KnowGraphs WinterSchool 2022 Serving and Querying Open Knowledge Graphs on the Web - Part 2

WIRTSCHAFTS UNIVERSITÄT WIEN VIENNA UNIVERSITY OF ECONOMICS AND BUSINESS

Axel Polleres

referring to joint work with: Javier Fernández, Amr Azzam, Maribel Acosta, Martin Beno, Vadim Savenkov, Katja Hose, Christian Aebeloe, Gabriela Montoya

Thanks to Javier and Amr for some of the slides!

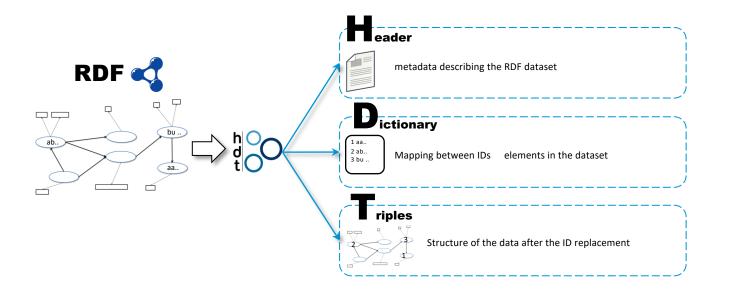
What I've planned for today:

• Part 1:

- Interlude
- Practical Tutorial on querying Open KGs with SPARQL
- Challenges/limitations of SPARQL over public endpoints
- Part 2:
 - Serve and query KGs for local processing HDT
 - Addressing the SPARQL endpoint bottleneck where are we?
 - Linked Data Fragments
 - Smart-KG
 - Wise-KG

HDT - a Linked Data hacker toolkit

- Highly compact serialization of RDF
- W3C member submission 2011: <u>https://www.w3.org/Submission/HDT/</u>
- Allows fast RDF retrieval in compressed space (without prior decompression)
 - Includes internal indexes to solve basic queries with small memory footprint.
 - Very fast on basic queries (triple patterns), x 1.5 faster than Virtuoso, Jena, RDF3X.
 - Supports FULL SPARQL as the compressed backend store of **Jena**, with an efficiency on the same scale as current more optimized solutions

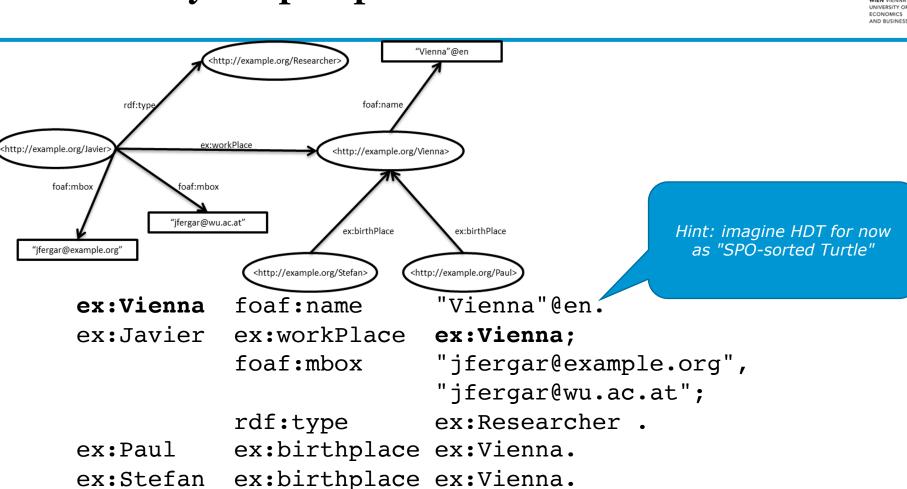


▷Slightly more but you can query!

- Challenges:
 - Publisher has to pay a bit of overhead to convert the RDF dataset to HDT (but then it is ready to consume efficiently!)
 - Inefficient for live updates

HDT (Header-Dictionary-Triples) Overview

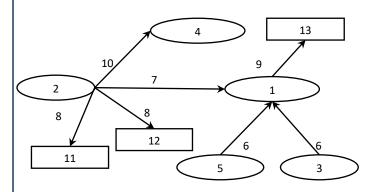
WIRTSCHAFTS UNIVERSITÄT WIEN VIENNA UNIVERSITY OF ECONOMICS AND BUSINESS


HDT – Header information:

\$ hdtInfo wikidata20210305.hdt

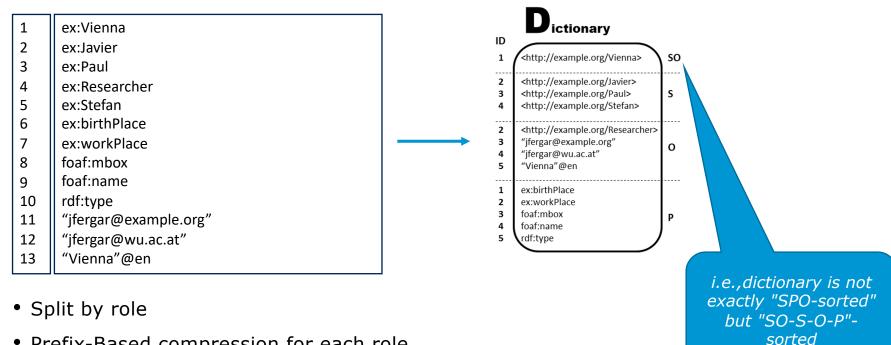
<file://[latest-all.ttl.qz]> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://purl.org/HDT/hdt#Dataset> . <file://[latest-all.ttl.gz]> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://rdfs.org/ns/void#Dataset> . <file://[latest-all.ttl.gz]> <http://rdfs.org/ns/void#triples> "14578569927" . <file://[latest-all.ttl.gz]> <http://rdfs.org/ns/void#properties> "38867" . <file://[latest-all.ttl.gz]> <http://rdfs.org/ns/void#distinctSubjects> "1625057179" . <file://[latest-all.ttl.gz]> <http://rdfs.org/ns/void#distinctObjects> "2538585808" . <file://[latest-all.ttl.gz]> <http://purl.org/HDT/hdt#formatInformation> " :format" . :format <http://purl.org/HDT/hdt#dictionary> " :dictionary" . :format <http://purl.org/HDT/hdt#triples> " :triples" . <file://[latest-all.ttl.gz]> <http://purl.org/HDT/hdt#statisticalInformation> " :statistics" . <file://[latest-all.ttl.gz]> <http://purl.org/HDT/hdt#publicationInformation> ":publicationInformation" . :publicationInformation <http://purl.org/dc/terms/issued> "2021-04-24T12:42Z" _:dictionary <http://purl.org/dc/terms/format> <http://purl.org/HDT/hdt#dictionaryFour> . -:dictionary <http://purl.org/HDT/hdt#dictionarynumSharedSubjectObject> "1451915667" . -:triples <http://purl.org/dc/terms/format> <http://purl.org/HDT/hdt#triplesBitmap> . :triples <http://purl.org/HDT/hdt#triplesOrder> "SPO" . :statistics <http://purl.org/HDT/hdt#hdtSize> "159085366343" .

Dictionary+Triples partition



Dictionary+Triples partition

1	ex:Vienna
2	ex:Javier>
3	ex:Paul>
4	ex:Researcher
5	ex:Stefan
6	ex:birthPlace
7	ex:workPlace
8	foaf:mbox
9	foaf:name
10	rdf:type
11	"jfergar@example.org"
12	"jfergar@wu.ac.at"
13	"Vienna"@en

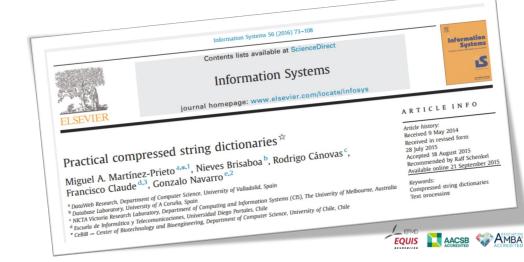


7

Dictionary (in practice)

- Prefix-Based compression for each role
 - Efficient ID+String operations

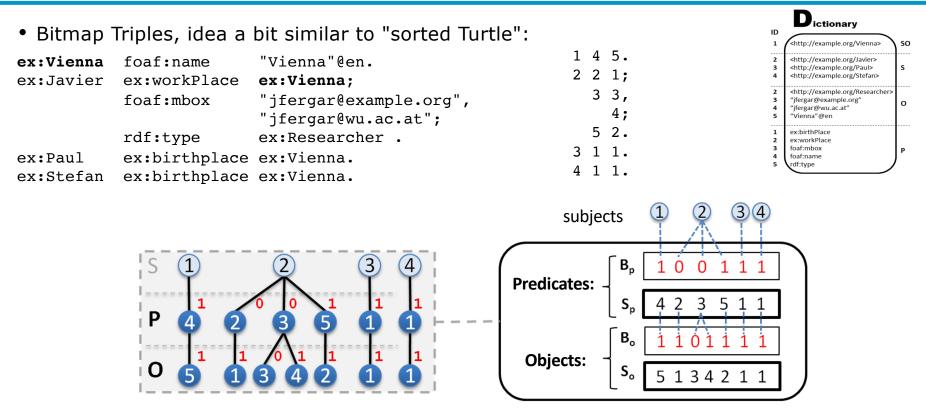
Dictionary compression: Plain Front Coding (PFC)


relies on sophisticated prefix-based compression

Each string is encoded with two values

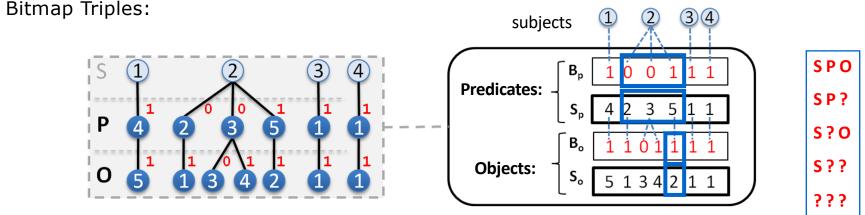
- An integer representing the number of characters shared with the previous string
- A sequence of characters representing the suffix that is not shared with the previous string

A An Ant Antivirus Antivirus Software Best


→ (0,a) (1,n) (2,t) (3,ivirus) (9, Software) (0,Best)

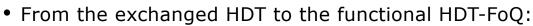
WIEN VIENNA UNIVERSITY OF ECONOMICS AND BUSINESS

Bitmap Triples Encoding



We index the bitsequences to provide a SPO index

Bitmap Triples Encoding


E.g. retrieve (**2**,**5**,?)

Find the position of the first and **second** '1'-bits in B_p (select) Binary search on the list of predicates S_p in this range, looking for 5 Note that such predicate 5 is in position 4 of S_p Find the position of the **fourth** '1'-bit in B_o (select) \rightarrow 5 i.e. retrieve 5th value of S_o \rightarrow 2

•

On-the-fly indexes: HDT-FoQ (Focus-on-Querying indexes)

- Publish and Exchange HDT (i.e., B_p, S_p, B_o, S_o from last slide) and
- At the consumer:

	Process	Type of Index	Patterns	
1	index the bitsequences	Subject SPO	SPO, SP?, S??, S?O, ???	
2	index the position of each predicate (just a position list)	Predicate PSO	?P?, ?PO	se fi
3	index the position of each object	Object OPS	??0	ci (c a:

separate index file , created by consumer client (or published as as well)

ECONOMICS AND BUSINES

Martínez-Prieto, M., M. Arias, and J. Fernández (2012). Exchange and Consumption of Huge RDF Data. In Proc. of the 9th Extended Semantic Web Conference (ESWC), pp. 437-452.

PAGE 12

rdfhdt.org community

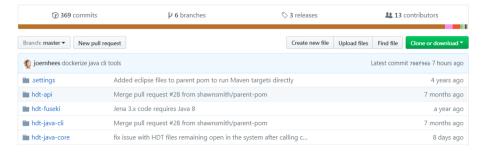
HOME WHAT IS HDT DOWNLOADS DATASETS DEVELOPMENT HDT TECH DOC - HDT-MAPREDUCE PUBLICATIONS TEAM

Datasets

We provide some of the most useful/popular datasets from the LOD cloud in HDT for you to use them easily. If the dataset you need is not available here, you can create your own or kindly ask the data provider to publish their datasets in HDT format for all the community to enjoy.

We are serving here more than 15 Billion triples in HDT files. You can find more than 38 Billion triples in LOD-a-lot, the HDT dataset that collects all triples from LOD Laundromat, a project serving a crawl of a very big subset of the Linked Open Data Cloud.

Dataset	Size	Triples	Details	Provenance
Latest Wikidata (3rd march 2021) NEW	53GB (149GB uncompressed)	14.6B Triples	The additional ".index" HDT file (required to speed up all queries) is also available for download (64GB compressed, 97GB uncompressed). This dataset corresponds to the 3rd march 2021 wikidata dump. You should first unzip the HDT dataset and the additional index to make use of them.	Wikidata dumps. (Special thanks to Axel Polleres and the Institute for Data, Process and Knowledge Management at WU Vienna for their infrastructure)
Latest Wikidata (9th march 2020)	50GB (119GB uncompressed)	12B Triples	The additional ".index" HDT file (required to speed up all queries) is also available for download (55GB compressed, 77GB uncompressed). This dataset corresponds to the 2020-03-09 wikidata dump. You should first unity the HDT dataset and the additional index to make use of them .	Wikidata dumps.
DBPedia 2016-10 English	34GB	1.8B Triples	The additional ".index" HDT file (required to speed up all queries) is also available for download (19GB). This dataset corresponds to the DBpedia 2016-10 release, disregarding NIF data.	Official DBpedia 2016-10 release


WIRTSCHAFTS UNIVERSITÄT WIEN VIENNA UNIVERSITY OF ECONOMICS AND BUSINESS

https://github.com/rdfhdt C++ and Java tools

🕞 586 comm	its 🖗 11 branches	🗞 2 releases	1	15 contributors		
Branch: master 🔻 New	pull request	Create new file	Upload files Find	file Clone or download 7		
🙋 joernhees updated d	ocker support & inlined		Latest co	ommit 9c807af 12 hours ago		
hdt-it	Reduce string copying overhead			3 months ago		
hdt-lib	Update README			8 days ago		
libcds-v1.0.12	Compile on Windows 10 / VS2015. Have to	install Windows 10 SDK and li		7 months ago		
.gitignore	Compile on Windows 10 / VS2015. Have to	install Windows 10 SDK and li		7 months ago		
🖹 .travis.yml	Fix Travis build			3 months ago		
Dockerfile	updated docker support & inlined			12 hours ago		
README.md	add gitter chat			a month ago		
maccompile.sh	Make sure it compiles in Mac.			7 months ago		

(+python!) https://github.com/Callidon/pyHDT/

- Data is ready to be consumed 10-15x faster than loading in an RDF triple store
 - HDT << any other RDF format || RDF engine
- Competitive query performance.
 - Very fast on triple patterns, x 1.5 faster (Virtuoso, RDF3x).
- Integration with Jena
 - Joins on the same scale of existing solutions (Virtuoso, RDF3x).

Hands-on example: trying out the query that timed out on <u>https://w.wiki/4mTj</u>

\$ls

wikidata20210305.hdt

wikidata20210305.hdt.index.v1-1

\$ time hdtsparql.sh wikidata20210305.hdt "\$(<large_classes.rq)"</pre>

С

http://www.wikidata.org/entity/Q846110 http://www.wikidata.org/entity/Q69529214 http://www.wikidata.org/entity/Q1195942 http://www.wikidata.org/entity/Q55488 http://www.wikidata.org/entity/Q18691601 http://www.wikidata.org/entity/Q372363 http://www.wikidata.org/entity/Q174782 http://www.wikidata.org/entity/Q513550 http://www.wikidata.org/entity/Q88865432 http://www.wikidata.org/entity/Q22652

Took some ~10min on my VM (92GB RAM)

ECONOMICS AND BUSINES

Challenge 3: Scalability of SPARQL endpoints? - It's often too expensive to host Open KGs

Wikidata Query Service	Examples Query Builder	🛛 Help 👻	More tools -		
<pre>1 # Give me 10 classes that 2 SELECT ?C WHERE { 3 ?S wdt:P31 ?C 4 } GROUP BY ?C 4 . GROUP BY ?C 4 . GROUP BY ?C 4 . GROUP C 5 HAVING (COUNT(?S) > 1000) 6 LIMIT 10 7 5 HAVING (COUNT(?S) > 1000) 6 LIMIT 10 7</pre>	have more than 1000 instance	es:			
Challenge 3.1: serve complex/long runnin ueries to single use	g		Query tir Mai	allenge 3. ny queries ers concu	s to many

WIEN VIENNA UNIVERSITY OF ECONOMICS AND BUSINES

PAGE 17

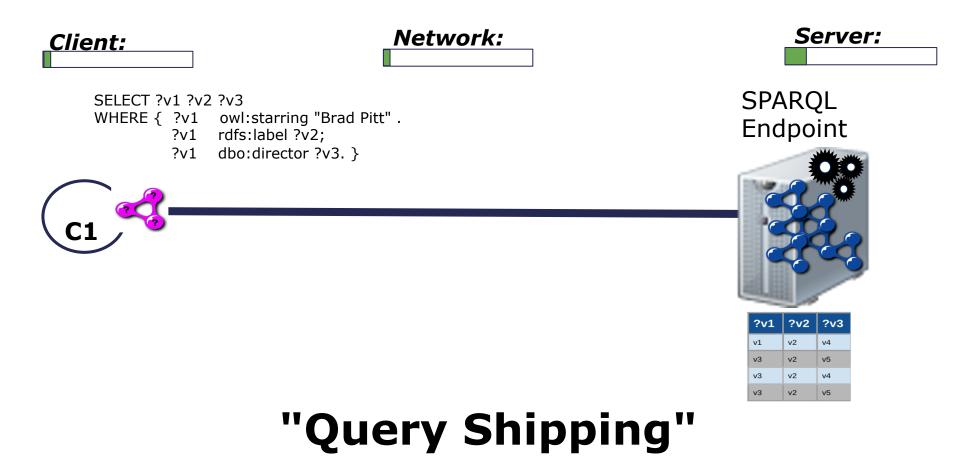
Querying KGs with SPARQL "abstractly": What happens if you have many clients?

KG = RDF Graph

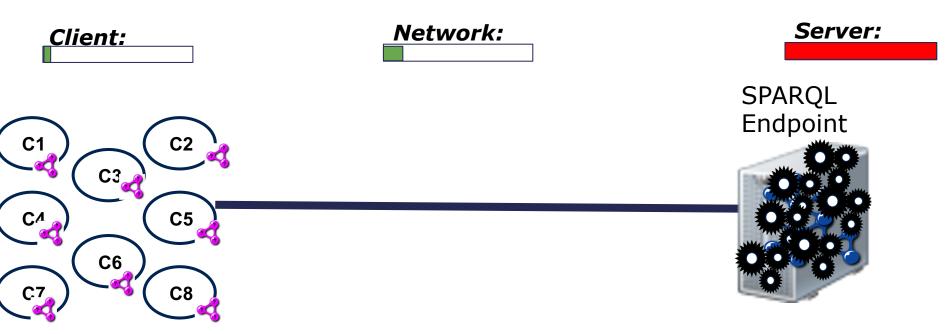
- A set of RDF triples (<Subject, Predicate, Object>)
- can be interpreted as edge-labeled directed graph.

SPARQL

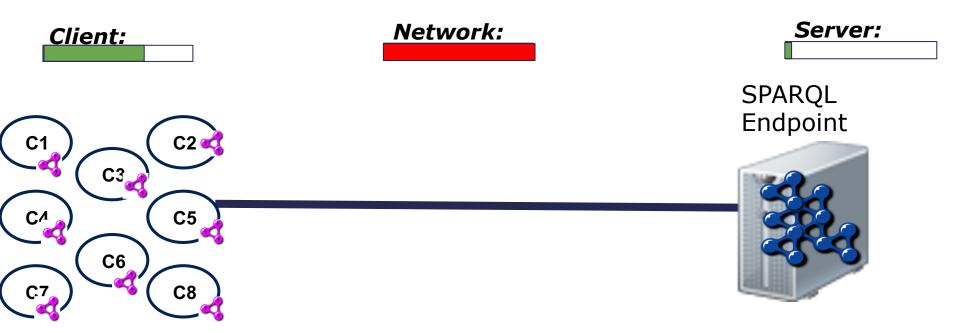
- Standard query language for RDF (W3C recommendation).
- Subgraph *pattern* matching


\rightarrow returns variable bindings (table)

?v1	?v2	?v3
v1	v2	v4
v3	v2	v5
v3	v2	v4
v3	v2	v5

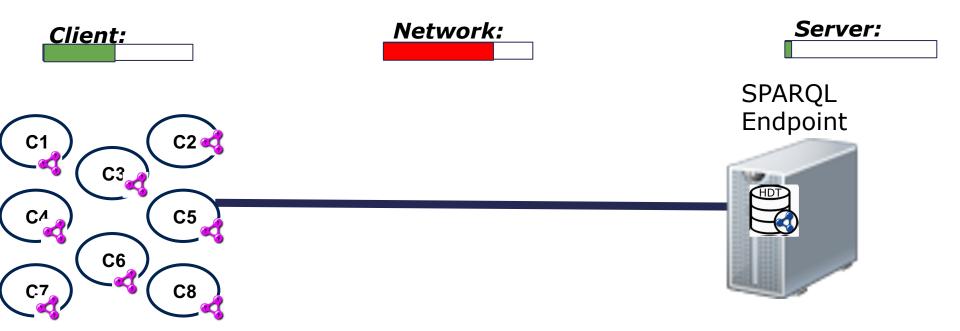


Server Solution: SPARQL Endpoint


Server Solution: SPARQL Endpoint

"Query Shipping" fails under concurrency

Alternative Client Solution: Data Dump



Data Shipping

might add prohibitive load on the network

Alternative Client Solution: Data Dump

Data Shipping – using HDT

might add prohibitive load on the network

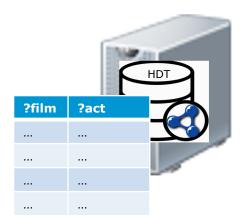
Variants in between: What are the current mitigations to the availability problem of the open RDF KGs?

Linked Data Fragment Framework(LDF)

CONOMICS

Proposed to design new mixes of trade-offs.

High Availability Low Availability High Availability Low Client Cost Low Client Cost High Client cost **High Server Cost** High Server Cost Low Server Cost **Triple Pattern Fragment** SPARQL Data (TPF) Endpoint Dump **ISWC 2014** Hybrid Shipping


Triple Pattern Fragments :

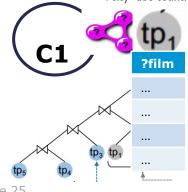
Idea:

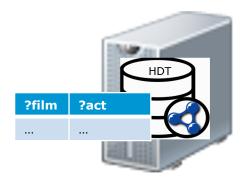
- Execute triple patterns on the server
- Let the clients do JOINs etc. by themselves.
- Iess footprint on the server, only triple patterns and intermediate results communicated.
- \rightarrow can still have significant overhead by large intermediate results

SELECT * WHERE {

?film dbo: starring ?actress .	#	tp1
?film_foaf : name ?filmName .	#	tp2
?actress dbo:wikiPageExternalLink ?link	. #	tp3
?actress dbo:birthPlace ?city .	#	tp4
?actress foaf:gender "female"@en.	#	tp5
<pre>?city dbo:country ?country . } #</pre>	tpe	j.

Binding-restricted Triple Pattern Fragments :

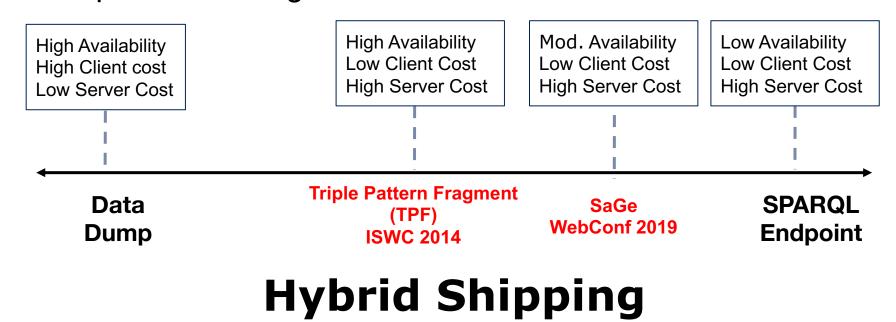



Idea:

- ship intermediate bindings with TP and let server only return results matching results
- → smaller intermediate results, "join work" distributed between client and server

SELECT * WHERE {

?film dbo: starring ?actress .	#	tp1
?film_foaf : name ?filmName .	#	tp2
?actress dbo:wikiPageExternalLink ?link .	#	tp3
?actress dbo:birthPlace ?city .	#	tp4
?actress foaf:gender "female"@en.	#	tp5
<pre>?city dbo:country ?country . } #</pre>	tp6	,



O. Hartig and C. B. Aranda. 2016. Bindings-Restricted Triple Pattern Fragments. In ODBASE 2016. 762–779 Variants in between: What are the current mitigations to the availability problem of the open RDF KGs?

Linked Data Fragment Framework(LDF) Proposed to design new mixes of trade-offs.

Slightly different approach: SaGe

Idea: keep working on the server, but improve fair allocation of resources, i.e. interrupt resource-intensive queries ...

- BGP, UNION, FILTER are executed fully at the server as "interuptable iterators"
 - ... can be stopped and sent back to clients with results "so far"
 - ... while giving clients the possibility to resume them later on
 - server suspends running query after a fixed quantum of time and resume the next waiting query
- more complex operations are done on the client (e.g. OPTIONAL, SERVICE, ORDER BY, GROUP BY, DISTINCT, MINUS, FILTER EXIST and aggregations)

SAGE: Web Preemption for Public SPARQL Query Services

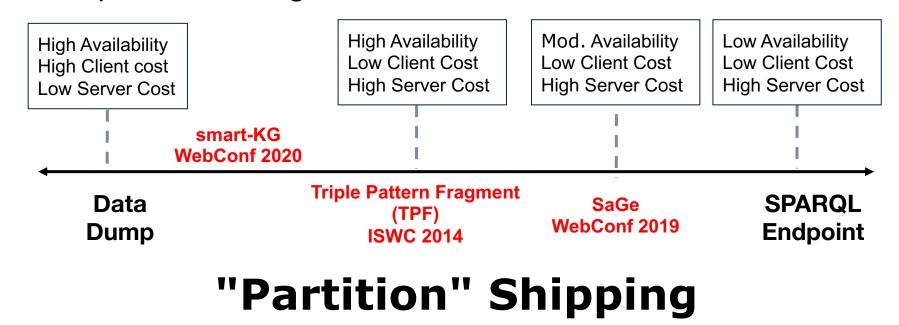
Thomas Minier LS2N, University of Nantes Nantes, France thomas.minier@univ-nantes.fr Hala Skaf-Molli LS2N, University of Nantes Nantes, France hala.skaf@univ-nantes.fr

ABSTRACT

To provide stable and responsive public SPARQL query services, data providers enforce quotas on server usage. Queries which exceed these quotas are interrupted and deliver partial results. Such interruption is not an issue if it is possible to resume queries execution afterward. Unfortunately, there is no preemption model for the Web that allows for suspending and resuming SPARQL queries. In this paper, we propose SAGE: a SPARQL query engine based on Web preemption. SAGE allows SPARQL queries to be suspended by the Web server after a fixed time quantum and resumed upon client request. Web preemption is tractable only if its cost in time is negligible compared to the time quantum. The challenge is no full compared to the time quantum. The challenge is no per second per IP address. Quotas aim to share fairly server resources among Web clients. Quotas on communications limit the arrival rate of queries per IP. Quotas on space prevent one query to consume all the memory of the server. Quotas on time aim to avoid the convoy phenomenon [6], i.e., a long-running query will slow down a short-running one, in analogy with a truck on a single-lane road that creates a convoy of cars. The main drawback of quotas is that interrupted queries can only deliver partial results, as they cannot be resumed. This is a serious limitation for Linked Data consumers,

Pascal Molli

LS2N, University of Nantes

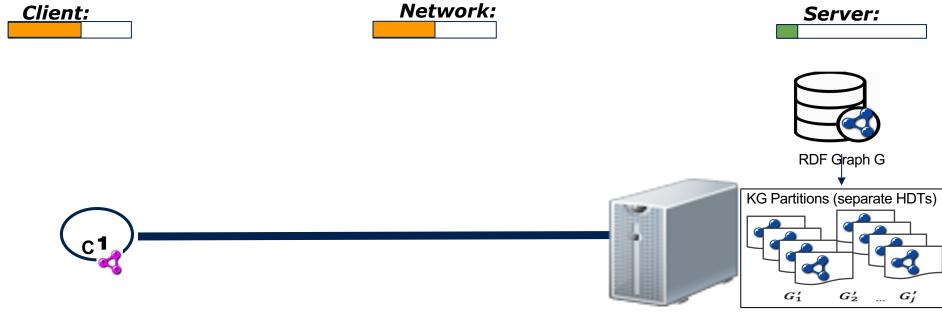

Nantes, France

pascal.molli@univ-nantes.fr

that want to execute long-running queries [22]. **Related works:** Existing approaches address this issue by decomposing SPARQL queries into subqueries that can be executed under the quotas and produce complete results [4]. Finding such Variants in between: What are the current mitigations to the availability problem of the open RDF KGs?

CONOMICS

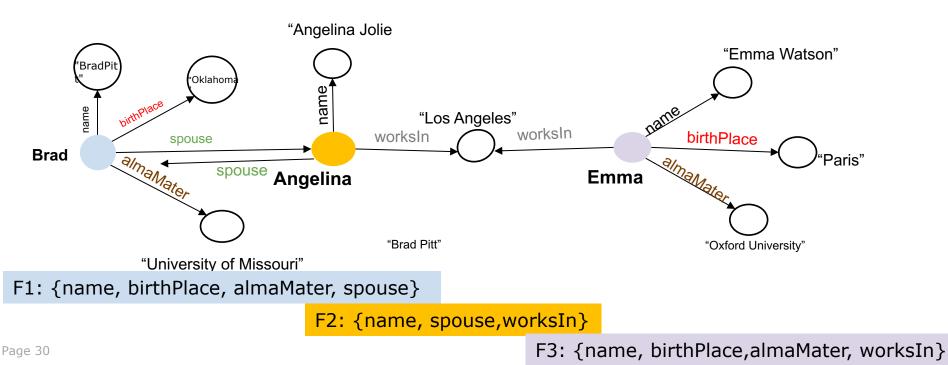
Linked Data Fragment Framework(LDF) Proposed to design new mixes of trade-offs.

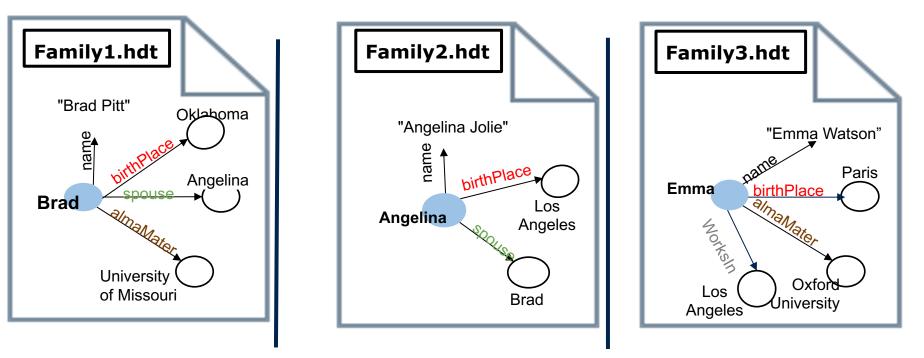


Smart-KG Server (TPF + Partitions Server)

Smart-KG

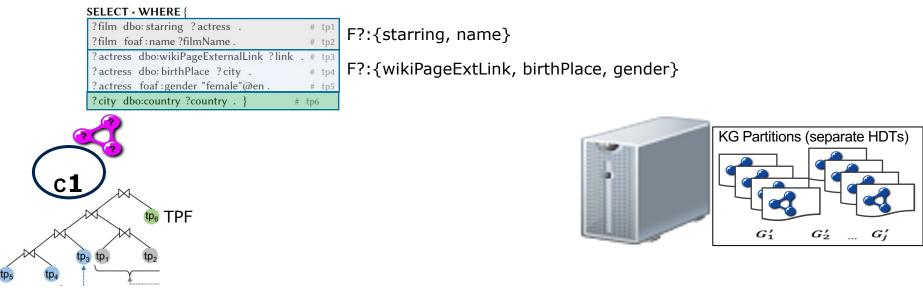
Idea:


- Partition graph by "predicate families", i.e. characteristic sets,
- create 1 HDT per family
- Combine TPF with partition shipping



Partition Generator (PG): Upon loading a graph G, decompose it into partitions G1,...,Gm, one per "predicate family".

Partition Generator (PG): Upon loading a graph G, decompose it into partitions G1,...,Gm, one per "predicate family"... and convert these to HDTs.


Smart-KG:

Simplified client Query processing:

- 1. Client decomposes BGPs into "stars"
- 2. retrieves relevant information from server to make a query plan
- 3. retrieves and joins matching partitions one by one

(use TPF for 1-triple patterns)

Smart-KG:

Further details, cf. our paper:

- predicate-restricted families, i.e. pruning
 - too rare or
 - too common

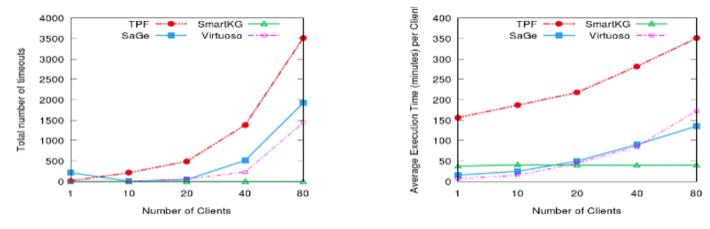
predicates for partitioning.

Example: for DBpedia, a naive partitioning would create +600k partially very large families, which are unfeasible to serve.

• partition caching

SMART-KG: Hybrid Shipping for SPARQL Querying on the Web Amr Azzam Vienna University of Economics and Business Austria Austria Business Austria Business Austria Business Austria Business Austria Business Austria Business Austria Business Austria Business Austria Business Austria Business Austria Business Austria Business Austria Business Austria Business Austria Business Austria Business Austria Business Austria Business Austria Business Business Austria Business Austria Business Austria Business Business Austria Business Business Austria Business Busines	SPARQL Query Query Results SMART-KG Client Cache Module Query Parser	SMART-KG Server Storage Module Server Operators
amr.azzam@wu.ac.at Axel Polleres Martin Beno Vienna University of Economics and Jusiness Austria martin.beno@wu.ac.at axel.polleres@wu.ac.at the integration of diverse datasets in fields such as neurosciences, accer research and drug discovery [29]. accer research and drug discovery [29].	Client Result Guery Decomposer Query Planner & Optimizer Query Executor Grin Grin Grin Grin Cont	Guest KG Partitions KG Partitions Family Generator Family Pruning Family Crouping
ABSTRACT While Linked Data (LD) provides standards for publishing (RDF) and (RDARQL) querying Knowledge Graphs (KGs) on the Web- and GRARQL) querying Knowledge Graphs (KGs) on the Web- serving, accessing and processing such open, decentralized KGs often practically impossible, as query timeouts on publicly available SPARQL endpoints show. Alternative solutions such as Triple Pat- SPARQL endpoints show. Alternative solutions such as Triple Pat- SPARQL endpoints show. Alternative solutions such as Triple Pat- tern Fragments (TPF) attempt to tackle the problem of availability by publing query mocessing workload to the client side, but suffer		

Experiments:

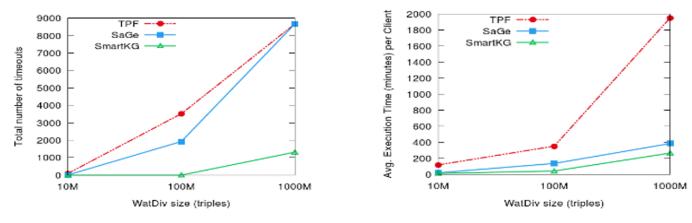

server, 384 GB RAM up to 80 clients, 32 RAM

- 1 GBit/s network (limited to 20Mbit/s per client
- WatDiv up to 1B triples, up to 10joins
- DBpedia, 12 random BPGs from LSQ

Overall Query Performance

Increasing Number of Clients

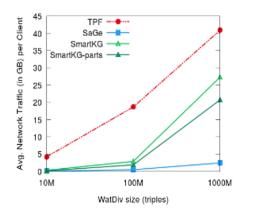
(a) Number of timeouts

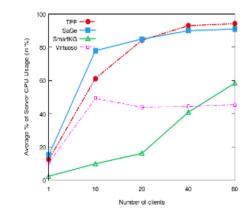

(b) Average execution time

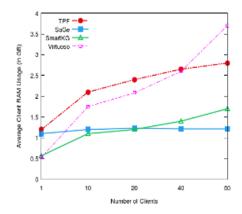
100M Watdiv

Overall Query Performance

Increasing KG size


(a) Number of Timeouts


(b) Average Workload Execution Time



Resources Consumption

Server Network & CPU & RAM

(a) Network traffic per client (in GB) on the intensive workload at increasing KG sizes

(b) Avg. Server CPU Usage (in %) at increasing number of clients (WatDiv-100M) (c) Avg. Server RAM Usage (in GB) at increasing number of clients (WatDiv-100M)

Next Step/Extension:

WiseKG (WebConf 2021)

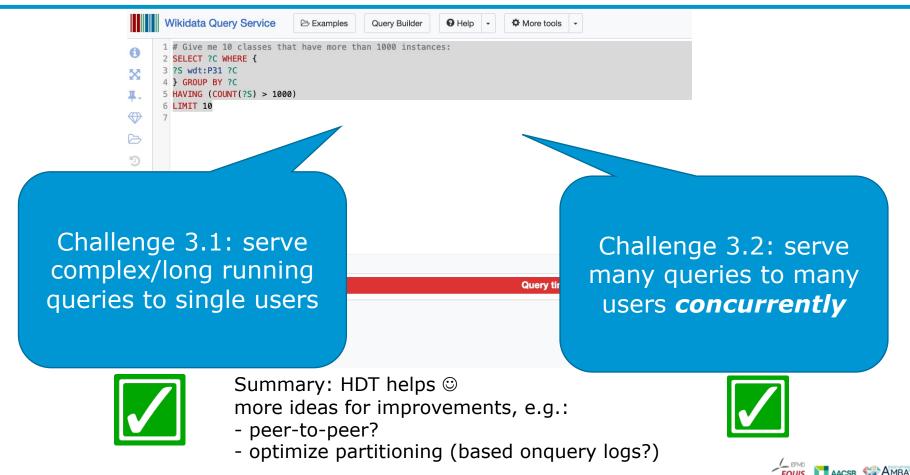


Figure 3: Execution time (in seconds) for 28 diverse queries over the dbpedia dataset.

- execute star-patterns directly on the server (resources allowed)
 - ... using an extension of TPF called SPF... or on the client using SmartKG...
 - ... based on comparing COST models for client and server execution, taking into account current server load:

Challenge 3: Scalability of SPARQL endpoints? - It's often too expensive to host Open KGs

WIEN VIENNA UNIVERSITY O ECONOMICS AND BUSINES

I owe you a full list of references, will be added shortly! ©