org"](S,P,O).
answer1(X,Y,def) :- triple(X,"rdf:type","foaf:Person",def),

triple(X,"foaf:name",Y,def).

?- answer1(X,Y,def).

A. Polleres – dlvhex-sparql 10 / 26

From SPARQL to dlvhex: Basic Graph Patterns

I We import all triples in a predicate triple(Subj,Pred,Object,Graph)

which carries an additional argument for the dataset.

Basic Graph patterns = simple conjunctive queries:

“select persons and their names”

SELECT ?X ?Y
FROM <http://alice.org>
FROM <http://ex.org/bob>
WHERE { ?X a foaf:Person . ?X foaf:name ?Y . }

triple(S,P,O,def) :- &rdf["http://ex.org/bob"](S,P,O).
triple(S,P,O,def) :- &rdf["http://alice.org"](S,P,O).
answer1(X,Y,def) :- triple(X,"rdf:type","foaf:Person",def),

triple(X,"foaf:name",Y,def).

?- answer1(X,Y,def).

A. Polleres – dlvhex-sparql 10 / 26

From SPARQL to dlvhex: GRAPH Patterns and NAMED graphs

“select creators of graphs and the persons they know”

SELECT ?X ?Y
FROM <alice.org>
FROM NAMED <alice.org>
FROM NAMED <ex.org/bob>
WHERE { ?G foaf:maker ?X .

GRAPH ?G { ?X foaf:knows ?Y. } }

triple(S,P,O,def) :- &rdf["alice.org"](S,P,O).
triple(S,P,O,"alice.org") :- &rdf["alice.org"](S,P,O).
triple(S,P,O,"ex.org/bob") :- &rdf["ex.org/bob"](S,P,O).
answer1(X,Y,def) :- triple(G,"foaf:maker",X,def),

triple(X,"foaf:knows",Y,G).

For legibility we left out the http:// prefix

A. Polleres – dlvhex-sparql 11 / 26

From SPARQL to dlvhex: GRAPH Patterns and NAMED graphs

“select creators of graphs and the persons they know”

SELECT ?X ?Y
FROM <alice.org>
FROM NAMED <alice.org>
FROM NAMED <ex.org/bob>
WHERE { ?G foaf:maker ?X .

GRAPH ?G { ?X foaf:knows ?Y. } }

triple(S,P,O,def) :- &rdf["alice.org"](S,P,O).
triple(S,P,O,"alice.org") :- &rdf["alice.org"](S,P,O).
triple(S,P,O,"ex.org/bob") :- &rdf["ex.org/bob"](S,P,O).
answer1(X,Y,def) :- triple(G,"foaf:maker",X,def),

triple(X,"foaf:knows",Y,G).

For legibility we left out the http:// prefix

A. Polleres – dlvhex-sparql 11 / 26

From SPARQL to dlvhex: GRAPH Patterns and NAMED graphs

“select creators of graphs and the persons they know”

SELECT ?X ?Y
FROM <alice.org>
FROM NAMED <alice.org>
FROM NAMED <ex.org/bob>
WHERE { ?G foaf:maker ?X .

GRAPH ?G { ?X foaf:knows ?Y. } }

triple(S,P,O,def) :- &rdf["alice.org"](S,P,O).
triple(S,P,O,"alice.org") :- &rdf["alice.org"](S,P,O).
triple(S,P,O,"ex.org/bob") :- &rdf["ex.org/bob"](S,P,O).
answer1(X,Y,def) :- triple(G,"foaf:maker",X,def),

triple(X,"foaf:knows",Y,G).

For legibility we left out the http:// prefix

A. Polleres – dlvhex-sparql 11 / 26

From SPARQL to dlvhex: GRAPH Patterns and NAMED graphs

“select creators of graphs and the persons they know”

SELECT ?X ?Y
FROM <alice.org>
FROM NAMED <alice.org>
FROM NAMED <ex.org/bob>
WHERE { ?G foaf:maker ?X .

GRAPH ?G { ?X foaf:knows ?Y. } }

triple(S,P,O,def) :- &rdf["alice.org"](S,P,O).
triple(S,P,O,"alice.org") :- &rdf["alice.org"](S,P,O).
triple(S,P,O,"ex.org/bob") :- &rdf["ex.org/bob"](S,P,O).
answer1(X,Y,def) :- triple(G,"foaf:maker",X,def),

triple(X,"foaf:knows",Y,G).

For legibility we left out the http:// prefix

A. Polleres – dlvhex-sparql 11 / 26

From SPARQL to dlvhex: GRAPH Patterns and NAMED graphs

“select creators of graphs and the persons they know”

SELECT ?X ?Y
FROM <alice.org>
FROM NAMED <alice.org>
FROM NAMED <ex.org/bob>
WHERE { ?G foaf:maker ?X .

GRAPH ?G { ?X foaf:knows ?Y. } }

triple(S,P,O,def) :- &rdf["alice.org"](S,P,O).
triple(S,P,O,"alice.org") :- &rdf["alice.org"](S,P,O).
triple(S,P,O,"ex.org/bob") :- &rdf["ex.org/bob"](S,P,O).
answer1(X,Y,def) :- triple(G,"foaf:maker",X,def),

triple(X,"foaf:knows",Y,G).

For legibility we left out the http:// prefix

A. Polleres – dlvhex-sparql 11 / 26

From SPARQL to dlvhex: GRAPH Patterns and NAMED graphs

“select creators of graphs and the persons they know”

SELECT ?X ?Y
FROM <alice.org>
FROM NAMED <alice.org>
FROM NAMED <ex.org/bob>
WHERE { ?G foaf:maker ?X .

GRAPH ?G { ?X foaf:knows ?Y. } }

triple(S,P,O,def) :- &rdf["alice.org"](S,P,O).
triple(S,P,O,"alice.org") :- &rdf["alice.org"](S,P,O).
triple(S,P,O,"ex.org/bob") :- &rdf["ex.org/bob"](S,P,O).
answer1(X,Y,def) :- triple(G,"foaf:maker",X,def),

triple(X,"foaf:knows",Y,G).

For legibility we left out the http:// prefix

A. Polleres – dlvhex-sparql 11 / 26

From SPARQL to dlvhex: FILTERs

FILTERs are used to filter the result set of a query.
FILTER expressions can be encoded by built-in predicates:

SELECT ?X
FROM ...
WHERE { ?X foaf:mbox ?M . ?X :age ?Age .

FILTER(?Age > 30)
}

answer1(X,def) :-
triple(X,foaf:mbox,M,def), triple(X,:age,Age,def),
Age > 30.

unbound variables in FILTERs need to be replaced by constant , to
avoid unsafe rules.

A. Polleres – dlvhex-sparql 12 / 26

From SPARQL to dlvhex: FILTERs

FILTERs are used to filter the result set of a query.
FILTER expressions can be encoded by built-in predicates:

SELECT ?X
FROM ...
WHERE { ?X foaf:mbox ?M . ?X :age ?Age .

FILTER(?Age > 30)
}

answer1(X,def) :-
triple(X,foaf:mbox,M,def), triple(X,:age,Age,def),
Age > 30.

unbound variables in FILTERs need to be replaced by constant , to
avoid unsafe rules.

A. Polleres – dlvhex-sparql 12 / 26

From SPARQL to dlvhex: FILTERs

FILTERs are used to filter the result set of a query.
FILTER expressions can be encoded by built-in predicates:

SELECT ?X
FROM ...
WHERE { ?X foaf:mbox ?M .

FILTER(?Age > 30)
}

answer1(X,def) :-
triple(X,foaf:mbox,M,def),
null > 30.

unbound variables in FILTERs need to be replaced by constant , to
avoid unsafe rules.

A. Polleres – dlvhex-sparql 12 / 26

From SPARQL to dlvhex: UNION Patterns 1/2

UNIONs are split off into several rules:

“select Persons and their names or nicknames”

SELECT ?X ?Y
FROM ...
WHERE { { ?X foaf:name ?Y . }

UNION { ?X foaf:nick ?Y .} }

triple(S,P,O,def) :- ...
answer1(X,Y,def) :- triple(X,"foaf:name",Y,def).
answer1(X,Y,def) :- triple(X,"foaf:nick",Y,def).

A. Polleres – dlvhex-sparql 13 / 26

From SPARQL to dlvhex: UNION Patterns 1/2

UNIONs are split off into several rules:

“select Persons and their names or nicknames”

SELECT ?X ?Y
FROM ...
WHERE { { ?X foaf:name ?Y . }

UNION { ?X foaf:nick ?Y .} }

triple(S,P,O,def) :- ...
answer1(X,Y,def) :- triple(X,"foaf:name",Y,def).
answer1(X,Y,def) :- triple(X,"foaf:nick",Y,def).

A. Polleres – dlvhex-sparql 13 / 26

From SPARQL to dlvhex: UNION Patterns 1/2

UNIONs are split off into several rules:

“select Persons and their names or nicknames”

SELECT ?X ?Y
FROM ...
WHERE { { ?X foaf:name ?Y . }

UNION { ?X foaf:nick ?Y .} }

triple(S,P,O,def) :- ...
answer1(X,Y,def) :- triple(X,"foaf:name",Y,def).
answer1(X,Y,def) :- triple(X,"foaf:nick",Y,def).

A. Polleres – dlvhex-sparql 13 / 26

From SPARQL to dlvhex: UNION Patterns 2/2

What if variables of the of constituent patterns don’t coincide?
Slightly different than in SQL!
We emulate this by special null values!

SELECT ?X ?Y ?Z
FROM ...
WHERE { { ?X foaf:name ?Y . }

UNION { ?X foaf:nick ?Z .} }

Data:
<alice.org#me> foaf:name "Alice".
<ex.org/bob#me> foaf:name "Bob" .
<ex.org/bob#me> foaf:nick "Bobby".
Result:

?X ?Y ?Z

<alice.org#me> ”Alice”
<ex.org/bob#me> ”Bob”
<ex.org/bob#me> ”Bobby”

A. Polleres – dlvhex-sparql 14 / 26

From SPARQL to dlvhex: UNION Patterns 2/2

What if variables of the of constituent patterns don’t coincide?
Slightly different than in SQL!
We emulate this by special null values!

SELECT ?X ?Y ?Z
FROM ...
WHERE { { ?X foaf:name ?Y . }

UNION { ?X foaf:nick ?Z .} }

Data:
<alice.org#me> foaf:name "Alice".
<ex.org/bob#me> foaf:name "Bob" .
<ex.org/bob#me> foaf:nick "Bobby".
Result:

?X ?Y ?Z

<alice.org#me> ”Alice”
<ex.org/bob#me> ”Bob”
<ex.org/bob#me> ”Bobby”

A. Polleres – dlvhex-sparql 14 / 26

From SPARQL to dlvhex: UNION Patterns 2/2

What if variables of the of constituent patterns don’t coincide?
Slightly different than in SQL!
We emulate this by special null values!

SELECT ?X ?Y ?Z
FROM ...
WHERE { { ?X foaf:name ?Y . }

UNION { ?X foaf:nick ?Z .} }

Data:
<alice.org#me> foaf:name "Alice".
<ex.org/bob#me> foaf:name "Bob" .
<ex.org/bob#me> foaf:nick "Bobby".
Result:

?X ?Y ?Z

<alice.org#me> ”Alice” null

<ex.org/bob#me> ”Bob” null

<ex.org/bob#me> null ”Bobby”

A. Polleres – dlvhex-sparql 14 / 26

From SPARQL to dlvhex: UNION Patterns 2/2

What if variables of the of constituent patterns don’t coincide?
Slightly different than in SQL!
We emulate this by special null values!

SELECT ?X ?Y ?Z
FROM ...
WHERE { { ?X foaf:name ?Y . }

UNION { ?X foaf:nick ?Z .} }

triple(S,P,O,def) :- ...
answer1(X,Y,null,def) :- triple(X,"foaf:name",Y,def).
answer1(X,null,Z,def) :- triple(X,"foaf:nick",Z,def).

A. Polleres – dlvhex-sparql 15 / 26

From SPARQL to dlvhex: UNION Patterns 2/2

What if variables of the of constituent patterns don’t coincide?
Slightly different than in SQL!
We emulate this by special null values!

SELECT ?X ?Y ?Z
FROM ...
WHERE { { ?X foaf:name ?Y . }

UNION { ?X foaf:nick ?Z .} }

triple(S,P,O,def) :- ...
answer1(X,Y,null,def) :- triple(X,"foaf:name",Y,def).
answer1(X,null,Z,def) :- triple(X,"foaf:nick",Z,def).

A. Polleres – dlvhex-sparql 15 / 26

From SPARQL to dlvhex: OPTIONAL Patterns

“select all persons and optionally their names”

SELECT *
WHERE
{

?X a foaf:Person .
OPTIONAL {?X foaf:name ?N }

}

OPTIONAL is similar to an OUTER JOIN in SQL, actually it is a
combination of a join and set difference:

{P1 OPTIONAL {P2}}: M1 M2 = (M1 M2) ∪ (M1 r M2)

where M1 and M2 are variable binding for P1 and P2, resp.

A. Polleres – dlvhex-sparql 16 / 26

From SPARQL to dlvhex: OPTIONAL Patterns

“select all persons and optionally their names”

SELECT *
WHERE
{

?X a foaf:Person .
OPTIONAL {?X foaf:name ?N }

}

OPTIONAL is similar to an OUTER JOIN in SQL, actually it is a
combination of a join and set difference:

{P1 OPTIONAL {P2}}: M1 M2 = (M1 M2) ∪ (M1 r M2)

where M1 and M2 are variable binding for P1 and P2, resp.

A. Polleres – dlvhex-sparql 16 / 26

From SPARQL to dlvhex: OPTIONAL Patterns

“select all persons and optionally their names”

SELECT *
WHERE
{

?X a foaf:Person .
OPTIONAL {?X foaf:name ?N }

}

OPTIONAL is similar to an OUTER JOIN in SQL, actually it is a
combination of a join and set difference:

{P1 OPTIONAL {P2}}: M1 M2 = (M1 M2) ∪ (M1 r M2)

where M1 and M2 are variable binding for P1 and P2, resp.

A. Polleres – dlvhex-sparql 16 / 26

SPARQL’s OPTIONAL has “negation as failure”, hidden:

I Observation: SPARQL allows to express set difference /
negation as failure by combining OPTIONAL and !bound

“select all persons without an email address”

SELECT ?X
WHERE
{

?X a ?Person
OPTIONAL {?X :email ?Email }
FILTER (!bound(?Email))

}

I Same effect as “NOT EXISTS” in SQL, set difference!.

I We’ve seen before that OPTIONAL, has set difference
inherent, with the “!bound” we get it back again “purely”.

A. Polleres – dlvhex-sparql 17 / 26

SPARQL’s OPTIONAL has “negation as failure”, hidden:

I Observation: SPARQL allows to express set difference /
negation as failure by combining OPTIONAL and !bound

“select all persons without an email address”

SELECT ?X
WHERE
{

?X a ?Person
OPTIONAL {?X :email ?Email }
FILTER (!bound(?Email))

}

I Same effect as “NOT EXISTS” in SQL, set difference!.

I We’ve seen before that OPTIONAL, has set difference
inherent, with the “!bound” we get it back again “purely”.

A. Polleres – dlvhex-sparql 17 / 26

SPARQL’s OPTIONAL has “negation as failure”, hidden:

I Observation: SPARQL allows to express set difference /
negation as failure by combining OPTIONAL and !bound

“select all persons without an email address”

SELECT ?X
WHERE
{

?X a ?Person
OPTIONAL {?X :email ?Email }
FILTER (!bound(?Email))

}

I Same effect as “NOT EXISTS” in SQL, set difference!.

I We’ve seen before that OPTIONAL, has set difference
inherent, with the “!bound” we get it back again “purely”.

A. Polleres – dlvhex-sparql 17 / 26

From SPARQL to dlvhex: OPTIONAL Patterns

SELECT *
WHERE
{

?X a foaf:Person .
OPTIONAL {?X foaf:name ?N }

}

Recall: (P1 OPT P2): M1 M2 = (M1 M2) ∪ (M1 r M2)

triple(S,P,O,def) :- ...

answer1(X,N,def) :- triple(X,"rdf:type","foaf:Person",def),

triple(X,"foaf:name",N,def).

answer1(X,null,def) :- triple(X,"rdf:type","foaf:Person",def),

not answer2(X).

answer2(X) :- triple(X,"foaf:name",N,def).

We use null and negation as failure not to “emulate” set difference.

Note: Additional machinery needed for special OPTIONAL queries... out

of scope of this short paper, see [Polleres, WWW2007]

A. Polleres – dlvhex-sparql 18 / 26

From SPARQL to dlvhex: OPTIONAL Patterns

SELECT *
WHERE
{

?X a foaf:Person .
OPTIONAL {?X foaf:name ?N }

}

Recall: (P1 OPT P2): M1 M2 = (M1 M2) ∪ (M1 r M2)

triple(S,P,O,def) :- ...

answer1(X,N,def) :- triple(X,"rdf:type","foaf:Person",def),

triple(X,"foaf:name",N,def).

answer1(X,null,def) :- triple(X,"rdf:type","foaf:Person",def),

not answer2(X).

answer2(X) :- triple(X,"foaf:name",N,def).

We use null and negation as failure not to “emulate” set difference.

Note: Additional machinery needed for special OPTIONAL queries... out

of scope of this short paper, see [Polleres, WWW2007]

A. Polleres – dlvhex-sparql 18 / 26

From SPARQL to dlvhex: OPTIONAL Patterns

SELECT *
WHERE
{

?X a foaf:Person .
OPTIONAL {?X foaf:name ?N }

}

Recall: (P1 OPT P2): M1 M2 = (M1 M2) ∪ (M1 r M2)

triple(S,P,O,def) :- ...

answer1(X,N,def) :- triple(X,"rdf:type","foaf:Person",def),

triple(X,"foaf:name",N,def).

answer1(X,null,def) :- triple(X,"rdf:type","foaf:Person",def),

not answer2(X).

answer2(X) :- triple(X,"foaf:name",N,def).

We use null and negation as failure not to “emulate” set difference.

Note: Additional machinery needed for special OPTIONAL queries... out

of scope of this short paper, see [Polleres, WWW2007]

A. Polleres – dlvhex-sparql 18 / 26

From SPARQL to dlvhex: OPTIONAL Patterns

SELECT *
WHERE
{

?X a foaf:Person .
OPTIONAL {?X foaf:name ?N }

}

Recall: (P1 OPT P2): M1 M2 = (M1 M2) ∪ (M1 r M2)

triple(S,P,O,def) :- ...

answer1(X,N,def) :- triple(X,"rdf:type","foaf:Person",def),

triple(X,"foaf:name",N,def).

answer1(X,null,def) :- triple(X,"rdf:type","foaf:Person",def),

not answer2(X).

answer2(X) :- triple(X,"foaf:name",N,def).

We use null and negation as failure not to “emulate” set difference.

Note: Additional machinery needed for special OPTIONAL queries... out

of scope of this short paper, see [Polleres, WWW2007]

A. Polleres – dlvhex-sparql 18 / 26

From SPARQL to dlvhex: OPTIONAL Patterns

SELECT *
WHERE
{

?X a foaf:Person .
OPTIONAL {?X foaf:name ?N }

}

Recall: (P1 OPT P2): M1 M2 = (M1 M2) ∪ (M1 r M2)

triple(S,P,O,def) :- ...

answer1(X,N,def) :- triple(X,"rdf:type","foaf:Person",def),

triple(X,"foaf:name",N,def).

answer1(X,null,def) :- triple(X,"rdf:type","foaf:Person",def),

not answer2(X).

answer2(X) :- triple(X,"foaf:name",N,def).

We use null and negation as failure not to “emulate” set difference.

Note: Additional machinery needed for special OPTIONAL queries... out

of scope of this short paper, see [Polleres, WWW2007]

A. Polleres – dlvhex-sparql 18 / 26

From SPARQL to dlvhex: OPTIONAL Patterns

SELECT *
WHERE
{

?X a foaf:Person .
OPTIONAL {?X foaf:name ?N }

}

Recall: (P1 OPT P2): M1 M2 = (M1 M2) ∪ (M1 r M2)

triple(S,P,O,def) :- ...

answer1(X,N,def) :- triple(X,"rdf:type","foaf:Person",def),

triple(X,"foaf:name",N,def).

answer1(X,null,def) :- triple(X,"rdf:type","foaf:Person",def),

not answer2(X).

answer2(X) :- triple(X,"foaf:name",N,def).

We use null and negation as failure not to “emulate” set difference.

Note: Additional machinery needed for special OPTIONAL queries... out

of scope of this short paper, see [Polleres, WWW2007]

A. Polleres – dlvhex-sparql 18 / 26

From SPARQL to dlvhex: OPTIONAL Patterns

SELECT *
WHERE
{

?X a foaf:Person .
OPTIONAL {?X foaf:name ?N }

}

Recall: (P1 OPT P2): M1 M2 = (M1 M2) ∪ (M1 r M2)

triple(S,P,O,def) :- ...

answer1(X,N,def) :- triple(X,"rdf:type","foaf:Person",def),

triple(X,"foaf:name",N,def).

answer1(X,null,def) :- triple(X,"rdf:type","foaf:Person",def),

not answer2(X).

answer2(X) :- triple(X,"foaf:name",N,def).

We use null and negation as failure not to “emulate” set difference.

Note: Additional machinery needed for special OPTIONAL queries... out

of scope of this short paper, see [Polleres, WWW2007]

A. Polleres – dlvhex-sparql 18 / 26

Outline

Preliminaries
dlvhex
From SQL to Datalog
RDF

From SPARQL to dlvhex
Basic Graph Patterns
GRAPH Patterns
FILTERs
UNION Patterns
OPTIONAL

SPARQL Specification compliance
ORDER BY, LIMIT, OFFSET
Multi-set semantics
FILTERs in OPTIONALs
CONSTRUCTs and blank nodes

Summary

A. Polleres – dlvhex-sparql 19 / 26

SPARQL Specification compliance

That’s all? So, can we use a bottom-up engine like dlvhex as a SPARQL
engine? Not quite . . .

Some peculiarities are hidden in the SPARL specification document

1. How to deal with solution modifiers
(ORDER BY, LIMIT, OFFSET).

2. SPARQL defines a multi-set semantics.

3. SPARQL allows FILTER expressions in OPTIONAL patterns to refer
to variables bound outside the enclosing OPTIONAL pattern.

4. SPARQL allows blank nodes in the result form of CONSTRUCT
queries.

A. Polleres – dlvhex-sparql 20 / 26

SPARQL Specification compliance

That’s all? So, can we use a bottom-up engine like dlvhex as a SPARQL
engine? Not quite . . .

Some peculiarities are hidden in the SPARL specification document

1. How to deal with solution modifiers
(ORDER BY, LIMIT, OFFSET).

2. SPARQL defines a multi-set semantics.

3. SPARQL allows FILTER expressions in OPTIONAL patterns to refer
to variables bound outside the enclosing OPTIONAL pattern.

4. SPARQL allows blank nodes in the result form of CONSTRUCT
queries.

A. Polleres – dlvhex-sparql 20 / 26

SPARQL Specification compliance

That’s all? So, can we use a bottom-up engine like dlvhex as a SPARQL
engine? Not quite . . .

Some peculiarities are hidden in the SPARL specification document

1. How to deal with solution modifiers
(ORDER BY, LIMIT, OFFSET).

2. SPARQL defines a multi-set semantics.

3. SPARQL allows FILTER expressions in OPTIONAL patterns to refer
to variables bound outside the enclosing OPTIONAL pattern.

4. SPARQL allows blank nodes in the result form of CONSTRUCT
queries.

A. Polleres – dlvhex-sparql 20 / 26

SPARQL Specification compliance

That’s all? So, can we use a bottom-up engine like dlvhex as a SPARQL
engine? Not quite . . .

Some peculiarities are hidden in the SPARL specification document

1. How to deal with solution modifiers
(ORDER BY, LIMIT, OFFSET).

2. SPARQL defines a multi-set semantics.

3. SPARQL allows FILTER expressions in OPTIONAL patterns to refer
to variables bound outside the enclosing OPTIONAL pattern.

4. SPARQL allows blank nodes in the result form of CONSTRUCT
queries.

A. Polleres – dlvhex-sparql 20 / 26

SPARQL Specification compliance

That’s all? So, can we use a bottom-up engine like dlvhex as a SPARQL
engine? Not quite . . .

Some peculiarities are hidden in the SPARL specification document

1. How to deal with solution modifiers
(ORDER BY, LIMIT, OFFSET).

2. SPARQL defines a multi-set semantics.

3. SPARQL allows FILTER expressions in OPTIONAL patterns to refer
to variables bound outside the enclosing OPTIONAL pattern.

4. SPARQL allows blank nodes in the result form of CONSTRUCT
queries.

A. Polleres – dlvhex-sparql 20 / 26

SPARQL Specification compliance

That’s all? So, can we use a bottom-up engine like dlvhex as a SPARQL
engine? Not quite . . .

Some peculiarities are hidden in the SPARL specification document

1. How to deal with solution modifiers
(ORDER BY, LIMIT, OFFSET).

2. SPARQL defines a multi-set semantics.

3. SPARQL allows FILTER expressions in OPTIONAL patterns to refer
to variables bound outside the enclosing OPTIONAL pattern.

4. SPARQL allows blank nodes in the result form of CONSTRUCT
queries.

A. Polleres – dlvhex-sparql 20 / 26

SPARQL Specification: ORDER BY, LIMIT, OFFSET

I Not treated at the moment in our implementation, in principle
doable by postprocessing of the results:

Data:
<ex.org/bob#me> foaf:name "Bob" .
<alice.org#me> foaf:name "Alice".
<ex.org/bob#me> foaf:nick "Bobby".

SELECT ?Y
WHERE { ?X foaf:name ?Y }
ORDER BY ?Y LIMIT 1

Result: { answer1("Bob",def), answer1("Alice",def) }
Sort answer set by parameter (ORDER BY),
only output first result (LIMIT 1) ⇒ "Alice"

A. Polleres – dlvhex-sparql 21 / 26

SPARQL Specification: ORDER BY, LIMIT, OFFSET

I Not treated at the moment in our implementation, in principle
doable by postprocessing of the results:

Data:
<ex.org/bob#me> foaf:name "Bob" .
<alice.org#me> foaf:name "Alice".
<ex.org/bob#me> foaf:nick "Bobby".

SELECT ?Y
WHERE { ?X foaf:name ?Y }
ORDER BY ?Y LIMIT 1

Result: { answer1("Bob",def), answer1("Alice",def) }
Sort answer set by parameter (ORDER BY),
only output first result (LIMIT 1) ⇒ "Alice"

A. Polleres – dlvhex-sparql 21 / 26

SPARQL Specification: ORDER BY, LIMIT, OFFSET

I Not treated at the moment in our implementation, in principle
doable by postprocessing of the results:

Data:
<ex.org/bob#me> foaf:name "Bob" .
<alice.org#me> foaf:name "Alice".
<ex.org/bob#me> foaf:nick "Bobby".

SELECT ?Y
WHERE { ?X foaf:name ?Y }
ORDER BY ?Y LIMIT 1

Result: { answer1("Bob",def), answer1("Alice",def) }
Sort answer set by parameter (ORDER BY),
only output first result (LIMIT 1) ⇒ "Alice"

A. Polleres – dlvhex-sparql 21 / 26

SPARQL Specification: ORDER BY, LIMIT, OFFSET

I Not treated at the moment in our implementation, in principle
doable by postprocessing of the results:

Data:
<ex.org/bob#me> foaf:name "Bob" .
<alice.org#me> foaf:name "Alice".
<ex.org/bob#me> foaf:nick "Bobby".

SELECT ?Y
WHERE { ?X foaf:name ?Y }
ORDER BY ?Y LIMIT 1

Result: { answer1("Bob",def), answer1("Alice",def) }
Sort answer set by parameter (ORDER BY),
only output first result (LIMIT 1) ⇒ "Alice"

A. Polleres – dlvhex-sparql 21 / 26

SPARQL Specification: multi-set semantics

1. be careful with projections (SELECT)

2. add some machinery for UNIONs

Data:
:bob foaf:name "Bob" . :bob foaf:nick "Bobby" .
:alice foaf:knows :a .
:a foaf:name "Bob". :a foaf:nick "Bob" .

SELECT ?Y WHERE {?X foaf:name ?Y }

answer1(Y,def) :- triple(X,foaf:name,Y,def).

Answer set: { answer("Bob") },
but expected 2 (identical) solutions!

A. Polleres – dlvhex-sparql 22 / 26

SPARQL Specification: multi-set semantics

1. be careful with projections (SELECT)

2. add some machinery for UNIONs

Data:
:bob foaf:name "Bob" . :bob foaf:nick "Bobby" .
:alice foaf:knows :a .
:a foaf:name "Bob". :a foaf:nick "Bob" .

SELECT ?Y WHERE {?X foaf:name ?Y }

answer1(Y,def) :- triple(X,foaf:name,Y,def).

Answer set: { answer("Bob") },
but expected 2 (identical) solutions!

A. Polleres – dlvhex-sparql 22 / 26

SPARQL Specification: multi-set semantics

1. be careful with projections (SELECT)

2. add some machinery for UNIONs

Data:
:bob foaf:name "Bob" . :bob foaf:nick "Bobby" .
:alice foaf:knows :a .
:a foaf:name "Bob". :a foaf:nick "Bob" .

SELECT ?Y WHERE {?X foaf:name ?Y }

answer1(Y,def) :- triple(X,foaf:name,Y,def).

Answer set: { answer("Bob") },
but expected 2 (identical) solutions!

A. Polleres – dlvhex-sparql 22 / 26

SPARQL Specification: multi-set semantics

1. be careful with projections (SELECT)

2. add some machinery for UNIONs

Data:
:bob foaf:name "Bob" . :bob foaf:nick "Bobby" .
:alice foaf:knows :a .
:a foaf:name "Bob". :a foaf:nick "Bob" .

SELECT ?Y WHERE {?X foaf:name ?Y }

answer1(X,Y,def) :- triple(X,foaf:name,Y,def).

Answer set: { answer1(...,"Bob"), answer1(...,"Bob") },
2 solutions, leave projection to postprocessing !

A. Polleres – dlvhex-sparql 22 / 26

SPARQL Specification: multi-set semantics

1. be careful with projections (SELECT)

2. add some machinery for UNIONs

Data:
:bob foaf:name "Bob" . :bob foaf:nick "Bobby" .
:alice foaf:knows :a .
:a foaf:name "Bob". :a foaf:nick "Bob" .

SELECT ?N
WHERE {{ ?X foaf:name ?N. } UNION { ?X foaf:nick ?N. }}

answer1(?N,?X,def) :- triple(X,foaf:name,Y,def).
answer1(?N,?X,def) :- triple(X,foaf:nick,Y,def).

Answer set: { answer1(..., "Bob"), answer1(..., "Bobby"),
answer1(..., "Bob") },
but expected 4 solutions!

A. Polleres – dlvhex-sparql 23 / 26

SPARQL Specification: multi-set semantics

1. be careful with projections (SELECT)

2. add some machinery for UNIONs

Data:
:bob foaf:name "Bob" . :bob foaf:nick "Bobby" .
:alice foaf:knows :a .
:a foaf:name "Bob". :a foaf:nick "Bob" .

SELECT ?N
WHERE {{ ?X foaf:name ?N. } UNION { ?X foaf:nick ?N. }}

answer1(?N,?X,def) :- triple(X,foaf:name,Y,def).
answer1(?N,?X,def) :- triple(X,foaf:nick,Y,def).

Answer set: { answer1(..., "Bob"), answer1(..., "Bobby"),
answer1(..., "Bob") },
but expected 4 solutions!

A. Polleres – dlvhex-sparql 23 / 26

SPARQL Specification: multi-set semantics

1. be careful with projections (SELECT)

2. add some machinery for UNIONs

Data:
:bob foaf:name "Bob" . :bob foaf:nick "Bobby" .
:alice foaf:knows :a .
:a foaf:name "Bob". :a foaf:nick "Bob" .

SELECT ?N
WHERE {{ ?X foaf:name ?N. } UNION { ?X foaf:nick ?N. }}

answer1(?N,?X,1,def) :- triple(X,foaf:name,Y,def).
answer1(?N,?X,2,def) :- triple(X,foaf:nick,Y,def).

Answer set: { answer1(...,"Bob"), answer1(...,"Bobby"),
answer1(...,"Bob"), answer1(...,"Bob") },
Add a new constant for any ”branch” of a UNION.

A. Polleres – dlvhex-sparql 23 / 26

SPARQL Specification: FILTER expressions in OPTIONAL patterns

“select names and email addresses only of those older than 30”

SELECT ?N ?M WHERE { ?X foaf:name ?N . ?X :age ?Age .

OPTIONAL { ?X foaf:mbox ?M . FILTER(?Age > 30) }}

Needs 3 case distinctions:

I There is an email address and the FILTER is fulfilled (join)

I There is an email address and the FILTER is not fulfilled (leave ?M
unbound)

I There is no email address (leave ?M unbound)

A. Polleres – dlvhex-sparql 24 / 26

SPARQL Specification: FILTER expressions in OPTIONAL patterns

“select names and email addresses only of those older than 30”

SELECT ?N ?M WHERE { ?X foaf:name ?N . ?X :age ?Age .

OPTIONAL { ?X foaf:mbox ?M . FILTER(?Age > 30) }}

Needs 3 case distinctions:

I There is an email address and the FILTER is fulfilled (join)

I There is an email address and the FILTER is not fulfilled (leave ?M
unbound)

I There is no email address (leave ?M unbound)

A. Polleres – dlvhex-sparql 24 / 26

SPARQL Specification: FILTER expressions in OPTIONAL patterns

“select names and email addresses only of those older than 30”

SELECT ?N ?M WHERE { ?X foaf:name ?N . ?X :age ?Age .

OPTIONAL { ?X foaf:mbox ?M . FILTER(?Age > 30) }}

answer1P(Age,N,M,X,def) :- tripleQ(X,foaf:name,N,def), tripleQ(X,:age,Age,def),

answer2P(M,X,def), Age > 30.

answer1P(Age,N,null,X,def) :- tripleQ(X,foaf:name,N,def),

tripleQ(X,:age,Age,def),

answer2P(M,X,def), not Age > 30.

answer1P(Age,N,null,X,def) :- tripleQ(X,foaf:name,N,def),

tripleQ(X,:age,Age,def), not answer2’P(X,def).

answer2P(M,X,def) :- tripleQ(X,foaf:mbox,M,def).

answer2’P(X,def) :- answer2P(M,X,def).

answerQ(N,M) :- answer1P(Age,N,M,X,def).

A. Polleres – dlvhex-sparql 24 / 26

SPARQL Specification: CONSTRUCT queries and blank
nodes

How to deal with this one?

CONSTRUCT :b a foaf:Agent. :b foaf:name ?N. ?Doc foaf:maker :b. FROM ...

WHERE ?Doc dc:creator ?N.

CONSTRUCT queries create new triples (similar to views in Rel. DBs).

For blank nodes in CONSTRUCTs, we need Skolem terms as blank node
identifiers!

answer1(Doc,N,def) :- tripleQ(Doc,dc:creator,N,def).

tripleRes(BLANK b,rdf:type,foaf:Agent,res) :- answer1(Doc,N,def),

&sk[b,Doc,N](BLANK b).

tripleRes(BLANK b,foaf:name,N,res) :- answer1(Doc,N,def),

&sk[b,Doc,N](BLANK b).

tripleRes(Doc,foaf:maker,BLANK b,res) :- answer1(Doc,N,def),

&sk[b,Doc,N](BLANK b).

A. Polleres – dlvhex-sparql 25 / 26

SPARQL Specification: CONSTRUCT queries and blank
nodes

How to deal with this one?

CONSTRUCT :b a foaf:Agent. :b foaf:name ?N. ?Doc foaf:maker :b. FROM ...

WHERE ?Doc dc:creator ?N.

CONSTRUCT queries create new triples (similar to views in Rel. DBs).

For blank nodes in CONSTRUCTs, we need Skolem terms as blank node
identifiers!

answer1(Doc,N,def) :- tripleQ(Doc,dc:creator,N,def).

tripleRes(BLANK b,rdf:type,foaf:Agent,res) :- answer1(Doc,N,def),

&sk[b,Doc,N](BLANK b).

tripleRes(BLANK b,foaf:name,N,res) :- answer1(Doc,N,def),

&sk[b,Doc,N](BLANK b).

tripleRes(Doc,foaf:maker,BLANK b,res) :- answer1(Doc,N,def),

&sk[b,Doc,N](BLANK b).

A. Polleres – dlvhex-sparql 25 / 26

SPARQL Specification: CONSTRUCT queries and blank
nodes

How to deal with this one?

CONSTRUCT :b a foaf:Agent. :b foaf:name ?N. ?Doc foaf:maker :b. FROM ...

WHERE ?Doc dc:creator ?N.

CONSTRUCT queries create new triples (similar to views in Rel. DBs).

For blank nodes in CONSTRUCTs, we need Skolem terms as blank node
identifiers!

answer1(Doc,N,def) :- tripleQ(Doc,dc:creator,N,def).

tripleRes(BLANK b,rdf:type,foaf:Agent,res) :- answer1(Doc,N,def),

&sk[b,Doc,N](BLANK b).

tripleRes(BLANK b,foaf:name,N,res) :- answer1(Doc,N,def),

&sk[b,Doc,N](BLANK b).

tripleRes(Doc,foaf:maker,BLANK b,res) :- answer1(Doc,N,def),

&sk[b,Doc,N](BLANK b).

A. Polleres – dlvhex-sparql 25 / 26

SPARQL Specification: CONSTRUCT queries and blank
nodes

How to deal with this one?

CONSTRUCT :b a foaf:Agent. :b foaf:name ?N. ?Doc foaf:maker :b. FROM ...

WHERE ?Doc dc:creator ?N.

CONSTRUCT queries create new triples (similar to views in Rel. DBs).

For blank nodes in CONSTRUCTs, we need Skolem terms as blank node
identifiers!

answer1(Doc,N,def) :- tripleQ(Doc,dc:creator,N,def).

tripleRes(BLANK b,rdf:type,foaf:Agent,res) :- answer1(Doc,N,def),

&sk[b,Doc,N](BLANK b).

tripleRes(BLANK b,foaf:name,N,res) :- answer1(Doc,N,def),

&sk[b,Doc,N](BLANK b).

tripleRes(Doc,foaf:maker,BLANK b,res) :- answer1(Doc,N,def),

&sk[b,Doc,N](BLANK b).

A. Polleres – dlvhex-sparql 25 / 26

Summary:

I SPARQL to Datalog seems easy
I Actual implementation raises some issues ... not SOOO easy.
I We have implemented a recursive translation from arbitrarily

nested SPARQL queries to dlvhex
I We further are working towards a full implementation of

SPARQL on dlvhex
I Why do we do that?

I dlvhex is a qood platform for extensions (aggregates),
additional built-in functions

I CONSTRUCTs may be viewed as rules them selves, useful for
defining implicit, interlinked metadata in RDF. ⇒ We can
implement such an extension to RDF right away.

I combination with RDFS inference rules
I Recent results on dlv-db for RDF give us confidence that this

is not only a “toy” implementation of SPARQL, but could in
fact lead to a competitive RDF-Store

I We are currently implementing these extensions to SPARQL!
I Ask me in the coffee break for a DEMO!

A. Polleres – dlvhex-sparql 26 / 26

Summary:

I SPARQL to Datalog seems easy
I Actual implementation raises some issues ... not SOOO easy.
I We have implemented a recursive translation from arbitrarily

nested SPARQL queries to dlvhex
I We further are working towards a full implementation of

SPARQL on dlvhex
I Why do we do that?

I dlvhex is a qood platform for extensions (aggregates),
additional built-in functions

I CONSTRUCTs may be viewed as rules them selves, useful for
defining implicit, interlinked metadata in RDF. ⇒ We can
implement such an extension to RDF right away.

I combination with RDFS inference rules
I Recent results on dlv-db for RDF give us confidence that this

is not only a “toy” implementation of SPARQL, but could in
fact lead to a competitive RDF-Store

I We are currently implementing these extensions to SPARQL!
I Ask me in the coffee break for a DEMO!

A. Polleres – dlvhex-sparql 26 / 26

Summary:

I SPARQL to Datalog seems easy
I Actual implementation raises some issues ... not SOOO easy.
I We have implemented a recursive translation from arbitrarily

nested SPARQL queries to dlvhex
I We further are working towards a full implementation of

SPARQL on dlvhex
I Why do we do that?

I dlvhex is a qood platform for extensions (aggregates),
additional built-in functions

I CONSTRUCTs may be viewed as rules them selves, useful for
defining implicit, interlinked metadata in RDF. ⇒ We can
implement such an extension to RDF right away.

I combination with RDFS inference rules
I Recent results on dlv-db for RDF give us confidence that this

is not only a “toy” implementation of SPARQL, but could in
fact lead to a competitive RDF-Store

I We are currently implementing these extensions to SPARQL!
I Ask me in the coffee break for a DEMO!

A. Polleres – dlvhex-sparql 26 / 26

Summary:

I SPARQL to Datalog seems easy
I Actual implementation raises some issues ... not SOOO easy.
I We have implemented a recursive translation from arbitrarily

nested SPARQL queries to dlvhex
I We further are working towards a full implementation of

SPARQL on dlvhex
I Why do we do that?

I dlvhex is a qood platform for extensions (aggregates),
additional built-in functions

I CONSTRUCTs may be viewed as rules them selves, useful for
defining implicit, interlinked metadata in RDF. ⇒ We can
implement such an extension to RDF right away.

I combination with RDFS inference rules
I Recent results on dlv-db for RDF give us confidence that this

is not only a “toy” implementation of SPARQL, but could in
fact lead to a competitive RDF-Store

I We are currently implementing these extensions to SPARQL!
I Ask me in the coffee break for a DEMO!

A. Polleres – dlvhex-sparql 26 / 26

Summary:

I SPARQL to Datalog seems easy
I Actual implementation raises some issues ... not SOOO easy.
I We have implemented a recursive translation from arbitrarily

nested SPARQL queries to dlvhex
I We further are working towards a full implementation of

SPARQL on dlvhex
I Why do we do that?

I dlvhex is a qood platform for extensions (aggregates),
additional built-in functions

I CONSTRUCTs may be viewed as rules them selves, useful for
defining implicit, interlinked metadata in RDF. ⇒ We can
implement such an extension to RDF right away.

I combination with RDFS inference rules
I Recent results on dlv-db for RDF give us confidence that this

is not only a “toy” implementation of SPARQL, but could in
fact lead to a competitive RDF-Store

I We are currently implementing these extensions to SPARQL!
I Ask me in the coffee break for a DEMO!

A. Polleres – dlvhex-sparql 26 / 26

Summary:

I SPARQL to Datalog seems easy
I Actual implementation raises some issues ... not SOOO easy.
I We have implemented a recursive translation from arbitrarily

nested SPARQL queries to dlvhex
I We further are working towards a full implementation of

SPARQL on dlvhex
I Why do we do that?

I dlvhex is a qood platform for extensions (aggregates),
additional built-in functions

I CONSTRUCTs may be viewed as rules them selves, useful for
defining implicit, interlinked metadata in RDF. ⇒ We can
implement such an extension to RDF right away.

I combination with RDFS inference rules
I Recent results on dlv-db for RDF give us confidence that this

is not only a “toy” implementation of SPARQL, but could in
fact lead to a competitive RDF-Store

I We are currently implementing these extensions to SPARQL!
I Ask me in the coffee break for a DEMO!

A. Polleres – dlvhex-sparql 26 / 26

Summary:

I SPARQL to Datalog seems easy
I Actual implementation raises some issues ... not SOOO easy.
I We have implemented a recursive translation from arbitrarily

nested SPARQL queries to dlvhex
I We further are working towards a full implementation of

SPARQL on dlvhex
I Why do we do that?

I dlvhex is a qood platform for extensions (aggregates),
additional built-in functions

I CONSTRUCTs may be viewed as rules them selves, useful for
defining implicit, interlinked metadata in RDF. ⇒ We can
implement such an extension to RDF right away.

I combination with RDFS inference rules
I Recent results on dlv-db for RDF give us confidence that this

is not only a “toy” implementation of SPARQL, but could in
fact lead to a competitive RDF-Store

I We are currently implementing these extensions to SPARQL!
I Ask me in the coffee break for a DEMO!

A. Polleres – dlvhex-sparql 26 / 26

Summary:

I SPARQL to Datalog seems easy
I Actual implementation raises some issues ... not SOOO easy.
I We have implemented a recursive translation from arbitrarily

nested SPARQL queries to dlvhex
I We further are working towards a full implementation of

SPARQL on dlvhex
I Why do we do that?

I dlvhex is a qood platform for extensions (aggregates),
additional built-in functions

I CONSTRUCTs may be viewed as rules them selves, useful for
defining implicit, interlinked metadata in RDF. ⇒ We can
implement such an extension to RDF right away.

I combination with RDFS inference rules
I Recent results on dlv-db for RDF give us confidence that this

is not only a “toy” implementation of SPARQL, but could in
fact lead to a competitive RDF-Store

I We are currently implementing these extensions to SPARQL!
I Ask me in the coffee break for a DEMO!

A. Polleres – dlvhex-sparql 26 / 26

Summary:

I SPARQL to Datalog seems easy
I Actual implementation raises some issues ... not SOOO easy.
I We have implemented a recursive translation from arbitrarily

nested SPARQL queries to dlvhex
I We further are working towards a full implementation of

SPARQL on dlvhex
I Why do we do that?

I dlvhex is a qood platform for extensions (aggregates),
additional built-in functions

I CONSTRUCTs may be viewed as rules them selves, useful for
defining implicit, interlinked metadata in RDF. ⇒ We can
implement such an extension to RDF right away.

I combination with RDFS inference rules
I Recent results on dlv-db for RDF give us confidence that this

is not only a “toy” implementation of SPARQL, but could in
fact lead to a competitive RDF-Store

I We are currently implementing these extensions to SPARQL!
I Ask me in the coffee break for a DEMO!

A. Polleres – dlvhex-sparql 26 / 26

Summary:

I SPARQL to Datalog seems easy
I Actual implementation raises some issues ... not SOOO easy.
I We have implemented a recursive translation from arbitrarily

nested SPARQL queries to dlvhex
I We further are working towards a full implementation of

SPARQL on dlvhex
I Why do we do that?

I dlvhex is a qood platform for extensions (aggregates),
additional built-in functions

I CONSTRUCTs may be viewed as rules them selves, useful for
defining implicit, interlinked metadata in RDF. ⇒ We can
implement such an extension to RDF right away.

I combination with RDFS inference rules
I Recent results on dlv-db for RDF give us confidence that this

is not only a “toy” implementation of SPARQL, but could in
fact lead to a competitive RDF-Store

I We are currently implementing these extensions to SPARQL!
I Ask me in the coffee break for a DEMO!

A. Polleres – dlvhex-sparql 26 / 26

	Preliminaries
	dlvhex
	From SQL to Datalog
	RDF

	From SPARQL to dlvhex
	Basic Graph Patterns
	GRAPH Patterns
	FILTERs
	UNION Patterns
	OPTIONAL

	SPARQL Specification compliance
	ORDER BY, LIMIT, OFFSET
	Multi-set semantics
	FILTERs in OPTIONALs
	CONSTRUCTs and blank nodes

	Summary

