
Serving and Querying
Open Knowledge Graphs
on the Web - Part 2

KnowGraphs WinterSchool 2022

Axel Polleres

referring to joint work with: Javier Fernández, Amr Azzam,
Maribel Acosta, Martin Beno, Vadim Savenkov, Katja Hose,
Christian Aebeloe, Gabriela Montoya

Thanks to Javier and Amr for some of the slides!

JANUARY 2022

What I've planned for today:

§ Part 1:
§ Interlude
§ Practical Tutorial on querying Open KGs with SPARQL
§ Challenges/limitations of SPARQL over public endpoints

§ Part 2:
§ Serve and query KGs for local processing – HDT
§ Addressing the SPARQL endpoint bottleneck – where are we?

§ Linked Data Fragments
§ Smart-KG
§ Wise-KG

PAGE 2

• Highly compact serialization of RDF
• W3C member submission 2011: https://www.w3.org/Submission/HDT/
• Allows fast RDF retrieval in compressed space (without prior decompression)

• Includes internal indexes to solve basic queries with small memory footprint.
• Very fast on basic queries (triple patterns), x 1.5 faster than Virtuoso, Jena, RDF3X.
• Supports FULL SPARQL as the compressed backend store of Jena, with an efficiency on the

same scale as current more optimized solutions

• Challenges:
• Publisher has to pay a bit of overhead to convert the RDF dataset to HDT (but

then it is ready to consume efficiently!)
• Inefficient for live updates

HDT - a Linked Data hacker toolkit

▷Slightly more but you can query!

837 M.triples
122 GB

NT + gzip
9.6 GB

HDT
13 GB

PAGE 3

https://www.w3.org/Submission/HDT/

HDT (Header-Dictionary-Triples) Overview

RDF

Header

Dictionary

Triples

1 aa..
2 ab..
3 bu ..

�metadata describing the RDF dataset

�Mapping between IDs ��elements in the dataset
aa..

ab..
bu ..

32
1
�Structure of the data after the ID replacement

PAGE 4

$ hdtInfo wikidata20210305.hdt

<file://[latest-all.ttl.gz]> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://purl.org/HDT/hdt#Dataset> .
<file://[latest-all.ttl.gz]> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://rdfs.org/ns/void#Dataset> .
<file://[latest-all.ttl.gz]> <http://rdfs.org/ns/void#triples> "14578569927" .
<file://[latest-all.ttl.gz]> <http://rdfs.org/ns/void#properties> "38867" .
<file://[latest-all.ttl.gz]> <http://rdfs.org/ns/void#distinctSubjects> "1625057179" .
<file://[latest-all.ttl.gz]> <http://rdfs.org/ns/void#distinctObjects> "2538585808" .
<file://[latest-all.ttl.gz]> <http://purl.org/HDT/hdt#formatInformation> "_:format" .
:format <http://purl.org/HDT/hdt#dictionary> ":dictionary" .
:format <http://purl.org/HDT/hdt#triples> ":triples" .
<file://[latest-all.ttl.gz]> <http://purl.org/HDT/hdt#statisticalInformation> "_:statistics" .
<file://[latest-all.ttl.gz]> <http://purl.org/HDT/hdt#publicationInformation> "_:publicationInformation" .
_:publicationInformation <http://purl.org/dc/terms/issued> "2021-04-24T12:42Z" .
_:dictionary <http://purl.org/dc/terms/format> <http://purl.org/HDT/hdt#dictionaryFour> .
_:dictionary <http://purl.org/HDT/hdt#dictionarynumSharedSubjectObject> "1451915667" .
_:triples <http://purl.org/dc/terms/format> <http://purl.org/HDT/hdt#triplesBitmap> .
_:triples <http://purl.org/HDT/hdt#triplesnumTriples> "14578569927" .
_:triples <http://purl.org/HDT/hdt#triplesOrder> "SPO" .
_:statistics <http://purl.org/HDT/hdt#hdtSize> "159085366343" .

5

HDT – Header information:

PAGE 5

Dictionary+Triples partition

ex:Vienna foaf:name "Vienna"@en.
ex:Javier ex:workPlace ex:Vienna;

foaf:mbox "jfergar@example.org",
"jfergar@wu.ac.at";

rdf:type ex:Researcher .
ex:Paul ex:birthplace ex:Vienna.
ex:Stefan ex:birthplace ex:Vienna.

PAGE 6

Hint: imagine HDT for now
as "SPO-sorted Turtle"

7

Dictionary+Triples partition

ex:Vienna
ex:Javier>
ex:Paul>
ex:Researcher
ex:Stefan
ex:birthPlace
ex:workPlace
foaf:mbox
foaf:name
rdf:type
“jfergar@example.org”
“jfergar@wu.ac.at”
“Vienna”@en

1
2
3
4
5
6
7
8
9
10
11
12
13

2 1
7

12

13

9

4

10

8

5

6

3

6
11

8

PAGE 7

• Split by role

• Prefix-Based compression for each role
• Efficient ID+String operations

Dictionary (in practice)

ex:Vienna
ex:Javier
ex:Paul
ex:Researcher
ex:Stefan
ex:birthPlace
ex:workPlace
foaf:mbox
foaf:name
rdf:type
“jfergar@example.org”
“jfergar@wu.ac.at”
“Vienna”@en

1
2
3
4
5
6
7
8
9
10
11
12
13

PAGE 8

i.e.,dictionary is not
exactly "SPO-sorted"

but "SO-S-O-P"-
sorted

relies on sophisticated prefix-based compression
Each string is encoded with two values

• An integer representing the number of characters shared with the previous string
• A sequence of characters representing the suffix that is not shared with the previous string

Dictionary compression: Plain Front Coding (PFC)

A
An
Ant
Antivirus
Antivirus Software
Best

(0,a) (1,n) (2,t) (3,ivirus) (9, Software) (0,Best)

9

PAGE 9

subjects

Objects:

Predicates:

• Bitmap Triples, idea a bit similar to "sorted Turtle":

Bitmap Triples Encoding

We index the bitsequences to provide a SPO index

ex:Vienna foaf:name "Vienna"@en.
ex:Javier ex:workPlace ex:Vienna;

foaf:mbox "jfergar@example.org",
"jfergar@wu.ac.at";

rdf:type ex:Researcher .
ex:Paul ex:birthplace ex:Vienna.
ex:Stefan ex:birthplace ex:Vienna.

1 4 5.
2 2 1;

3 3,
4;

5 2.
3 1 1.
4 1 1.

PAGE 10

• Bitmap Triples:

Bitmap Triples Encoding

subjects

Objects:

Predicates:
S P O

S P ?

S ? O

S ? ?

? ? ?
E.g. retrieve (2,5,?)

Find the position of the first and second ‘1’-bits in Bp (select)
Binary search on the list of predicates Sp in this range, looking for 5
Note that such predicate 5 is in position 4 of Sp
Find the position of the fourth ‘1’-bit in Bo (select) à 5
i.e. retrieve 5th value of So à 2

PAGE 11

• From the exchanged HDT to the functional HDT-FoQ:
• Publish and Exchange HDT (i.e., Bp,Sp,Bo,So from last slide) and
• At the consumer:

On-the-fly indexes:
HDT-FoQ (Focus-on-Querying indexes)

Process Type of Index Patterns

index the bitsequences Subject
SPO

SPO, SP?,
S??, S?O, ???

index the position of each predicate
(just a position list)

Predicate
PSO ?P?, ?PO

index the position of each object Object
OPS ??O

1

2

3

Martínez-Prieto, M., M. Arias, and J. Fernández (2012). Exchange and Consumption of Huge RDF Data. In
Proc. of the 9th Extended Semantic Web Conference (ESWC), pp. 437-452.

separate index
file , created by
consumer client
(or published as
as well)

PAGE 12

rdfhdt.org community

PAGE 13

https://github.com/rdfhdt
C++ and Java tools

HDT-cpp

https://github.com/Callidon/pyHDT/(+python!)
PAGE 14

https://github.com/rdfhdt
https://github.com/Callidon/pyHDT/

• Data is ready to be consumed 10-15x faster than loading in an RDF triple store
• HDT << any other RDF format || RDF engine

• Competitive query performance.
• Very fast on triple patterns, x 1.5 faster (Virtuoso, RDF3x).

• Integration with Jena
• Joins on the same scale of existing solutions (Virtuoso, RDF3x).

Results

PAGE 15

$ls

wikidata20210305.hdt

wikidata20210305.hdt.index.v1-1

$ time hdtsparql.sh wikidata20210305.hdt "$(<large_classes.rq)"

C

http://www.wikidata.org/entity/Q846110

http://www.wikidata.org/entity/Q69529214

http://www.wikidata.org/entity/Q1195942

http://www.wikidata.org/entity/Q55488

http://www.wikidata.org/entity/Q18691601

http://www.wikidata.org/entity/Q372363

http://www.wikidata.org/entity/Q174782

http://www.wikidata.org/entity/Q513550

http://www.wikidata.org/entity/Q88865432

http://www.wikidata.org/entity/Q22652

Hands-on example: trying out the query that
timed out on https://w.wiki/4mTj

Took some ~10min on my
VM (92GB RAM)

PAGE 16

https://w.wiki/4mTj

Challenge 3: Scalability of SPARQL endpoints?
- It's often too expensive to host Open KGs

Challenge 3.1: serve
complex/long running
queries to single users

Challenge 3.2: serve
many queries to many
users concurrently

PAGE 17

Querying KGs with SPARQL "abstractly":
What happens if you have many clients?

KG = RDF Graph
○ A set of RDF triples (<Subject, Predicate, Object>)
○ can be interpreted as edge-labeled directed graph.

SPARQL
○ Standard query language for RDF (W3C recommendation).
○ Subgraph pattern matching

→ returns variable bindings (table)

PAGE 18

Server Solution: SPARQL Endpoint

Network:

SPARQL
Endpoint

Server:

C1

Client:

SELECT ?v1 ?v2 ?v3
WHERE { ?v1 owl:starring "Brad Pitt" .

?v1 rdfs:label ?v2;
?v1 dbo:director ?v3. }

"Query Shipping"
Page 19

Server Solution: SPARQL Endpoint

Network:

SPARQL
Endpoint

Server:Client:

"Query Shipping"
fails under concurrency

C1

C4

C7

C3

C6

C2

C5

C8

Page 20

Network:

SPARQL
Endpoint

Server:Client:

might add prohibitive load on the network

C1

C4

C7

C3

C6

C2

C5

C8

Alternative Client Solution: Data Dump

Data Shipping
Page 21

Network:

SPARQL
Endpoint

Server:Client:

might add prohibitive load on the network

C1

C4

C7

C3

C6

C2

C5

C8

Alternative Client Solution: Data Dump

Data Shipping – using HDT

HDTHDTHDTHDT

Page 22

Variants in between:
What are the current mitigations to the availability
problem of the open RDF KGs?

Linked Data Fragment Framework(LDF)
Proposed to design new mixes of trade-offs.

SPARQL
Endpoint

Data
Dump

High Availability
High Client cost
Low Server Cost

Low Availability
Low Client Cost
High Server Cost

High Availability
Low Client Cost
High Server Cost

Triple Pattern Fragment
(TPF)

ISWC 2014

Hybrid Shipping
Page 23

Idea:
• Execute triple patterns on the server
• Let the clients do JOINs etc. by themselves.
à less footprint on the server, only triple patterns and intermediate results

communicated.
à can still have significant overhead by large intermediate results

Triple Pattern Fragments :

HDT

C1
?film ?act

… …

… …

… …

… …

R. Verborgh, M. V. Sande, O. Hartig, J. Van Herwegen, L. De Vocht, B. De Meester,
G. Haesendonck, and P. Colpaert. 2016. Triple Pattern Fragments: A low-cost
knowledge graph interface for the Web. J. Web Semant. 37-38 (2016), 184–206.

Idea:
• ship intermediate bindings with TP and let server only return results matching

results
• à smaller intermediate results, "join work" distributed between client and

server

Binding-restricted
Triple Pattern Fragments :

HDT

C1
?film ?act

… …

O. Hartig and C. B. Aranda. 2016. Bindings-Restricted Triple Pattern Fragments.
In ODBASE 2016. 762–779

?film

…

…

…

…

Page 25

Variants in between:
What are the current mitigations to the availability
problem of the open RDF KGs?

Linked Data Fragment Framework(LDF)
Proposed to design new mixes of trade-offs.

SPARQL
Endpoint

Data
Dump

High Availability
High Client cost
Low Server Cost

Low Availability
Low Client Cost
High Server Cost

High Availability
Low Client Cost
High Server Cost

Triple Pattern Fragment
(TPF)

ISWC 2014

Mod. Availability
Low Client Cost
High Server Cost

SaGe
WebConf 2019

Hybrid Shipping
Page 26

Idea: keep working on the server, but improve fair allocation of resources,
i.e. interrupt resource-intensive queries …

• BGP, UNION, FILTER are executed fully at the server as "interuptable iterators"
• … can be stopped and sent back to clients with results "so far"
• … while giving clients the possibility to resume them later on
• server suspends running query after a fixed quantum of time and resume the

next waiting query

• more complex operations are done on the client (e.g. OPTIONAL, SERVICE, ORDER
BY, GROUP BY, DISTINCT, MINUS, FILTER EXIST and aggregations)

Slightly different approach: SaGe

Page 27

Variants in between:
What are the current mitigations to the availability
problem of the open RDF KGs?

Linked Data Fragment Framework(LDF)
Proposed to design new mixes of trade-offs.

SPARQL
Endpoint

Data
Dump

High Availability
High Client cost
Low Server Cost

Low Availability
Low Client Cost
High Server Cost

High Availability
Low Client Cost
High Server Cost

Triple Pattern Fragment
(TPF)

ISWC 2014

Mod. Availability
Low Client Cost
High Server Cost

SaGe
WebConf 2019

"Partition" Shipping

smart-KG
WebConf 2020

Page 28

KG Partitions (separate HDTs)

Smart-KG

Network:

Smart-KG Server
(TPF + Partitions Server)

Server:

RDF Graph G

C1

Client:

Idea:
• Partition graph by "predicate families", i.e. characteristic sets,
• create 1 HDT per family
• Combine TPF with partition shipping

Page 29

Partition Generator (PG): Upon loading a graph G, decompose it into
partitions G1,...,Gm, one per "predicate family".

smart-KG server: Family Generator

Emma

“Oxford University”

“Emma Watson”

name

almaMater

birthPlace
Brad

na
m
e

"BradPit
t"

“Los Angeles”birth
Pla
ce

Angelina

“Angelina Jolie

na
m

e

spouse
almaMater

“University of Missouri”
“Brad Pitt”

spouse
“Paris”

worksIn

"Oklahoma
"

F1: {name, birthPlace, almaMater, spouse}

F2: {name, spouse,worksIn}

worksIn

F3: {name, birthPlace,almaMater, worksIn}Page 30

Partition Generator (PG): Upon loading a graph G, decompose it into
partitions G1,...,Gm, one per "predicate family"… and convert these to HDTs.

smart-KG server: Family Generator

Family1.hdt Family2.hdt Family3.hdt

Oklahoma

birth
Place

Brad

na
m

e

"Brad Pitt"

spouse
almaMater

University
of Missouri

Angelina
Los

Angeles

birthPlacena
m

e

Brad

Angelina

"Angelina Jolie"

spouse

Paris
birthPlace

Los
Angeles

W
orksIn

Emma

Oxford
University

"Emma Watson”

name

almaMater

Page 31

Simplified client Query processing:
1. Client decomposes BGPs into "stars"
2. retrieves relevant information from server to make a query plan
3. retrieves and joins matching partitions one by one

(use TPF for 1-triple patterns)

Smart-KG:

KG Partitions (separate HDTs)

C1

F?:{starring, name}

F?:{wikiPageExtLink, birthPlace, gender}

TPF

Page 32

Smart-KG:

Further details, cf. our paper:
• predicate-restricted families, i.e. pruning

• too rare or
• too common

predicates for partitioning.
Example: for DBpedia, a naive partitioning would create +600k partially very large families, which are
unfeasible to serve.

• partition caching

Page 33

server, 384 GB RAM
up to 80 clients, 32 RAM
1 GBit/s network (limited to 20Mbit/s per client
• WatDiv up to 1B triples, up to 10joins
• DBpedia, 12 random BPGs from LSQ

Experiments:

Page 34

Increasing Number of Clients

Overall Query Performance

100M Watdiv
Page 35

Increasing KG size

Overall Query Performance

Server Network & CPU & RAM

Resources Consumption

Page 37

WiseKG (WebConf 2021)

Next Step/Extension:
• execute star-patterns directly on the server (resources

allowed)

• … using an extension of TPF called SPF…
or on the client using SmartKG…

• … based on comparing COST models for client and
server execution, taking into account current server
load:

Challenge 3: Scalability of SPARQL endpoints?
- It's often too expensive to host Open KGs

Challenge 3.1: serve
complex/long running
queries to single users

Challenge 3.2: serve
many queries to many
users concurrently

Summary: HDT helps J
more ideas for improvements, e.g.:
- peer-to-peer?
- optimize partitioning (based onquery logs?)

PAGE 39

I owe you a full list of references, will be added shortly! J

TODO:

Page 40

