
Motivation Examples Implementation Wrap-up

SPARQL++ for Mapping between RDF Vocabularies

Axel Polleres (DERI Galway)

Joint work with:
F. Scharffe (LFU Innsbruck), R. Schindlauer (Univ Calabria/TU Vienna)

ODBASE 2007 - November 27, 2007

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 1 / 22

Motivation Examples Implementation Wrap-up

Outline

Motivation
Mapping by SPARQL

Examples

Implementation
HEX-Programs
Demo
RDFS

Wrap-up

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 2 / 22

Motivation Examples Implementation Wrap-up Mapping by SPARQL

Motivation – Ontology Alignment/Mapping

I Typically: Description of correspondences and overlaps between
ontological entities (properties, classes, individuals, etc.)

I W3C standards for writing ontologies in place (RDFS, OWL), but limited
expressivity for describing mappings.

I Which language to use?

I How to publish mappings/alignments? This is important to make Open
Linked Data1 happen!

1Combining RDF data that is “out there”, e.g. Sindice, DBPedia, SWPipes etc.
A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 3 / 22

Motivation Examples Implementation Wrap-up Mapping by SPARQL

Motivation – Ontology Alignment/Mapping

I Typically: Description of correspondences and overlaps between
ontological entities (properties, classes, individuals, etc.)

I W3C standards for writing ontologies in place (RDFS, OWL), but limited
expressivity for describing mappings.

I Which language to use?

I How to publish mappings/alignments? This is important to make Open
Linked Data1 happen!

1Combining RDF data that is “out there”, e.g. Sindice, DBPedia, SWPipes etc.
A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 3 / 22

Motivation Examples Implementation Wrap-up Mapping by SPARQL

Motivation – Ontology Alignment/Mapping

I Typically: Description of correspondences and overlaps between
ontological entities (properties, classes, individuals, etc.)

I W3C standards for writing ontologies in place (RDFS, OWL), but limited
expressivity for describing mappings.

I Which language to use?

I How to publish mappings/alignments? This is important to make Open
Linked Data1 happen!

1Combining RDF data that is “out there”, e.g. Sindice, DBPedia, SWPipes etc.
A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 3 / 22

Motivation Examples Implementation Wrap-up Mapping by SPARQL

Motivation – Ontology Alignment/Mapping

I Typically: Description of correspondences and overlaps between
ontological entities (properties, classes, individuals, etc.)

I W3C standards for writing ontologies in place (RDFS, OWL), but limited
expressivity for describing mappings.

I Which language to use?

I How to publish mappings/alignments? This is important to make Open
Linked Data1 happen!

1Combining RDF data that is “out there”, e.g. Sindice, DBPedia, SWPipes etc.
A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 3 / 22

Motivation Examples Implementation Wrap-up Mapping by SPARQL

Motivation – Scenario

Map from vCard to FOAF:

vCard

VCard:FN

FOAF

foaf:name

⊆

Expressible by rdfs:subPropertyOf:

VCard:FN rdfs:subPropertyoF foaf:name .

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 4 / 22

Motivation Examples Implementation Wrap-up Mapping by SPARQL

Motivation – Scenario

Map from vCard to FOAF:

vCard

VCard:FN

FOAF

foaf:name

foaf:Person

⊆

Also expressible in RDFS or in OWL DL:

VCard:FN rdfs:subPropertyoF foaf:name.
VCard:FN rdfs:domain foaf:Person.

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 4 / 22

Motivation Examples Implementation Wrap-up Mapping by SPARQL

Motivation – Scenario

Map from vCard to FOAF:

vCard

VCard:FN

FOAF

foaf:name

foaf:Person

⊆

Also expressible in RDFS or in OWL DL:

VCard:FN v foaf:name
∃VCard:FN.> v foaf:Person

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 4 / 22

Motivation Examples Implementation Wrap-up Mapping by SPARQL

Motivation – Scenario

Map from vCard to FOAF:

vCard

VCard:FN

FOAF

foaf:name

foaf:Person

⊆

 VCard:Family

VCard:Given

⊆

Needs string concatenation, not expressible in OWL or RDFS...
maybe SWRL can help, but
(1) implementations missing
(2) no W3C stamp

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 4 / 22

Motivation Examples Implementation Wrap-up Mapping by SPARQL

Motivation – Scenario

Map from vCard to FOAF:

vCard

VCard:FN

FOAF

foaf:name

foaf:Person

⊆

 VCard:Family

VCard:Given

⊆

foaf:phone (URI)VCard:tel (xsd:String)
⊆

What shall we do here?
Needs conversion from String to rdf:Resource (URI)...how?
Let’s see what SPARQL can do for us...

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 4 / 22

Motivation Examples Implementation Wrap-up Mapping by SPARQL

Mapping by SPARQL

Observation:
SPARQL (Proposed W3C Rec since two weeks, BTW) offers CONSTRUCT queries to
generate new graphs from existing ones

CONSTRUCT { Basic triple patterns }
FROM dataset (source graph)
WHERE {Pattern}

I This may be read as a view definition ...

I ... and views can be understood as (mapping) rules

Attention: if you allow such views to mutually refer to each other, you get a recursive
rules language!

I By OPTIONAL patterns you get even non-monotonicity (negation as failure)

I By bnodes in the CONSTRUCT part, you might run into non-termination issues!

BTW: How can this interact with ontological inferences of OWL and RDFS?
(SPARQL is only defined in terms of simple RDF entailment)

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 5 / 22

Motivation Examples Implementation Wrap-up Mapping by SPARQL

Mapping by SPARQL

Observation:
SPARQL (Proposed W3C Rec since two weeks, BTW) offers CONSTRUCT queries to
generate new graphs from existing ones

CONSTRUCT { Basic triple patterns }
FROM dataset (source graph)
WHERE {Pattern}

I This may be read as a view definition ...

I ... and views can be understood as (mapping) rules

Attention: if you allow such views to mutually refer to each other, you get a recursive
rules language!

I By OPTIONAL patterns you get even non-monotonicity (negation as failure)

I By bnodes in the CONSTRUCT part, you might run into non-termination issues!

BTW: How can this interact with ontological inferences of OWL and RDFS?
(SPARQL is only defined in terms of simple RDF entailment)

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 5 / 22

Motivation Examples Implementation Wrap-up Mapping by SPARQL

Mapping by SPARQL

Observation:
SPARQL (Proposed W3C Rec since two weeks, BTW) offers CONSTRUCT queries to
generate new graphs from existing ones

CONSTRUCT { Basic triple patterns }
FROM dataset (source graph)
WHERE {Pattern}

I This may be read as a view definition ...

I ... and views can be understood as (mapping) rules

Attention: if you allow such views to mutually refer to each other, you get a recursive
rules language!

I By OPTIONAL patterns you get even non-monotonicity (negation as failure)

I By bnodes in the CONSTRUCT part, you might run into non-termination issues!

BTW: How can this interact with ontological inferences of OWL and RDFS?
(SPARQL is only defined in terms of simple RDF entailment)

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 5 / 22

Motivation Examples Implementation Wrap-up Mapping by SPARQL

Mapping by SPARQL

Observation:
SPARQL (Proposed W3C Rec since two weeks, BTW) offers CONSTRUCT queries to
generate new graphs from existing ones

CONSTRUCT { Basic triple patterns }
FROM dataset (source graph)
WHERE {Pattern}

I This may be read as a view definition ...

I ... and views can be understood as (mapping) rules

Attention: if you allow such views to mutually refer to each other, you get a recursive
rules language!

I By OPTIONAL patterns you get even non-monotonicity (negation as failure)

I By bnodes in the CONSTRUCT part, you might run into non-termination issues!

BTW: How can this interact with ontological inferences of OWL and RDFS?
(SPARQL is only defined in terms of simple RDF entailment)

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 5 / 22

Motivation Examples Implementation Wrap-up Mapping by SPARQL

Mapping by SPARQL

Observation:
SPARQL (Proposed W3C Rec since two weeks, BTW) offers CONSTRUCT queries to
generate new graphs from existing ones

CONSTRUCT { Basic triple patterns }
FROM dataset (source graph)
WHERE {Pattern}

I This may be read as a view definition ...

I ... and views can be understood as (mapping) rules

Attention: if you allow such views to mutually refer to each other, you get a recursive
rules language!

I By OPTIONAL patterns you get even non-monotonicity (negation as failure)

I By bnodes in the CONSTRUCT part, you might run into non-termination issues!

BTW: How can this interact with ontological inferences of OWL and RDFS?
(SPARQL is only defined in terms of simple RDF entailment)

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 5 / 22

Motivation Examples Implementation Wrap-up Mapping by SPARQL

Mapping by SPARQL

Observation:
SPARQL (Proposed W3C Rec since two weeks, BTW) offers CONSTRUCT queries to
generate new graphs from existing ones

CONSTRUCT { Basic triple patterns }
FROM dataset (source graph)
WHERE {Pattern}

I This may be read as a view definition ...

I ... and views can be understood as (mapping) rules

Attention: if you allow such views to mutually refer to each other, you get a recursive
rules language!

I By OPTIONAL patterns you get even non-monotonicity (negation as failure)

I By bnodes in the CONSTRUCT part, you might run into non-termination issues!

BTW: How can this interact with ontological inferences of OWL and RDFS?
(SPARQL is only defined in terms of simple RDF entailment)

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 5 / 22

Motivation Examples Implementation Wrap-up Mapping by SPARQL

Mapping by SPARQL

Observation:
SPARQL (Proposed W3C Rec since two weeks, BTW) offers CONSTRUCT queries to
generate new graphs from existing ones

CONSTRUCT { Basic triple patterns }
FROM dataset (source graph)
WHERE {Pattern}

I This may be read as a view definition ...

I ... and views can be understood as (mapping) rules

Attention: if you allow such views to mutually refer to each other, you get a recursive
rules language!

I By OPTIONAL patterns you get even non-monotonicity (negation as failure)

I By bnodes in the CONSTRUCT part, you might run into non-termination issues!

BTW: How can this interact with ontological inferences of OWL and RDFS?
(SPARQL is only defined in terms of simple RDF entailment)

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 5 / 22

Motivation Examples Implementation Wrap-up

Outline

Motivation
Mapping by SPARQL

Examples

Implementation
HEX-Programs
Demo
RDFS

Wrap-up

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 6 / 22

Motivation Examples Implementation Wrap-up

Example 1

vCard

VCard:FN

FOAF

foaf:name

⊆

CONSTRUCT { ?X foaf:name ?Y }
WHERE { ?X VCard:FN ?Y }

Easy!

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 7 / 22

Motivation Examples Implementation Wrap-up

Example 1

vCard

VCard:FN

FOAF

foaf:name

⊆

CONSTRUCT { ?X foaf:name ?Y }
WHERE { ?X VCard:FN ?Y }

Easy!

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 7 / 22

Motivation Examples Implementation Wrap-up

Example 2

vCard

VCard:FN

FOAF

foaf:name

foaf:Person

⊆

CONSTRUCT { ?X foaf:name ?Y . ?X rdf:type foaf:person . }
WHERE { ?X VCard:FN ?Y }

No problem either.

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 8 / 22

Motivation Examples Implementation Wrap-up

Example 2

vCard

VCard:FN

FOAF

foaf:name

foaf:Person

⊆

CONSTRUCT { ?X foaf:name ?Y . ?X rdf:type foaf:person . }
WHERE { ?X VCard:FN ?Y }

No problem either.

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 8 / 22

Motivation Examples Implementation Wrap-up

Example 3

vCard FOAF

foaf:name

 VCard:Family

VCard:Given

⊆

CONSTRUCT { ?X foaf:name ??? }
WHERE { ?X VCard:Given ?N. ?X VCard:Family ?F

}

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 9 / 22

Motivation Examples Implementation Wrap-up

Example 3

vCard FOAF

foaf:name

 VCard:Family

VCard:Given

⊆

CONSTRUCT { ?X foaf:name ??? }
WHERE { ?X VCard:Given ?N. ?X VCard:Family ?F

}

How to tackle? FILTERs?

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 9 / 22

Motivation Examples Implementation Wrap-up

Example 3

vCard FOAF

foaf:name

 VCard:Family

VCard:Given

⊆

CONSTRUCT { ?X foaf:name ?FN }
WHERE { ?X VCard:Given ?N. ?X VCard:Family ?F

FILTER(?FN = fn:concat(?N," ",?F))}

Doesn’t work :-| FILTERs only bind variables, can’t create new bindings

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 9 / 22

Motivation Examples Implementation Wrap-up

Example 3

vCard FOAF

foaf:name

 VCard:Family

VCard:Given

⊆

CONSTRUCT { ?X foaf:name fn:concat(?N," ",?F) }
WHERE { ?X VCard:Given ?N. ?X VCard:Family ?F

}

You rather want built-in functions in the CONSTRUCT part.
This is what SPARQL++ provides.

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 9 / 22

Motivation Examples Implementation Wrap-up

Example 3

vCard FOAF

foaf:name

 VCard:Family

VCard:Given

⊆

CONSTRUCT { ?X foaf:name fn:concat(?N," ",?F) }
WHERE { ?X VCard:Given ?N. ?X VCard:Family ?F

}

You rather want built-in functions in the CONSTRUCT part.
This is what SPARQL++ provides.
Attention: Value generation in the CONSTRUCT part might again raise
non-termination issues!

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 9 / 22

Motivation Examples Implementation Wrap-up

Example 4

vCard FOAF

foaf:phone (URI)VCard:tel (xsd:String)
⊆

With value generation in CONSTRUCTs and respective built-in support, this
becomes easy again in SPARQL++:

CONSTRUCT { ?X foaf:phone
rdf:Resource(fn:concat("tel:",fn:encode-for-uri(?T)) . }

WHERE { ?X VCard:tel ?T . }

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 10 / 22

Motivation Examples Implementation Wrap-up

Example 4

vCard FOAF

foaf:phone (URI)VCard:tel (xsd:String)
⊆

With value generation in CONSTRUCTs and respective built-in support, this
becomes easy again in SPARQL++:

CONSTRUCT { ?X foaf:phone
rdf:Resource(fn:concat("tel:",fn:encode-for-uri(?T)) . }

WHERE { ?X VCard:tel ?T . }

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 10 / 22

Motivation Examples Implementation Wrap-up

Example 4

vCard FOAF

foaf:phone (URI)VCard:tel (xsd:String)
⊆

With value generation in CONSTRUCTs and respective built-in support, this
becomes easy again in SPARQL++:

CONSTRUCT { ?X foaf:phone
rdf:Resource(fn:concat("tel:",fn:encode-for-uri(?T)) . }

WHERE { ?X VCard:tel ?T . }

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 10 / 22

Motivation Examples Implementation Wrap-up

Example 5

We want more: Aggregates!

Example: Map from DOAP to RDF Open Source Software Vocabulary:

CONSTRUCT { ?P os:latestRelease
MAX(?V : ?P doap:release ?R. ?R doap:revision ?V) }

WHERE { ?P rdf:type doap:Project . }

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 11 / 22

Motivation Examples Implementation Wrap-up

Example 5

We want more: Aggregates!

Example: Map from DOAP to RDF Open Source Software Vocabulary:

CONSTRUCT { ?P os:latestRelease
MAX(?V : ?P doap:release ?R. ?R doap:revision ?V) }

WHERE { ?P rdf:type doap:Project . }

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 11 / 22

Motivation Examples Implementation Wrap-up

Example 6

Note: “Views” – as we use them here for mappings – are also good for defining
implicit knowledge within an RDF graph:

Example: “Import” my co-authors in my FOAF file, mapping from myPubl.rdf
which uses the Dublin Core (DC) Vocabulary: “I know all my co-authors”

foafWithImplicitdData.rdf

:me a foaf:Person.
:me foaf:name "Axel Polleres".

CONSTRUCT{ :me foaf:knows _:P . _:P foaf:name ?N }
FROM <http://www.polleres.net/myPubl.rdf>
WHERE { ?P rdf:type :Publ.

?P dc:author ?N. FILTER(?N != "Axel Polleres".) }

:me foaf:knows [foaf:name "Stefan Decker"].
:me foaf:knows [foaf:name "Manfred Hauswirth"].

SPARQL++ allows such extended RDF Graphs!

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 12 / 22

Motivation Examples Implementation Wrap-up

Example 6

Note: “Views” – as we use them here for mappings – are also good for defining
implicit knowledge within an RDF graph:

Example: “Import” my co-authors in my FOAF file, mapping from myPubl.rdf
which uses the Dublin Core (DC) Vocabulary: “I know all my co-authors”

foafWithImplicitdData.rdf

:me a foaf:Person.
:me foaf:name "Axel Polleres".

CONSTRUCT{ :me foaf:knows _:P . _:P foaf:name ?N }
FROM <http://www.polleres.net/myPubl.rdf>
WHERE { ?P rdf:type :Publ.

?P dc:author ?N. FILTER(?N != "Axel Polleres".) }

:me foaf:knows [foaf:name "Stefan Decker"].
:me foaf:knows [foaf:name "Manfred Hauswirth"].

SPARQL++ allows such extended RDF Graphs!

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 12 / 22

Motivation Examples Implementation Wrap-up

Example 6

Note: “Views” – as we use them here for mappings – are also good for defining
implicit knowledge within an RDF graph:

Example: “Import” my co-authors in my FOAF file, mapping from myPubl.rdf
which uses the Dublin Core (DC) Vocabulary: “I know all my co-authors”

foafWithImplicitdData.rdf

:me a foaf:Person.
:me foaf:name "Axel Polleres".

CONSTRUCT{ :me foaf:knows _:P . _:P foaf:name ?N }
FROM <http://www.polleres.net/myPubl.rdf>
WHERE { ?P rdf:type :Publ.

?P dc:author ?N. FILTER(?N != "Axel Polleres".) }

:me foaf:knows [foaf:name "Stefan Decker"].
:me foaf:knows [foaf:name "Manfred Hauswirth"].

SPARQL++ allows such extended RDF Graphs!

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 12 / 22

Motivation Examples Implementation Wrap-up

Example 6

Note: “Views” – as we use them here for mappings – are also good for defining
implicit knowledge within an RDF graph:

Example: “Import” my co-authors in my FOAF file, mapping from myPubl.rdf
which uses the Dublin Core (DC) Vocabulary: “I know all my co-authors”

foafWithImplicitdData.rdf

:me a foaf:Person.
:me foaf:name "Axel Polleres".

CONSTRUCT{ :me foaf:knows _:P . _:P foaf:name ?N }
FROM <http://www.polleres.net/myPubl.rdf>
WHERE { ?P rdf:type :Publ.

?P dc:author ?N. FILTER(?N != "Axel Polleres".) }

:me foaf:knows [foaf:name "Stefan Decker"].
:me foaf:knows [foaf:name "Manfred Hauswirth"].

SPARQL++ allows such extended RDF Graphs!

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 12 / 22

Motivation Examples Implementation Wrap-up

Open Linked data with extended RDF Graphs:

foafWithImplicitdData.rdf

myPubl.rdf

Goal: you can publish extended RDF Graphs, linked via mappings!

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 13 / 22

Motivation Examples Implementation Wrap-up

Open Linked data with extended RDF Graphs:

foafWithImplicitdData.rdf

myPubl.rdf

DBLPDBPedia ...

Goal: you can publish extended RDF Graphs, linked via mappings!

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 13 / 22

Motivation Examples Implementation Wrap-up

Open Linked data with extended RDF Graphs:

foafWithImplicitdData.rdf

myPubl.rdf

DBLPDBPedia ...

Goal: you can publish extended RDF Graphs, linked via mappings!

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 13 / 22

Motivation Examples Implementation Wrap-up

Open Linked data with extended RDF Graphs:

foafWithImplicitdData.rdf

myPubl.rdf

DBLPDBPedia ...

Goal: you can publish extended RDF Graphs, linked via mappings!

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 13 / 22

Motivation Examples Implementation Wrap-up

Open Linked data with extended RDF Graphs:

foafWithImplicitdData.rdf

myPubl.rdf

DBLPDBPedia ...

Goal: you can publish extended RDF Graphs, linked via mappings!

Web = HTML + Links

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 13 / 22

Motivation Examples Implementation Wrap-up

Open Linked data with extended RDF Graphs:

foafWithImplicitdData.rdf

myPubl.rdf

DBLPDBPedia ...

Goal: you can publish extended RDF Graphs, linked via mappings!

Semantic Web = RDF + Mappings

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 13 / 22

Motivation Examples Implementation Wrap-up Implementation Demo RDFS

Outline

Motivation
Mapping by SPARQL

Examples

Implementation
HEX-Programs
Demo
RDFS

Wrap-up

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 14 / 22

Motivation Examples Implementation Wrap-up Implementation Demo RDFS

Our Implementation: HEX-Programs

I We translate (possibly nested and cross-referencing) SPARQL queries to
so-called HEX programs

I HEX-programs are Datalog programs with negation as failure and a very
generic Built-in mechanism.

I A HEX-program is a set of rules:

h← b1, . . . ,bm, not bm+1, . . . not bn (1)

I where so-called external atoms of the form

EXT[Input](Output) (2)

are allowed.

I Note: External Atoms can take predicates as inputs→ More generic than
“normal” built-in predicates in logic programming!

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 15 / 22

Motivation Examples Implementation Wrap-up Implementation Demo RDFS

Our Implementation: HEX-Programs

I We translate (possibly nested and cross-referencing) SPARQL queries to
so-called HEX programs

I HEX-programs are Datalog programs with negation as failure and a very
generic Built-in mechanism.

I A HEX-program is a set of rules:

h← b1, . . . ,bm, not bm+1, . . . not bn (1)

I where so-called external atoms of the form

EXT[Input](Output) (2)

are allowed.

I Note: External Atoms can take predicates as inputs→ More generic than
“normal” built-in predicates in logic programming!

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 15 / 22

Motivation Examples Implementation Wrap-up Implementation Demo RDFS

Our Implementation: HEX-Programs

I We translate (possibly nested and cross-referencing) SPARQL queries to
so-called HEX programs

I HEX-programs are Datalog programs with negation as failure and a very
generic Built-in mechanism.

I A HEX-program is a set of rules:

h← b1, . . . ,bm, not bm+1, . . . not bn (1)

I where so-called external atoms of the form

EXT[Input](Output) (2)

are allowed.

I Note: External Atoms can take predicates as inputs→ More generic than
“normal” built-in predicates in logic programming!

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 15 / 22

Motivation Examples Implementation Wrap-up Implementation Demo RDFS

Our Implementation: HEX-Programs

I We translate (possibly nested and cross-referencing) SPARQL queries to
so-called HEX programs

I HEX-programs are Datalog programs with negation as failure and a very
generic Built-in mechanism.

I A HEX-program is a set of rules:

h← b1, . . . ,bm, not bm+1, . . . not bn (1)

I where so-called external atoms of the form

EXT[Input](Output) (2)

are allowed.

I Note: External Atoms can take predicates as inputs→ More generic than
“normal” built-in predicates in logic programming!

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 15 / 22

Motivation Examples Implementation Wrap-up Implementation Demo RDFS

Our Implementation: HEX-Programs

I We translate (possibly nested and cross-referencing) SPARQL queries to
so-called HEX programs

I HEX-programs are Datalog programs with negation as failure and a very
generic Built-in mechanism.

I A HEX-program is a set of rules:

h← b1, . . . ,bm, not bm+1, . . . not bn (1)

I where so-called external atoms of the form

EXT[Input](Output) (2)

are allowed.

I Note: External Atoms can take predicates as inputs→ More generic than
“normal” built-in predicates in logic programming!

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 15 / 22

Motivation Examples Implementation Wrap-up Implementation Demo RDFS

SPARQL-specific external Atoms:

I rdf[URL](S,P,O) . . . imports all RDF Triples from a given URL

I CONCAT[Str1,...,Strn](Str) concatenates Strings.

I COUNT[Predicate, BindingPattern](Cnt) . . . returns the count of a
certain predicate extension, given a certain binding pattern.

I MAX[Predicate, BindingPattern](MaxVal) . . . returns the is the
lexicographically greatest value among the parameters of Predicate in
the whole extension (MIN analogously).

I SK[Id,V1,...,Vn](SKTerm) . . . similar to CONCAT, but returns a
Skolem term, with Skolem function id Id. We need this for bnode
generation in CONSTRUCTs.

I . . . plus some more for handling FILTERs in SPARQL .

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 16 / 22

Motivation Examples Implementation Wrap-up Implementation Demo RDFS

SPARQL-specific external Atoms:

I rdf[URL](S,P,O) . . . imports all RDF Triples from a given URL

I CONCAT[Str1,...,Strn](Str) concatenates Strings.

I COUNT[Predicate, BindingPattern](Cnt) . . . returns the count of a
certain predicate extension, given a certain binding pattern.

I MAX[Predicate, BindingPattern](MaxVal) . . . returns the is the
lexicographically greatest value among the parameters of Predicate in
the whole extension (MIN analogously).

I SK[Id,V1,...,Vn](SKTerm) . . . similar to CONCAT, but returns a
Skolem term, with Skolem function id Id. We need this for bnode
generation in CONSTRUCTs.

I . . . plus some more for handling FILTERs in SPARQL .

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 16 / 22

Motivation Examples Implementation Wrap-up Implementation Demo RDFS

SPARQL-specific external Atoms:

I rdf[URL](S,P,O) . . . imports all RDF Triples from a given URL

I CONCAT[Str1,...,Strn](Str) concatenates Strings.

I COUNT[Predicate, BindingPattern](Cnt) . . . returns the count of a
certain predicate extension, given a certain binding pattern.

I MAX[Predicate, BindingPattern](MaxVal) . . . returns the is the
lexicographically greatest value among the parameters of Predicate in
the whole extension (MIN analogously).

I SK[Id,V1,...,Vn](SKTerm) . . . similar to CONCAT, but returns a
Skolem term, with Skolem function id Id. We need this for bnode
generation in CONSTRUCTs.

I . . . plus some more for handling FILTERs in SPARQL .

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 16 / 22

Motivation Examples Implementation Wrap-up Implementation Demo RDFS

SPARQL-specific external Atoms:

I rdf[URL](S,P,O) . . . imports all RDF Triples from a given URL

I CONCAT[Str1,...,Strn](Str) concatenates Strings.

I COUNT[Predicate, BindingPattern](Cnt) . . . returns the count of a
certain predicate extension, given a certain binding pattern.

I MAX[Predicate, BindingPattern](MaxVal) . . . returns the is the
lexicographically greatest value among the parameters of Predicate in
the whole extension (MIN analogously).

I SK[Id,V1,...,Vn](SKTerm) . . . similar to CONCAT, but returns a
Skolem term, with Skolem function id Id. We need this for bnode
generation in CONSTRUCTs.

I . . . plus some more for handling FILTERs in SPARQL .

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 16 / 22

Motivation Examples Implementation Wrap-up Implementation Demo RDFS

SPARQL-specific external Atoms:

I rdf[URL](S,P,O) . . . imports all RDF Triples from a given URL

I CONCAT[Str1,...,Strn](Str) concatenates Strings.

I COUNT[Predicate, BindingPattern](Cnt) . . . returns the count of a
certain predicate extension, given a certain binding pattern.

I MAX[Predicate, BindingPattern](MaxVal) . . . returns the is the
lexicographically greatest value among the parameters of Predicate in
the whole extension (MIN analogously).

I SK[Id,V1,...,Vn](SKTerm) . . . similar to CONCAT, but returns a
Skolem term, with Skolem function id Id. We need this for bnode
generation in CONSTRUCTs.

I . . . plus some more for handling FILTERs in SPARQL .

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 16 / 22

Motivation Examples Implementation Wrap-up Implementation Demo RDFS

SPARQL-specific external Atoms:

I rdf[URL](S,P,O) . . . imports all RDF Triples from a given URL

I CONCAT[Str1,...,Strn](Str) concatenates Strings.

I COUNT[Predicate, BindingPattern](Cnt) . . . returns the count of a
certain predicate extension, given a certain binding pattern.

I MAX[Predicate, BindingPattern](MaxVal) . . . returns the is the
lexicographically greatest value among the parameters of Predicate in
the whole extension (MIN analogously).

I SK[Id,V1,...,Vn](SKTerm) . . . similar to CONCAT, but returns a
Skolem term, with Skolem function id Id. We need this for bnode
generation in CONSTRUCTs.

I . . . plus some more for handling FILTERs in SPARQL .

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 16 / 22

Motivation Examples Implementation Wrap-up Implementation Demo RDFS

Demo Translation

Data in myPubl.rdf:
:p1 a :Publ.
:p1 dc:author "Axel Polleres".
:p1 dc:author "Francois Scharffe".
:p1 dc:author "Roman Schindlauer".
...

Query:

CONSTRUCT{ :me foaf:knows _:P . _:P foaf:name ?N }
FROM <http://www.polleres.net/myPubl.rdf>
WHERE { ?P a :Publ. ?P dc:author ?N.

FILTER(?N != "Axel Polleres") }

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 17 / 22

Motivation Examples Implementation Wrap-up Implementation Demo RDFS

Demo Translation

Data in myPubl.rdf:
:p1 a :Publ.
:p1 dc:author "Axel Polleres".
:p1 dc:author "Francois Scharffe".
:p1 dc:author "Roman Schindlauer".
...

Translated HEX Program:

triple(S,P,O) :- &rdf["http://www.polleres.net/myPubl.rdf"](S,P,O).

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 17 / 22

Motivation Examples Implementation Wrap-up Implementation Demo RDFS

Demo Translation

Data in myPubl.rdf:
:p1 a :Publ.
:p1 dc:author "Axel Polleres".
:p1 dc:author "Francois Scharffe".
:p1 dc:author "Roman Schindlauer".
...

Translated HEX Program:

triple(S,P,O) :- &rdf["http://www.polleres.net/myPubl.rdf"](S,P,O).

answer(N,P) :- triple(P,"rdf:type",":Publ"),
triple(P,"dc:author",N),
N != "Axel Polleres".

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 17 / 22

Motivation Examples Implementation Wrap-up Implementation Demo RDFS

Demo Translation

Data in myPubl.rdf:
:p1 a :Publ.
:p1 dc:author "Axel Polleres".
:p1 dc:author "Francois Scharffe".
:p1 dc:author "Roman Schindlauer".
...

Translated HEX Program:

triple(S,P,O) :- &rdf["http://www.polleres.net/myPubl.rdf"](S,P,O).

answer(N,P) :- triple(P,"rdf:type",":Publ"),
triple(P,"dc:author",N),
N != "Axel Polleres".

triple_result(":me","foaf:knows",Blank_P) :-
answer(N,P), &SK["#genid_P",N,P](Blank_P).

triple_result(Blank_P,"foaf:name",N) :-
answer(N,P), &SK["#genid_P",N,P](Blank_P).

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 17 / 22

Motivation Examples Implementation Wrap-up Implementation Demo RDFS

Demo Translation

Data in myPubl.rdf:
:p1 a :Publ.
:p1 dc:author "Axel Polleres".
:p1 dc:author "Francois Scharffe".
:p1 dc:author "Roman Schindlauer".
...

Result:

triple_result(":me","foaf:knows","#genid_P(’Francois Scharffe’,:p1)")
triple_result("#genid_P(’Francois Scharffe’,:p1)","foaf:name","Francois Scharffe")
triple_result(":me","foaf:knows","#genid_P(’Roman Schindlauer’,:p1)")
triple_result("#genid_P(’Roman Schindlauer’,:p1)","foaf:name","Roman Schindlauer")

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 17 / 22

Motivation Examples Implementation Wrap-up Implementation Demo RDFS

Demo Translation

Data in myPubl.rdf:
:p1 a :Publ.
:p1 dc:author "Axel Polleres".
:p1 dc:author "Francois Scharffe".
:p1 dc:author "Roman Schindlauer".
...

Result:

triple_result(":me","foaf:knows","#genid_P(’Francois Scharffe’,:p1)")
triple_result("#genid_P(’Francois Scharffe’,:p1)","foaf:name","Francois Scharffe")
triple_result(":me","foaf:knows","#genid_P(’Roman Schindlauer’,:p1)")
triple_result("#genid_P(’Roman Schindlauer’,:p1)","foaf:name","Roman Schindlauer")

Can in turn be translated back to RDF Triples:

:me foaf:knows _:b1.
_:b1 foaf:name "Francois Scharffe".
:me foaf:knows _:b2.
_:b2 foaf:name "Roman Schindlauer".

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 17 / 22

Motivation Examples Implementation Wrap-up Implementation Demo RDFS

Aggregates Translation:

CONSTRUCT { ?P os:latestRelease
MAX(?V : ?P doap:release ?R. ?R doap:revision ?V) }

WHERE { ?P rdf:type doap:Project . }

will become:

triple_result(P,os:latestRelease,Va) :- MAX[auxa,P,mask](Va),
triple(P,rdf:type,doap:Project,def).

auxa(P,V) :- answera(P,R,V).
answera(P,R,V) :- triple(P,doap:release R,def),

triple(R,doap:revision,V,def).

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 18 / 22

Motivation Examples Implementation Wrap-up Implementation Demo RDFS

Aggregates Translation:

CONSTRUCT { ?P os:latestRelease
MAX(?V : ?P doap:release ?R. ?R doap:revision ?V) }

WHERE { ?P rdf:type doap:Project . }

will become:

triple_result(P,os:latestRelease,Va) :- MAX[auxa,P,mask](Va),
triple(P,rdf:type,doap:Project,def).

auxa(P,V) :- answera(P,R,V).
answera(P,R,V) :- triple(P,doap:release R,def),

triple(R,doap:revision,V,def).

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 18 / 22

Motivation Examples Implementation Wrap-up Implementation Demo RDFS

Aggregates Translation:

CONSTRUCT { ?P os:latestRelease
MAX(?V : ?P doap:release ?R. ?R doap:revision ?V) }

WHERE { ?P rdf:type doap:Project . }

will become:

triple_result(P,os:latestRelease,Va) :- MAX[auxa,P,mask](Va),
triple(P,rdf:type,doap:Project,def).

auxa(P,V) :- answera(P,R,V).
answera(P,R,V) :- triple(P,doap:release R,def),

triple(R,doap:revision,V,def).

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 18 / 22

Motivation Examples Implementation Wrap-up Implementation Demo RDFS

Aggregates Translation:

CONSTRUCT { ?P os:latestRelease
MAX(?V : ?P doap:release ?R. ?R doap:revision ?V) }

WHERE { ?P rdf:type doap:Project . }

will become:

triple_result(P,os:latestRelease,Va) :- MAX[auxa,P,mask](Va),
triple(P,rdf:type,doap:Project,def).

auxa(P,V) :- answera(P,R,V).
answera(P,R,V) :- triple(P,doap:release R,def),

triple(R,doap:revision,V,def).

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 18 / 22

Motivation Examples Implementation Wrap-up Implementation Demo RDFS

Aggregates Translation:

CONSTRUCT { ?P os:latestRelease
MAX(?V : ?P doap:release ?R. ?R doap:revision ?V) }

WHERE { ?P rdf:type doap:Project . }

will become:

triple_result(P,os:latestRelease,Va) :- MAX[auxa,P,mask](Va),
triple(P,rdf:type,doap:Project,def).

auxa(P,V) :- answera(P,R,V).
answera(P,R,V) :- triple(P,doap:release R,def),

triple(R,doap:revision,V,def).

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 18 / 22

Motivation Examples Implementation Wrap-up Implementation Demo RDFS

Aggregates Translation:

CONSTRUCT { ?P os:latestRelease
MAX(?V : ?P doap:release ?R. ?R doap:revision ?V) }

WHERE { ?P rdf:type doap:Project . }

will become:

triple_result(P,os:latestRelease,Va) :- MAX[auxa,P,mask](Va),
triple(P,rdf:type,doap:Project,def).

auxa(P,V) :- answera(P,R,V).
answera(P,R,V) :- triple(P,doap:release R,def),

triple(R,doap:revision,V,def).

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 18 / 22

Motivation Examples Implementation Wrap-up Implementation Demo RDFS

Aggregates Translation:

CONSTRUCT { ?P os:latestRelease
MAX(?V : ?P doap:release ?R. ?R doap:revision ?V) }

WHERE { ?P rdf:type doap:Project . }

will become:

triple_result(P,os:latestRelease,Va) :- MAX[auxa,P,mask](Va),
triple(P,rdf:type,doap:Project,def).

auxa(P,V) :- answera(P,R,V).
answera(P,R,V) :- triple(P,doap:release R,def),

triple(R,doap:revision,V,def).

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 18 / 22

Motivation Examples Implementation Wrap-up Implementation Demo RDFS

Aggregates Translation:

CONSTRUCT { ?P os:latestRelease
MAX(?V : ?P doap:release ?R. ?R doap:revision ?V) }

WHERE { ?P rdf:type doap:Project . }

will become:

triple_result(P,os:latestRelease,Va) :- MAX[auxa,P,mask](Va),
triple(P,rdf:type,doap:Project,def).

auxa(P,V) :- answera(P,R,V).
answera(P,R,V) :- triple(P,doap:release R,def),

triple(R,doap:revision,V,def).

aux predicate used for for projection; result of automatic translation.

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 18 / 22

Motivation Examples Implementation Wrap-up Implementation Demo RDFS

Aggregates Translation:

CONSTRUCT { ?P os:latestRelease
MAX(?V : ?P doap:release ?R. ?R doap:revision ?V) }

WHERE { ?P rdf:type doap:Project . }

will become:

triple_result(P,os:latestRelease,Va) :- MAX[auxa,P,mask](Va),
triple(P,rdf:type,doap:Project,def).

auxa(P,V) :- answera(P,R,V).
answera(P,R,V) :- triple(P,doap:release R,def),

triple(R,doap:revision,V,def).

aux predicate used for for projection; result of automatic translation.

Find more details on the translation in the paper.

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 18 / 22

Motivation Examples Implementation Wrap-up Implementation Demo RDFS

RDFS Inference:

I RDFS Semantics can be expressed in Rules
I So, it is expressible as CONSTRUCT queries

CONSTRUCT {?A :subPropertyOf ?C}
WHERE {?A :subPropertyOf ?B. ?B :subPropertyOf ?C.}

CONSTRUCT {?A :subClassOf ?C}
WHERE { ?A :subClassOf ?B. ?B :subClassOf ?C. }

CONSTRUCT {?X ?B ?Y}
WHERE { ?A :subPropertyOf ?B. ?X ?A ?Y. }

CONSTRUCT {?X rdf:type ?B}
WHERE { ?A :subClassOf ?B. ?X rdf:type ?A. }

CONSTRUCT {?X rdf:type ?B}
WHERE { ?A :domain ?B. ?X ?A ?Y. }

CONSTRUCT {?Y rdf:type ?B}
WHERE { ?A :range ?B. ?X ?A ?Y. }

CONSTRUCT {?X rdf:type ?B}
WHERE { ?A :domain ?B. ?C :subPropertyOf ?A. ?X ?C ?Y.}

CONSTRUCT {?Y rdf:type ?B}
WHERE { ?A :range ?B. ?C :subPropertyOf ?A. ?X ?C ?Y.}

I Simply add these to you extended graph, if RDFS needed. Will be
evaluated (recursively) by our translation.

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 19 / 22

Motivation Examples Implementation Wrap-up Implementation Demo RDFS

RDFS Inference:

I RDFS Semantics can be expressed in Rules
I So, it is expressible as CONSTRUCT queries

CONSTRUCT {?A :subPropertyOf ?C}
WHERE {?A :subPropertyOf ?B. ?B :subPropertyOf ?C.}

CONSTRUCT {?A :subClassOf ?C}
WHERE { ?A :subClassOf ?B. ?B :subClassOf ?C. }

CONSTRUCT {?X ?B ?Y}
WHERE { ?A :subPropertyOf ?B. ?X ?A ?Y. }

CONSTRUCT {?X rdf:type ?B}
WHERE { ?A :subClassOf ?B. ?X rdf:type ?A. }

CONSTRUCT {?X rdf:type ?B}
WHERE { ?A :domain ?B. ?X ?A ?Y. }

CONSTRUCT {?Y rdf:type ?B}
WHERE { ?A :range ?B. ?X ?A ?Y. }

CONSTRUCT {?X rdf:type ?B}
WHERE { ?A :domain ?B. ?C :subPropertyOf ?A. ?X ?C ?Y.}

CONSTRUCT {?Y rdf:type ?B}
WHERE { ?A :range ?B. ?C :subPropertyOf ?A. ?X ?C ?Y.}

I Simply add these to you extended graph, if RDFS needed. Will be
evaluated (recursively) by our translation.

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 19 / 22

Motivation Examples Implementation Wrap-up Implementation Demo RDFS

RDFS Inference:

I RDFS Semantics can be expressed in Rules
I So, it is expressible as CONSTRUCT queries

CONSTRUCT {?A :subPropertyOf ?C}
WHERE {?A :subPropertyOf ?B. ?B :subPropertyOf ?C.}

CONSTRUCT {?A :subClassOf ?C}
WHERE { ?A :subClassOf ?B. ?B :subClassOf ?C. }

CONSTRUCT {?X ?B ?Y}
WHERE { ?A :subPropertyOf ?B. ?X ?A ?Y. }

CONSTRUCT {?X rdf:type ?B}
WHERE { ?A :subClassOf ?B. ?X rdf:type ?A. }

CONSTRUCT {?X rdf:type ?B}
WHERE { ?A :domain ?B. ?X ?A ?Y. }

CONSTRUCT {?Y rdf:type ?B}
WHERE { ?A :range ?B. ?X ?A ?Y. }

CONSTRUCT {?X rdf:type ?B}
WHERE { ?A :domain ?B. ?C :subPropertyOf ?A. ?X ?C ?Y.}

CONSTRUCT {?Y rdf:type ?B}
WHERE { ?A :range ?B. ?C :subPropertyOf ?A. ?X ?C ?Y.}

I Simply add these to you extended graph, if RDFS needed. Will be
evaluated (recursively) by our translation.

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 19 / 22

Motivation Examples Implementation Wrap-up

Outline

Motivation
Mapping by SPARQL

Examples

Implementation
HEX-Programs
Demo
RDFS

Wrap-up

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 20 / 22

Motivation Examples Implementation Wrap-up

Summary

Take-home message:
I Even simple ontologies are not so easy to align.

I Current standards don’t provide the right “ingredients” to describe the
necessary mappings

I SPARQL++ fills this gap and adds more...

I SPARQL++ allows the definition of “Extended Graphs”, i.e.
Mappings+RDF Data in one file, similar to “Networked Graphs” [Schenk
and Staab, 2007]2

What more will you find in the paper:
I Formal Semantics of Extended Graphs, based on Stable Model

Semantics for HEX-Programs.

I A “safety condition” for recursive mappings with bnodes and
value-generating CONSTRUCTs.

2diff: stable vs. well-founded semantics, safe value-generation allowed, aggregates, built-ins
A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 21 / 22

Motivation Examples Implementation Wrap-up

Summary

Take-home message:
I Even simple ontologies are not so easy to align.

I Current standards don’t provide the right “ingredients” to describe the
necessary mappings

I SPARQL++ fills this gap and adds more...

I SPARQL++ allows the definition of “Extended Graphs”, i.e.
Mappings+RDF Data in one file, similar to “Networked Graphs” [Schenk
and Staab, 2007]2

What more will you find in the paper:
I Formal Semantics of Extended Graphs, based on Stable Model

Semantics for HEX-Programs.

I A “safety condition” for recursive mappings with bnodes and
value-generating CONSTRUCTs.

2diff: stable vs. well-founded semantics, safe value-generation allowed, aggregates, built-ins
A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 21 / 22

Motivation Examples Implementation Wrap-up

Summary

Take-home message:
I Even simple ontologies are not so easy to align.

I Current standards don’t provide the right “ingredients” to describe the
necessary mappings

I SPARQL++ fills this gap and adds more...

I SPARQL++ allows the definition of “Extended Graphs”, i.e.
Mappings+RDF Data in one file, similar to “Networked Graphs” [Schenk
and Staab, 2007]2

What more will you find in the paper:
I Formal Semantics of Extended Graphs, based on Stable Model

Semantics for HEX-Programs.

I A “safety condition” for recursive mappings with bnodes and
value-generating CONSTRUCTs.

2diff: stable vs. well-founded semantics, safe value-generation allowed, aggregates, built-ins
A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 21 / 22

Motivation Examples Implementation Wrap-up

Summary

Take-home message:
I Even simple ontologies are not so easy to align.

I Current standards don’t provide the right “ingredients” to describe the
necessary mappings

I SPARQL++ fills this gap and adds more...

I SPARQL++ allows the definition of “Extended Graphs”, i.e.
Mappings+RDF Data in one file, similar to “Networked Graphs” [Schenk
and Staab, 2007]2

What more will you find in the paper:
I Formal Semantics of Extended Graphs, based on Stable Model

Semantics for HEX-Programs.

I A “safety condition” for recursive mappings with bnodes and
value-generating CONSTRUCTs.

2diff: stable vs. well-founded semantics, safe value-generation allowed, aggregates, built-ins
A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 21 / 22

Motivation Examples Implementation Wrap-up

Summary

Take-home message:
I Even simple ontologies are not so easy to align.

I Current standards don’t provide the right “ingredients” to describe the
necessary mappings

I SPARQL++ fills this gap and adds more...

I SPARQL++ allows the definition of “Extended Graphs”, i.e.
Mappings+RDF Data in one file, similar to “Networked Graphs” [Schenk
and Staab, 2007]2

What more will you find in the paper:
I Formal Semantics of Extended Graphs, based on Stable Model

Semantics for HEX-Programs.

I A “safety condition” for recursive mappings with bnodes and
value-generating CONSTRUCTs.

2diff: stable vs. well-founded semantics, safe value-generation allowed, aggregates, built-ins
A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 21 / 22

Motivation Examples Implementation Wrap-up

Summary

Take-home message:
I Even simple ontologies are not so easy to align.

I Current standards don’t provide the right “ingredients” to describe the
necessary mappings

I SPARQL++ fills this gap and adds more...

I SPARQL++ allows the definition of “Extended Graphs”, i.e.
Mappings+RDF Data in one file, similar to “Networked Graphs” [Schenk
and Staab, 2007]2

What more will you find in the paper:
I Formal Semantics of Extended Graphs, based on Stable Model

Semantics for HEX-Programs.

I A “safety condition” for recursive mappings with bnodes and
value-generating CONSTRUCTs.

2diff: stable vs. well-founded semantics, safe value-generation allowed, aggregates, built-ins
A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 21 / 22

Motivation Examples Implementation Wrap-up

Summary

Take-home message:
I Even simple ontologies are not so easy to align.

I Current standards don’t provide the right “ingredients” to describe the
necessary mappings

I SPARQL++ fills this gap and adds more...

I SPARQL++ allows the definition of “Extended Graphs”, i.e.
Mappings+RDF Data in one file, similar to “Networked Graphs” [Schenk
and Staab, 2007]2

What more will you find in the paper:
I Formal Semantics of Extended Graphs, based on Stable Model

Semantics for HEX-Programs.

I A “safety condition” for recursive mappings with bnodes and
value-generating CONSTRUCTs.

2diff: stable vs. well-founded semantics, safe value-generation allowed, aggregates, built-ins
A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 21 / 22

Motivation Examples Implementation Wrap-up

Summary

Take-home message:
I Even simple ontologies are not so easy to align.

I Current standards don’t provide the right “ingredients” to describe the
necessary mappings

I SPARQL++ fills this gap and adds more...

I SPARQL++ allows the definition of “Extended Graphs”, i.e.
Mappings+RDF Data in one file, similar to “Networked Graphs” [Schenk
and Staab, 2007]2

What more will you find in the paper:
I Formal Semantics of Extended Graphs, based on Stable Model

Semantics for HEX-Programs.

I A “safety condition” for recursive mappings with bnodes and
value-generating CONSTRUCTs.

2diff: stable vs. well-founded semantics, safe value-generation allowed, aggregates, built-ins
A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 21 / 22

Motivation Examples Implementation Wrap-up

Next Steps

I SPARQL++, Extended Graphs are intended as a means to weave the Semantic Web...

I ... i.e. allow to publish mappings and implicit RDF data on the Web.

I As the community picks up SPARQL, people will be able to publish mappings for free,
without having to learn a new syntax.

I Necessary next step: Optimization of distributed querying: We conceive a Linked Open
Data Web rather a network of SPARQL++ endpoints than a network of RDF files.

I Full SPARQL spec compliance is tedious, as SPARQL semantics is not purely declarative.

I Ontological inference beyond RDFS, or OWL Horst at max. unlikely. (Personal opinion:
Higher expressivity languages rather important for TBox only, than for instance semantics
and query answering)

I More related efforts on the way, e.g.
http://pipes.deri.org, http://www.sindice.com, dlvhex-server

Stay Tuned: http://www.polleres.net/dlvhex-sparql
Thanks! Questions please! :-)

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 22 / 22

Motivation Examples Implementation Wrap-up

Next Steps

I SPARQL++, Extended Graphs are intended as a means to weave the Semantic Web...

I ... i.e. allow to publish mappings and implicit RDF data on the Web.

I As the community picks up SPARQL, people will be able to publish mappings for free,
without having to learn a new syntax.

I Necessary next step: Optimization of distributed querying: We conceive a Linked Open
Data Web rather a network of SPARQL++ endpoints than a network of RDF files.

I Full SPARQL spec compliance is tedious, as SPARQL semantics is not purely declarative.

I Ontological inference beyond RDFS, or OWL Horst at max. unlikely. (Personal opinion:
Higher expressivity languages rather important for TBox only, than for instance semantics
and query answering)

I More related efforts on the way, e.g.
http://pipes.deri.org, http://www.sindice.com, dlvhex-server

Stay Tuned: http://www.polleres.net/dlvhex-sparql
Thanks! Questions please! :-)

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 22 / 22

Motivation Examples Implementation Wrap-up

Next Steps

I SPARQL++, Extended Graphs are intended as a means to weave the Semantic Web...

I ... i.e. allow to publish mappings and implicit RDF data on the Web.

I As the community picks up SPARQL, people will be able to publish mappings for free,
without having to learn a new syntax.

I Necessary next step: Optimization of distributed querying: We conceive a Linked Open
Data Web rather a network of SPARQL++ endpoints than a network of RDF files.

I Full SPARQL spec compliance is tedious, as SPARQL semantics is not purely declarative.

I Ontological inference beyond RDFS, or OWL Horst at max. unlikely. (Personal opinion:
Higher expressivity languages rather important for TBox only, than for instance semantics
and query answering)

I More related efforts on the way, e.g.
http://pipes.deri.org, http://www.sindice.com, dlvhex-server

Stay Tuned: http://www.polleres.net/dlvhex-sparql
Thanks! Questions please! :-)

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 22 / 22

Motivation Examples Implementation Wrap-up

Next Steps

I SPARQL++, Extended Graphs are intended as a means to weave the Semantic Web...

I ... i.e. allow to publish mappings and implicit RDF data on the Web.

I As the community picks up SPARQL, people will be able to publish mappings for free,
without having to learn a new syntax.

I Necessary next step: Optimization of distributed querying: We conceive a Linked Open
Data Web rather a network of SPARQL++ endpoints than a network of RDF files.

I Full SPARQL spec compliance is tedious, as SPARQL semantics is not purely declarative.

I Ontological inference beyond RDFS, or OWL Horst at max. unlikely. (Personal opinion:
Higher expressivity languages rather important for TBox only, than for instance semantics
and query answering)

I More related efforts on the way, e.g.
http://pipes.deri.org, http://www.sindice.com, dlvhex-server

Stay Tuned: http://www.polleres.net/dlvhex-sparql
Thanks! Questions please! :-)

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 22 / 22

Motivation Examples Implementation Wrap-up

Next Steps

I SPARQL++, Extended Graphs are intended as a means to weave the Semantic Web...

I ... i.e. allow to publish mappings and implicit RDF data on the Web.

I As the community picks up SPARQL, people will be able to publish mappings for free,
without having to learn a new syntax.

I Necessary next step: Optimization of distributed querying: We conceive a Linked Open
Data Web rather a network of SPARQL++ endpoints than a network of RDF files.

I Full SPARQL spec compliance is tedious, as SPARQL semantics is not purely declarative.

I Ontological inference beyond RDFS, or OWL Horst at max. unlikely. (Personal opinion:
Higher expressivity languages rather important for TBox only, than for instance semantics
and query answering)

I More related efforts on the way, e.g.
http://pipes.deri.org, http://www.sindice.com, dlvhex-server

Stay Tuned: http://www.polleres.net/dlvhex-sparql
Thanks! Questions please! :-)

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 22 / 22

Motivation Examples Implementation Wrap-up

Next Steps

I SPARQL++, Extended Graphs are intended as a means to weave the Semantic Web...

I ... i.e. allow to publish mappings and implicit RDF data on the Web.

I As the community picks up SPARQL, people will be able to publish mappings for free,
without having to learn a new syntax.

I Necessary next step: Optimization of distributed querying: We conceive a Linked Open
Data Web rather a network of SPARQL++ endpoints than a network of RDF files.

I Full SPARQL spec compliance is tedious, as SPARQL semantics is not purely declarative.

I Ontological inference beyond RDFS, or OWL Horst at max. unlikely. (Personal opinion:
Higher expressivity languages rather important for TBox only, than for instance semantics
and query answering)

I More related efforts on the way, e.g.
http://pipes.deri.org, http://www.sindice.com, dlvhex-server

Stay Tuned: http://www.polleres.net/dlvhex-sparql
Thanks! Questions please! :-)

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 22 / 22

Motivation Examples Implementation Wrap-up

Next Steps

I SPARQL++, Extended Graphs are intended as a means to weave the Semantic Web...

I ... i.e. allow to publish mappings and implicit RDF data on the Web.

I As the community picks up SPARQL, people will be able to publish mappings for free,
without having to learn a new syntax.

I Necessary next step: Optimization of distributed querying: We conceive a Linked Open
Data Web rather a network of SPARQL++ endpoints than a network of RDF files.

I Full SPARQL spec compliance is tedious, as SPARQL semantics is not purely declarative.

I Ontological inference beyond RDFS, or OWL Horst at max. unlikely. (Personal opinion:
Higher expressivity languages rather important for TBox only, than for instance semantics
and query answering)

I More related efforts on the way, e.g.
http://pipes.deri.org, http://www.sindice.com, dlvhex-server

Stay Tuned: http://www.polleres.net/dlvhex-sparql
Thanks! Questions please! :-)

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 22 / 22

Motivation Examples Implementation Wrap-up

Next Steps

I SPARQL++, Extended Graphs are intended as a means to weave the Semantic Web...

I ... i.e. allow to publish mappings and implicit RDF data on the Web.

I As the community picks up SPARQL, people will be able to publish mappings for free,
without having to learn a new syntax.

I Necessary next step: Optimization of distributed querying: We conceive a Linked Open
Data Web rather a network of SPARQL++ endpoints than a network of RDF files.

I Full SPARQL spec compliance is tedious, as SPARQL semantics is not purely declarative.

I Ontological inference beyond RDFS, or OWL Horst at max. unlikely. (Personal opinion:
Higher expressivity languages rather important for TBox only, than for instance semantics
and query answering)

I More related efforts on the way, e.g.
http://pipes.deri.org, http://www.sindice.com, dlvhex-server

Stay Tuned: http://www.polleres.net/dlvhex-sparql
Thanks! Questions please! :-)

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 22 / 22

Motivation Examples Implementation Wrap-up

Next Steps

I SPARQL++, Extended Graphs are intended as a means to weave the Semantic Web...

I ... i.e. allow to publish mappings and implicit RDF data on the Web.

I As the community picks up SPARQL, people will be able to publish mappings for free,
without having to learn a new syntax.

I Necessary next step: Optimization of distributed querying: We conceive a Linked Open
Data Web rather a network of SPARQL++ endpoints than a network of RDF files.

I Full SPARQL spec compliance is tedious, as SPARQL semantics is not purely declarative.

I Ontological inference beyond RDFS, or OWL Horst at max. unlikely. (Personal opinion:
Higher expressivity languages rather important for TBox only, than for instance semantics
and query answering)

I More related efforts on the way, e.g.
http://pipes.deri.org, http://www.sindice.com, dlvhex-server

Stay Tuned: http://www.polleres.net/dlvhex-sparql
Thanks! Questions please! :-)

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 22 / 22

Motivation Examples Implementation Wrap-up

Next Steps

I SPARQL++, Extended Graphs are intended as a means to weave the Semantic Web...

I ... i.e. allow to publish mappings and implicit RDF data on the Web.

I As the community picks up SPARQL, people will be able to publish mappings for free,
without having to learn a new syntax.

I Necessary next step: Optimization of distributed querying: We conceive a Linked Open
Data Web rather a network of SPARQL++ endpoints than a network of RDF files.

I Full SPARQL spec compliance is tedious, as SPARQL semantics is not purely declarative.

I Ontological inference beyond RDFS, or OWL Horst at max. unlikely. (Personal opinion:
Higher expressivity languages rather important for TBox only, than for instance semantics
and query answering)

I More related efforts on the way, e.g.
http://pipes.deri.org, http://www.sindice.com, dlvhex-server

Stay Tuned: http://www.polleres.net/dlvhex-sparql
Thanks! Questions please! :-)

A. Polleres, F. Scharffe, R. Schindlauer 2007-11-27 22 / 22

	Motivation
	Mapping by SPARQL

	Examples
	Implementation
	HEX-Programs
	Demo
	RDFS

	Wrap-up

