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Alternative subtitles: 
Blank nodes are fun (at least for theoreticians) 

or 
Blank nodes ain’t THAT evil!  



RDF Entailment:    G1 = G2 

•  Does  graph G1 entail G2 ?  

•  Boils down to:  
 “Is there a blank node renaming µ for blank nodes in G2 such that µ(G2) ⊆G1” 

•  “Folklore”: Well-known to be NP-complete (cf. RDF Semantics [Hayes, 2004]) 

•  Observation: Blank nodes are causing the “trouble” of making  the problem
 intractable… ground entailment well known to be in P. 
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Starting point for our work: 

Besides completely forbidding blank nodes…  
 … What else can we do to make this problem tractable? 



Restrictions on RDF graphs considered in this paper: 

1.  Domain-Restricted Graphs: Restrict the domain blank nodes can range over to a
 finite set of objects. 

2.  Graphs with Bounded Treewidth: Restrict the graph structure of RDF graphs:
 bounded-treewidth (a generalization of acyclicity) 

Effects: 
1.  …OOPS! With finite domains, complexity actually jumps from NP to coNPNP =  Πp

  
2.  Not all is lost: bounded treewidth guarantees tractability for general entailment and

 coNP bound for domain-restricted graphs. 

Summary: 
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domain-restricted 
graphs 

Unrestricted 
graphs 

bounded treewitdth coNP-complete in P   

unbounded treewidth Πp
2 -complete NP-complete 
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Domain-Restricted Graphs: Example 
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Domain-Restricted Graphs: Example 
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Fang Wei Stefan Woltran Stefan Decker 
 D1  D2  D3 

 D1  = TUV =  
{:fangwei, :stefanwoltran,  
:reinhardpichler, :thomaseiter,  … } 

 D2  = TUV  ∪ Alumni =  
{:fangwei, :stefanwoltran,  
:reinhardpichler, :thomaseiter, 
:axelpolleres, :manfredhauswirth, … } 

 D3  = DERI = 
{:stefandecker, 
:axelpolleres, :manfredhauswirth … } 



Domain-Restricted Graphs: Example 
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Domain-Restricted Graphs: Example 
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Fang Wei Stefan Woltran Stefan Decker 
 D1  D2  D3 

 D2 ⊆ D3 , D3 ⊆ D2   

∈D3 

∈D3 

∈D2 ∈D2 

∈D2 

∈D2 



Domain-Restricted Graphs ⟨G , D⟩ : Definition 

•  Base notion in RDF semantics: RDF interpretation for a Graph G 

    I = (Res, Prop, Lit, ε, IS, IL) 

•  We define the D-restriction of RDF interpretations: 

    ID = (Res ∩ D, Prop, Lit ∩ D, ε, ISRes∩D, ILRes∩D ) 

•  Entailment for domain-restricted graphs, defined as wrt. D-restriction
 of RDF interpretations: 

    ⟨G1 , D1 ⟩           ⟨G2 , D2 ⟩ 
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Domain-Restricted Graphs: Properties 

•  D1 ⊆ D2        implies       ⟨G1 , D1 ⟩          ⟨G2 , D2 ⟩ 

•   G1       G2     implies       ⟨G1 , D⟩             ⟨G2 , D⟩  

•  But: Complexity of D-entailment is Πp
   ...    Uh? 

Example:     
D = {a,b} 

–  Intuitively:  
 More entailments by implicit equalities if  |D| is small enough! 
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Complexity proof (Ideas) 

•  Membership:  non-entailment in Πp
 : 

–  We can assume w.l.o.g. that G1 is ground 
–   “⟨G1, D⟩ does not d-entail ⟨G2, D⟩” can be decided in Σp

 by 
1.  Guessing a D-interpretation such that G1 is true 
2.  Check that G2 is false for all possible assignments of bnodes to elements of D  

•  Hardness proof by a reduction from a special variant of   
 H-subsumption*, for |D| ≥ 4 … long version. 
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* “total binary H-subsumption” i.e., no constants are allowed in clauses and only binary predicates, 
 fixed finite Herbrand universe 



Now how to remedy the mess we did… 

•  … we saw the first “restriction” made things more complex. 

•  But: bounded treewidth helps! 
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Bounded Treewidth for RDF graphs: 

•  Measure of “acyclicity” 
•  Roughly:  

“If I can decompose the graph to a tree of hyper-edges with at most 
 k -1 nodes per edge, then the graph has treewidth k”  

•  Example:  
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“Skeleton” relevant for tree-decomposition: 

b1 b2 b3 

b1 b2 b4 b2 b5 

b4 b6 b5 b7 

tw(G2) = 2 



Polynomial time Algorithm for Entailment with
 Bounded Treewidth for G2    (Idea): 

•  From the decomposition, process the induced subgraphs “bottom-up” in a modular fashion,  
 computing partial bnode assignments. 

•  When going upwards, filter allowed assignments by semi-joins with the assignments for the child nodes. 

•  If an assignment “survives” at the root, entailment holds. 

•  O(nk)  for entailment checks per node  
•  O(n2k) per semi-join 
•  Thus, for |G2| = m  we get as upper bound:    O(m2+mn2k)  
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Now what about D-entailment with bounded treewidth? 

•  Overall complexity drops from  Πp
 to coNP: 

 Recall from above: 

–   “⟨G1, D⟩ does not d-entail ⟨G2, D⟩” can be decided in Σp 
 by 

1.  Guessing a D-interpretation such that G1 is true 
2.  Check that G2 is false for all possible assignments of bnodes to elements of D 

•  Step 2. can be done in polynomial time for bounded tree-width. 

•  coNP-hardness still holds (proof by 3-colorability, see paper.) 
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Summary: 

•  Some form of domain-restriction may be useful for graphs on the Web… 
–   … but comes at some cost! 
–  Things are not that bad unless we expect small domains (less elements than bnodes) 

•  Similar results for  
–  enumerated classes in (fragments of) OWL? 
–  entailment with finite datatypes?, etc.   

" Future work! 

•  Bounded treewidth is more general than acyclicity. Good news! (if we
 don’t expect graphs with large cycles among bnodes) 

22 


