
RDF(S) needs annotations
RDF Next Steps W3C Workshop

Nuno Lopes Antoine Zimmermann Aidan Hogan Gergely
Lukácsy Axel Polleres Umberto Straccia

Stefan Decker

June 26, 2010

RDF is good. . .

. . . but triples alone are often not enough:
RDF statements s p o are true with respect to a certain context:

Time
:axel :worksfor :DERI true ‘‘since 2007’’

Provenance
:axel f:knows :ivanherman true ‘‘in http://polleres.net/foaf.rdf’’

f:knows rdfs:domain f:Person true ‘‘in http://xmlns.com/foaf/0.1’’

Trust/Certainty (fuzzy values):
:audiTT rdf:type :SportsCar true ‘‘to some extent, e.g. 0.8’’

etc.

1 / 14

http://polleres.net/foaf.rdf
http://xmlns.com/foaf/0.1

RDF is good. . .

. . . but triples alone are often not enough:
RDF statements s p o are true with respect to a certain context:

Time
:axel :worksfor :DERI true ‘‘since 2007’’

Provenance
:axel f:knows :ivanherman true ‘‘in http://polleres.net/foaf.rdf’’

f:knows rdfs:domain f:Person true ‘‘in http://xmlns.com/foaf/0.1’’

Trust/Certainty (fuzzy values):
:audiTT rdf:type :SportsCar true ‘‘to some extent, e.g. 0.8’’

etc.

1 / 14

http://polleres.net/foaf.rdf
http://xmlns.com/foaf/0.1

RDF is good. . .

. . . but triples alone are often not enough:
RDF statements s p o are true with respect to a certain context:

Time
:axel :worksfor :DERI true ‘‘since 2007’’

Provenance
:axel f:knows :ivanherman true ‘‘in http://polleres.net/foaf.rdf’’

f:knows rdfs:domain f:Person true ‘‘in http://xmlns.com/foaf/0.1’’

Trust/Certainty (fuzzy values):
:audiTT rdf:type :SportsCar true ‘‘to some extent, e.g. 0.8’’

etc.

1 / 14

http://polleres.net/foaf.rdf
http://xmlns.com/foaf/0.1

RDF is good. . .

. . . but triples alone are often not enough:
RDF statements s p o are true with respect to a certain context:

Time
:axel :worksfor :DERI true ‘‘since 2007’’

Provenance
:axel f:knows :ivanherman true ‘‘in http://polleres.net/foaf.rdf’’

f:knows rdfs:domain f:Person true ‘‘in http://xmlns.com/foaf/0.1’’

Trust/Certainty (fuzzy values):
:audiTT rdf:type :SportsCar true ‘‘to some extent, e.g. 0.8’’

etc.

1 / 14

http://polleres.net/foaf.rdf
http://xmlns.com/foaf/0.1

RDF needs annotations. . .

This need comes from several sides:

Time
. . . seems to be a practical need... Data is NOT static! some suggestions in

academia [Gutierrez+ 2005] [Tappolet&Bernstein, 2009]

Provenance
. . . seems to be a practical need... (Linked) Data is NOT universal! Named

Graphs [Carroll+ 2005], Quads (Authoritative reasoning) [Hogan+ 2009]

Trust/Certainty (fuzzy values):
. . . NOT all data is certain/trusted explored in the W3C Uncertainty Reasoning

for the Web XG

not so new. . . e.g. modules in TRIPLE

2 / 14

Adding information to RDF triples

Issues:

Representation of annotations
Semantics of annotations

Our Claim:

RDF needs agreement on representation and semantics for
the most important annotation domains.

One Proposal:

Annotated RDFS

3 / 14

Adding information to RDF triples

Issues:

Representation of annotations
Semantics of annotations

Our Claim:

RDF needs agreement on representation and semantics for
the most important annotation domains.

One Proposal:

Annotated RDFS

3 / 14

Adding information to RDF triples

Issues:

Representation of annotations
Semantics of annotations

Our Claim:

RDF needs agreement on representation and semantics for
the most important annotation domains.

One Proposal:

Annotated RDFS

3 / 14

Example: Sensor data

Even combinations of several domains may be necessary:

4 / 14

Example: Sensor data

Even combinations of several domains may be necessary:

sensors readings output:

2010-06-26 14:57:51 10.254.2.15 4302 83

2010-06-26 14:57:51 10.254.3.1 4302 83

2010-06-26 14:57:51 10.254.2.6 4302 83

4 / 14

Example: Sensor data

Even combinations of several domains may be necessary:

sensors readings output:

2010-06-26 14:57:51 10.254.2.15 4302 83

2010-06-26 14:57:51 10.254.3.1 4302 83

2010-06-26 14:57:51 10.254.2.6 4302 83

Convert to

4 / 14

Example: Sensor data

Even combinations of several domains may be necessary:

location of a tag in a room (pure RDF)

time of the sensor reading (temporal annotation)

signal strength of the sensor reading (fuzzy annotation)

4 / 14

Example: Sensor data

Even combinations of several domains may be necessary:

:tag4302 :locatedIn :room311 . [14:57, 15:01] [0.8]

:tag4302 :locatedIn :room310 . [15:02, 16:10] [0.7]

4 / 14

Example: Sensor data

Even combinations of several domains may be necessary:

:tag4302 :locatedIn :room311 . [14:57, 15:01] [0.8]

:tag4302 :locatedIn :room310 . [15:02, 16:10] [0.7] This is not RDF

4 / 14

Issue 1: Representation

How to represent annotations?

:tag4302 :locatedIn :room311 . [14:57, 15:01]

5 / 14

Issue 1: Representation

:tag4302 :locatedIn :room311 . [14:57, 15:01]

Reification?

:record1 rdf:type rdf:Statement

rdf:subject :tag4302;

rdf:predicate :locatedIn ;

rdf:object :room311 ;

time:start "2010-06-26 14:57"^^xs:timeStamp;

time:end "2010-06-26 15:01"^^xs:timeStamp .

no semantics

not really “popular” some people prior to this WS even claimed to
drop reification alltogether

5 / 14

Issue 1: Representation

:tag4302 :locatedIn :room311 . [14:57, 15:01]

Reification?

:record1 rdf:type rdf:Statement

rdf:subject :tag4302;

rdf:predicate :locatedIn ;

rdf:object :room311 ;

time:start "2010-06-26 14:57"^^xs:timeStamp;

time:end "2010-06-26 15:01"^^xs:timeStamp .

no semantics

not really “popular” some people prior to this WS even claimed to
drop reification alltogether

5 / 14

Issue 1: Representation

:tag4302 :locatedIn :room311 . [14:57, 15:01]

Reification?

:record1 rdf:type rdf:Statement

rdf:subject :tag4302;

rdf:predicate :locatedIn ;

rdf:object :room311 ;

time:start "2010-06-26 14:57"^^xs:timeStamp;

time:end "2010-06-26 15:01"^^xs:timeStamp .

no semantics

not really “popular” some people prior to this WS even claimed to
drop reification alltogether

5 / 14

Issue 1: Representation

:tag4302 :locatedIn :room311 . [14:57, 15:01]

Other formats?

N-Quads

:tag4302 :locatedIn :room311 _:c.

_:c time:start "2010-06-26 14:57"^^xs:timeStamp ;

time:end "2010-06-26 15:01"^^xs:timeStamp .

alternatively TriG, TriX

non-standard (yet)

semantics of annotations still not clear

5 / 14

Issue 2: Semantics

What do annotations mean for RDF(S) semantics?

How to combine non-annotated and annotated RDF
semantically?

6 / 14

Issue 2: Semantics

What do annotations mean for RDF(S) semantics?

How to combine non-annotated and annotated RDF
semantically?

:axel f:knows :ivanherman . [http://polleres.net/foaf.rdf]

f:knows rdfs:domain f:Person . [http://xmlns.com/foaf/0.1]

:axel rdf:type f:Person . [???]

6 / 14

http://polleres.net/foaf.rdf
http://xmlns.com/foaf/0.1

Issue 2: Semantics

What do annotations mean for RDF(S) semantics?

How to combine non-annotated and annotated RDF
semantically?

:axel f:knows :ivanherman . [http://polleres.net/foaf.rdf]

f:knows rdfs:domain f:Person . [http://xmlns.com/foaf/0.1]

:axel rdf:type f:Person . [???]

6 / 14

http://polleres.net/foaf.rdf
http://xmlns.com/foaf/0.1

Issue 2: Semantics

What do annotations mean for RDF(S) semantics?

How to combine non-annotated and annotated RDF
semantically?

:axel :worksfor :DERI . [2007,2010]

:worksFor rdfs:domain :Employee .

:axel rdf:domain :Employee [???]

6 / 14

Our approach – Annotated RDF

[Straccia+, AAAI2010] Generic Framework to

1 describe annotation domains

2 give them a semantics

3 live side-by-side with non-annotated RDF

7 / 14

Annotation Domains

Temporal domain example:

:tag4302 :locatedIn :room311 . [09:25, 11:49]

:tag4302 :locatedIn :room311 . [10:35, 12:57]

Any annotation domain consists of a lattice:

the representation of the annotations

an order between the elements

universal (>) and empty (⊥) annotations

: > = [−∞, +∞] ⊥ = []

operator (⊗) is a so-called t-norm
operator (∨) for combining annotations

8 / 14

Annotation Domains

Temporal domain example:

:tag4302 :locatedIn :room311 . [09:25, 11:49]

:tag4302 :locatedIn :room311 . [10:35, 12:57]

Any annotation domain consists of a lattice:

the representation of the annotations: [14:35, 14:57]

an order between the elements

universal (>) and empty (⊥) annotations

: > = [−∞, +∞] ⊥ = []

operator (⊗) is a so-called t-norm
operator (∨) for combining annotations

8 / 14

Annotation Domains

Temporal domain example:

:tag4302 :locatedIn :room311 . [09:25, 11:49]

:tag4302 :locatedIn :room311 . [10:35, 12:57]

Any annotation domain consists of a lattice:

the representation of the annotations: [14:35, 14:57]

an order between the elements

universal (>) and empty (⊥) annotations

: > = [−∞, +∞] ⊥ = []

operator (⊗) is a so-called t-norm
operator (∨) for combining annotations

8 / 14

Annotation Domains

Temporal domain example:

:tag4302 :locatedIn :room311 . [09:25, 11:49]

:tag4302 :locatedIn :room311 . [10:35, 12:57]

Any annotation domain consists of a lattice:

the representation of the annotations: [14:35, 14:57]

an order between the elements: ⊆

universal (>) and empty (⊥) annotations

: > = [−∞, +∞] ⊥ = []

operator (⊗) is a so-called t-norm
operator (∨) for combining annotations

8 / 14

Annotation Domains

Temporal domain example:

:tag4302 :locatedIn :room311 . [09:25, 11:49]

:tag4302 :locatedIn :room311 . [10:35, 12:57]

Any annotation domain consists of a lattice:

the representation of the annotations: [14:35, 14:57]

an order between the elements: ⊆
universal (>) and empty (⊥) annotations

: > = [−∞, +∞] ⊥ = []

operator (⊗) is a so-called t-norm
operator (∨) for combining annotations

8 / 14

Annotation Domains

Temporal domain example:

:tag4302 :locatedIn :room311 . [09:25, 11:49]

:tag4302 :locatedIn :room311 . [10:35, 12:57]

Any annotation domain consists of a lattice:

the representation of the annotations: [14:35, 14:57]

an order between the elements: ⊆
universal (>) and empty (⊥) annotations: > = [−∞, +∞] ⊥ = []

operator (⊗) is a so-called t-norm
operator (∨) for combining annotations

8 / 14

Annotation Domains

Temporal domain example:

:tag4302 :locatedIn :room311 . [09:25, 11:49]

:tag4302 :locatedIn :room311 . [10:35, 12:57]

Any annotation domain consists of a lattice:

the representation of the annotations: [14:35, 14:57]

an order between the elements: ⊆
universal (>) and empty (⊥) annotations: > = [−∞, +∞] ⊥ = []

operator (⊗) is a so-called t-norm

operator (∨) for combining annotations

8 / 14

Annotation Domains

Temporal domain example:

:tag4302 :locatedIn :room311 . [09:25, 11:49]

:tag4302 :locatedIn :room311 . [10:35, 12:57]

Any annotation domain consists of a lattice:

the representation of the annotations: [14:35, 14:57]

an order between the elements: ⊆
universal (>) and empty (⊥) annotations: > = [−∞, +∞] ⊥ = []

operator (⊗) is a so-called t-norm : ∩

operator (∨) for combining annotations

8 / 14

Annotation Domains

Temporal domain example:

:tag4302 :locatedIn :room311 . [09:25, 11:49]

:tag4302 :locatedIn :room311 . [10:35, 12:57]

Any annotation domain consists of a lattice:

the representation of the annotations: [14:35, 14:57]

an order between the elements: ⊆
universal (>) and empty (⊥) annotations: > = [−∞, +∞] ⊥ = []

operator (⊗) is a so-called t-norm : ∩

operator (∨) for combining annotations

[09:25,11:49] ⊗ [10:35, 12:57] = [10:35, 11:49]

8 / 14

Annotation Domains

Temporal domain example:

:tag4302 :locatedIn :room311 . [09:25, 11:49]

:tag4302 :locatedIn :room311 . [10:35, 12:57]

Any annotation domain consists of a lattice:

the representation of the annotations: [14:35, 14:57]

an order between the elements: ⊆
universal (>) and empty (⊥) annotations: > = [−∞, +∞] ⊥ = []

operator (⊗) is a so-called t-norm : ∩
operator (∨) for combining annotations

8 / 14

Annotation Domains

Temporal domain example:

:tag4302 :locatedIn :room311 . [09:25, 11:49]

:tag4302 :locatedIn :room311 . [10:35, 12:57]

Any annotation domain consists of a lattice:

the representation of the annotations: [14:35, 14:57]

an order between the elements: ⊆
universal (>) and empty (⊥) annotations: > = [−∞, +∞] ⊥ = []

operator (⊗) is a so-called t-norm : ∩
operator (∨) for combining annotations: ∪

8 / 14

Annotation Domains

Temporal domain example:

:tag4302 :locatedIn :room311 . [09:25, 11:49]

:tag4302 :locatedIn :room311 . [10:35, 12:57]

Any annotation domain consists of a lattice:

the representation of the annotations: [14:35, 14:57]

an order between the elements: ⊆
universal (>) and empty (⊥) annotations: > = [−∞, +∞] ⊥ = []

operator (⊗) is a so-called t-norm : ∩
operator (∨) for combining annotations: ∪

[09:25,11:49] ∨ [10:35, 12:57] = [09:25, 12:57]

8 / 14

Annotation Domains

Temporal domain example:

:tag4302 :locatedIn :room311 . [09:25, 11:49]

:tag4302 :locatedIn :room311 . [10:35, 12:57]

Any annotation domain consists of a lattice:

the representation of the annotations: [14:35, 14:57]

an order between the elements: ⊆
universal (>) and empty (⊥) annotations: > = [−∞, +∞] ⊥ = []

operator (⊗) is a so-called t-norm : ∩
operator (∨) for combining annotations: ∪

[09:25,11:49] ∨ [14:35, 15:57] = [09:25, 11:49], [14:35, 15:57]

8 / 14

Annotation Domains

Temporal domain example:

:tag4302 :locatedIn :room311 . {[09:25, 11:49]}

:tag4302 :locatedIn :room311 . {[10:35, 12:57]}

Any annotation domain consists of a lattice:

the representation of the annotations: {[14:35, 14:57]}

an order between the elements: ⊆
universal (>) and empty (⊥) annotations: > = {[−∞, +∞]} ⊥ = {[]}

operator (⊗) is a so-called t-norm : ∩
operator (∨) for combining annotations: ∪

[09:25,11:49] ∨ [14:35, 15:57] = {[09:25, 11:49], [14:35, 15:57]}

8 / 14

Other domains: Examples

Trust/Fuzzy

:tag4302 :locatedIn :room311 . 0.9

:tag4302 :locatedIn :room310 . 0.2

annotations: [0,1]

order: ≤
⊗: min ∨: max

> = 1, ⊥ = 0

Provenance

:axel rdf:type Person .

[xmlns.com/foaf/0.1/ ∧ polleres.net/foaf.rdf]

annotations: prop.

formulae in DNF over URIs

order: |=
⊗: ∧ ∨: ∨
> = disj. of all URIs,

⊥ = conj. of all URIs

Our generic semantics allows to combine domains:

:tag4302 :locatedIn :room311 . ([14:25, 14:57], 0.8)

9 / 14

Other domains: Examples

Trust/Fuzzy

:tag4302 :locatedIn :room311 . 0.9

:tag4302 :locatedIn :room310 . 0.2

annotations: [0,1]

order: ≤
⊗: min ∨: max

> = 1, ⊥ = 0

Provenance

:axel rdf:type Person .

[xmlns.com/foaf/0.1/ ∧ polleres.net/foaf.rdf]

annotations: prop.

formulae in DNF over URIs

order: |=
⊗: ∧ ∨: ∨
> = disj. of all URIs,

⊥ = conj. of all URIs

Our generic semantics allows to combine domains:

:tag4302 :locatedIn :room311 . ([14:25, 14:57], 0.8)

9 / 14

Other domains: Examples

Trust/Fuzzy

:tag4302 :locatedIn :room311 . 0.9

:tag4302 :locatedIn :room310 . 0.2

annotations: [0,1]

order: ≤
⊗: min ∨: max

> = 1, ⊥ = 0

Provenance

:axel rdf:type Person .

[xmlns.com/foaf/0.1/ ∧ polleres.net/foaf.rdf]

annotations: prop.

formulae in DNF over URIs

order: |=
⊗: ∧ ∨: ∨
> = disj. of all URIs,

⊥ = conj. of all URIs

Our generic semantics allows to combine domains:

:tag4302 :locatedIn :room311 . ([14:25, 14:57], 0.8)

9 / 14

Other domains: Examples

Trust/Fuzzy

:tag4302 :locatedIn :room311 . 0.9

:tag4302 :locatedIn :room310 . 0.2

annotations: [0,1]

order: ≤
⊗: min ∨: max

> = 1, ⊥ = 0

Provenance

:axel rdf:type Person .

[xmlns.com/foaf/0.1/ ∧ polleres.net/foaf.rdf]

annotations: prop.

formulae in DNF over URIs

order: |=
⊗: ∧ ∨: ∨
> = disj. of all URIs,

⊥ = conj. of all URIs

Our generic semantics allows to combine domains:

:tag4302 :locatedIn :room311 . ([14:25, 14:57], 0.8)

9 / 14

Integration with RDF

Transparent integration of annotated and classical RDF

:stefan foaf:name "Stefan Decker" .

:tag4302 :assignedTo :stefan .

:tag4302 :locatedIn :room311 . [14:25, 14:57]

Possible approaches:

use > as annotation

triple is valid at a time interval common throughout the graph

requires blank nodes in annotations

triple is valid until “now” ([Temporal RDF, Gutierrez et al, 2005])

represents current time

10 / 14

Integration with RDF

Transparent integration of annotated and classical RDF

:stefan foaf:name "Stefan Decker" . [−∞,+∞]
:tag4302 :assignedTo :stefan . [−∞,+∞]
:tag4302 :locatedIn :room311 . [14:25, 14:57]

Possible approaches:

use > as annotation

triple is valid at a time interval common throughout the graph

requires blank nodes in annotations

triple is valid until “now” ([Temporal RDF, Gutierrez et al, 2005])

represents current time

10 / 14

Integration with RDF

Transparent integration of annotated and classical RDF

:stefan foaf:name "Stefan Decker" . [:a, :b]

:tag4302 :assignedTo :stefan . [:a, :b]

:tag4302 :locatedIn :room311 . [14:25, 14:57]

Possible approaches:

use > as annotation

triple is valid at a time interval common throughout the graph

requires blank nodes in annotations

triple is valid until “now” ([Temporal RDF, Gutierrez et al, 2005])

represents current time

10 / 14

Integration with RDF

Transparent integration of annotated and classical RDF

:stefan foaf:name "Stefan Decker" . [−∞, now]

:tag4302 :assignedTo :stefan . [−∞, now]

:tag4302 :locatedIn :room311 . [14:25, 14:57]

Possible approaches:

use > as annotation

triple is valid at a time interval common throughout the graph

requires blank nodes in annotations

triple is valid until “now” ([Temporal RDF, Gutierrez et al, 2005])

represents current time

10 / 14

Integration with RDF

Transparent integration of annotated and classical RDF

:stefan foaf:name "Stefan Decker" . [−∞,+∞]
:tag4302 :assignedTo :stefan . [−∞,+∞]
:tag4302 :locatedIn :room311 . [14:25, 14:57]

Possible approaches:

use > as annotation “upwards compatible”

triple is valid at a time interval common throughout the graph

requires blank nodes in annotations

triple is valid until “now” ([Temporal RDF, Gutierrez et al, 2005])

represents current time

10 / 14

Annotated RDFS Inference rules

Inference rules are independent of the annotation domain

RDFS “rdfs:domain” rule:

?p rdfs:domain ?c

?s ?p ?o

⇒ ?s rdf:type ?c

Example:

:worksFor rdfs:domain :Employee

:nuno :worksFor :DERI

⇒ :nuno rdf:type :Employee

Extra rule to group annotations triples (∨):

11 / 14

Annotated RDFS Inference rules

Inference rules are independent of the annotation domain

RDFS “rdfs:domain” rule:

?p rdfs:domain ?c

?s ?p ?o

⇒ ?s rdf:type ?c

Example:

:worksFor rdfs:domain :Employee

:nuno :worksFor :DERI

⇒ :nuno rdf:type :Employee

Extra rule to group annotations triples (∨):

11 / 14

Annotated RDFS Inference rules

Inference rules are independent of the annotation domain

RDFS “rdfs:domain” rule:

?p rdfs:domain ?c

?s ?p ?o

⇒ ?s rdf:type ?c

Example:

:worksFor rdfs:domain :Employee

:nuno :worksFor :DERI

⇒ :nuno rdf:type :Employee

Extra rule to group annotations triples (∨):

11 / 14

Annotated RDFS Inference rules

Inference rules are independent of the annotation domain

Annotated RDFS “rdfs:domain” rule:

?p rdfs:domain ?c ?v1
?s ?p ?o ?v2

⇒ ?s rdf:type ?c ?v1 ⊗ ?v2

Example:

:worksFor rdfs:domain :Employee

:nuno :worksFor :DERI

⇒ :nuno rdf:type :Employee

Extra rule to group annotations triples (∨):

11 / 14

Annotated RDFS Inference rules

Inference rules are independent of the annotation domain

Annotated RDFS “rdfs:domain” rule:

?p rdfs:domain ?c ?v1
?s ?p ?o ?v2

⇒ ?s rdf:type ?c ?v1 ⊗ ?v2

Example:

:worksFor rdfs:domain :Employee [−∞, +∞]

:nuno :worksFor :DERI ["2009-01-01", "2010-06-26"]

⇒ :nuno rdf:type :Employee ["2009-01-01", "2010-06-26"]

Extra rule to group annotations triples (∨):

11 / 14

Annotated RDFS Inference rules

Inference rules are independent of the annotation domain

Annotated RDFS “rdfs:domain” rule:

?p rdfs:domain ?c ?v1
?s ?p ?o ?v2

⇒ ?s rdf:type ?c ?v1 ⊗ ?v2

Example:

:worksFor rdfs:domain :Employee [−∞, +∞]

:nuno :worksFor :DERI ["2009-01-01", "2010-06-26"]

⇒ :nuno rdf:type :Employee ["2009-01-01", "2010-06-26"]

Extra rule to group annotations triples (∨):
?s ?p ?o λ1

?s ?p ?o λ2

⇒ ?s ?p ?o λ1 ∨ λ2

11 / 14

Annotated RDFS Inference rules

Inference rules are independent of the annotation domain

Annotated RDFS “rdfs:domain” rule:

?p rdfs:domain ?c ?v1
?s ?p ?o ?v2

⇒ ?s rdf:type ?c ?v1 ⊗ ?v2

Example:

:worksFor rdfs:domain :Employee [−∞, +∞]

:nuno :worksFor :DERI ["2009-01-01", "2010-06-26"]

⇒ :nuno rdf:type :Employee ["2009-01-01", "2010-06-26"]

Extra rule to group annotations triples (∨):
:nuno :worksFor :DERI ["2008-05-01", "2010-01-01"]

:nuno :worksFor :DERI ["2009-01-01", "2010-06-26"]

⇒ :nuno :worksFor :DERI ["2008-05-01", "2010-06-26"]

11 / 14

Summary

Our Claim:

RDF needs agreement on representation and semantics for important
annotation domains e.g. time, provenance, trust

Representational Issues:

several options (reification, N-quads,TriG/X)
reification the only standards compliant thus far, sub-optimal

Semantics of annotations:

Our proposal: Annotated RDFS

allows arbitrary ordered annotation domains
give them a semantics on top of RDFS
live side-by-side with non-annotated RDF
SPARQL(1.1) compatibe...

TODO for us here?

At the least: Representation to add context to triples
Needs to be “upwards-compatible”
wish-list: tackle semantic vacuum on context for important domains (e.g.,
time, provenance, trust/fuzzy)

12 / 14

Annotated SPARQL:

Extend SPARQL to allow querying annotated RDF

“Annotation aware” SPARQL

“Where was Stefan between 14:30 and 15:00?”
SELECT ?Room WHERE {

?Tag :assignedTo :stefan ;

:locatedIn ?Room . ["14:30", "15:00"]

}

Evaluation based on an extension of the SPARQL relational
algebra to support annotations

13 / 14

Annotated SPARQL:

Extend SPARQL to allow querying annotated RDF

“Annotation aware” SPARQL

“Where was Stefan between 14:30 and 15:00?”
SELECT ?Room WHERE {

?Tag :assignedTo :stefan ;

:locatedIn ?Room . ["14:30", "15:00"]

}

Evaluation based on an extension of the SPARQL relational
algebra to support annotations

13 / 14

Annotated SPARQL:

Extend SPARQL to allow querying annotated RDF

“Annotation aware” SPARQL

“Where was Stefan between 14:30 and 15:00?”
SELECT ?Room WHERE {

?Tag :assignedTo :stefan ;

:locatedIn ?Room . ["14:30", "15:00"]

}

Evaluation based on an extension of the SPARQL relational
algebra to support annotations

13 / 14

Annotated SPARQL

“When were Stefan and Axel in the same room?”
SELECT ?Room ?TimeInterval WHERE {

?Tag1 :assignedTo :stefan ;

:locatedIn ?Room . ?TimeInterval

?Tag2 :assignedTo :axel ;

:locatedIn ?Room . ?TimeInterval

}

Answers:
(?Room, ?TimeInterval) = (:room311, {["09:13", "10:35"],

["11:23", "12:47"]})

(?Room, ?TimeInterval) = (:conferenceRoom, {["14:25", "14:57"]})

14 / 14

Annotated SPARQL

“When were Stefan and Axel in the same room?”
SELECT ?Room ?TimeInterval WHERE {

?Tag1 :assignedTo :stefan ;

:locatedIn ?Room . ?TimeInterval

?Tag2 :assignedTo :axel ;

:locatedIn ?Room . ?TimeInterval

}

Answers:
(?Room, ?TimeInterval) = (:room311, {["09:13", "10:35"],

["11:23", "12:47"]})

(?Room, ?TimeInterval) = (:conferenceRoom, {["14:25", "14:57"]})

14 / 14

