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(vs. Graph Learning and LLMs?)

Recap of some past work and how it could connect to the present
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&, Background: Collaborative KGs
v, Efficient KG Archiving and Querying with HDT [1]
x. Applications:
¢ Making SPARQL endpoints more efficient [2,3]
% Making Message-Passing-based Graph processing more
efficient [4]

0. Open Questions ... many ©
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Motivation cconoucs

In our group we have done a lot of work on

* querying,
- analysing, and

* improving the quality
of Collaborative KGs at scale
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Collaborative, Open Knowledge Graphs:

DBpedia
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w-[%-dia http:

wikipedia.or|

DBpedia generates a graph from links and facts in Wikipedia's Infoboxes:
http://dbpedia.org/resource/Zaha Hadid
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Parent(s)

Practice

Website

Nationality Irag, United Kingdom
Alma mater American University of Beirut

Occupation Architect

Buildings Vitra Fire Station, MAXXI, Bridge

Zaha Mohammad Hadid
31 October 1850
Baghdad, Kingdom of Irag
31 March 2016 (aged 65)
Miami, Florida, U.S.

Architectural Association School
of Architecture

Mohammed Hadid
Wajeeha Saboniji

Zaha Hadid Architects

Pavilion, Contemporary Arts
Center, Heydar Aliyev Center,
Riverside Museum

www.zaha-hadid.com &

2016-03-31

deathDate

birthDate

1950-10-31

RDF+OWL:

Data +
“Ontology” (i.e.
class and property

hierarchy) both
encoded in a directed

labeled graph:
zaha_hadid € Architect
Architect C Person

country
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Collaborative, Open Knowledge Graphs:

Wikidata

Argentine association football player

WIKIDATA

image

occupation

#I705E er ID (archived)

country of citizenship

qeD

aer

a6

aer

association football player

+ 2 references

229397

» 1 reference

Argentina

start time

- 0 references

Spain

start time

» 1 reference

1987

2005
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Revision history of "Lionel Messi" (Q615)

View logs for this item (view abuse log)
v Filter revisions

Diff selection: Mark the radio buttons of the revisions to compare and hit enter or the button at the botto
Legend: (cur) = difference with latest revision, (prev) = difference with preceding revision, m = minor e«

(latest | earliest) View (newer 50 | older 50) (20 1 50 | 100 | 250 | 500)
Compare selected revisions

« (cur | prev) (® 08:56, 8 December 2024 WATRE AITGT (talk | contribs) . . (537,664 bytes) (+92) ..

s (cur | prev) ® 20:39, 7 December 2024 Sanremofilo (talk | contribs) . . (537,572 bytes) (+363)
messi/5663) (Tag: Wikidata user interface)

s (cur | prev) O 15:21, 2 December 2024 Ytterbyz (talk | contribs) . . (537,209 bytes) (+349) . . (
(Tag: Wikidata user interface)

e (curl prev) O 23:45, 29 November 2024 Mickey Pai Phat (talk | contribs) . . (536,860 bytes) (-
Wikidata user interface, Mobile termbox)

o (curl prev) O 19:47, 27 November 2024 KrBot (talk | contribs) . . (536,877 bytes) (-14) . . (Se
see autofix Ha / on Property talk:P12924)
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Expressing everthing as a labelled graph wmf
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Wikidata’s proprietary reification model e

= Wikidata’s internal Data Model, which consits of claims with additional
context indormation is fitted into a “flat” RDF (directed labelled
graph/triples) model:

country of citizenship (wdt:P27)

QO B nhttpsy//www.wikidata.org/v
country ofcitizenshipA & Argentina

COuﬂll‘]r( u.f;;;i)zensmp (ps:P27) . Spain country of citizenship
p: wds:Q615-469B5D33-8EA7-4CAB- & (wd:Q29) serme e
> 8A71-75AES9EAFDB5 start time

(pg:P580)
| > 2005-01-01
& Spain
wikibase:rank ikibase:NormalRank start time 2005

Messi ~ 0 references

(wd:Q615)

country of citizenship » 1 reference
. (ps:P27)
wds:Q615-62E18BBD-7824-4F6F- 3 & Argentina
OAB6-FBE0OEB2B2127 (wd:Q414)
O 8 www.wikidata.org
start time
:P580
(pg ) > 1987-01-01 T capital g Washington, D.C.
start time 17 November 1800 Gregorian
country of citizenship (wdt:P27) stsh Ak no:vala
ume 0 value

~ 0 references

® Philadelphia
start time 6 December 1790 Gregorian
end time 14 May 1800 Gregorian

See our recent ISWC2024 tutorial:
https://ww101.ai.wu.ac.at/



https://ww101.ai.wu.ac.at/

Not all Graphs are equal: Reification
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= j.e. this is just an ugly “reified” form in RDF..

country of citizenship (wdt:P27)

country of citizenship
country of citizenship (ps:P27)
PP27) | wds:Q615-469B5D33-8EA7-4CAB- &
8A71-75AES9EAFD85 start time N 4
Messi [ (pq:P580)
(wd:Q615) > 2005-01-01
| N,

—ee

country of citizenship s,
(ps:P27) § b

wds:Q615-62E18BBD-7824-4F6F-

9A86-F860EB2B2127 76‘27
start time s vl
PS80 987-01-01

country of citizenship (wdt:P27)

= ... of what people often

Spain

(wd:Q29)

5 Argentina

(wd:Q414)

call a Labelled Property Graph (LPG)*:

{label: "eountry of citizenship”, ‘
starttime: "2005-01-01") i’ﬁ label:
» iT8E Spain
label: '
Messi
» ’Ei} label:
{label: country of citizenship, : Argentina
starttime: "1987-01-01"}
* Side note: For more details on different (Knowledge) Graph data models and constraint languages see [8] ;
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Scale: Let’s have alook at practical examples of such “U
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= DBPedia (since 2007) VS. Wikidata (since 2012)

DBpedia Wikidata

—— DBpedia “

Developer(s) Leipzig University
University of Mannheim

RDF < WIKIDATA
SPARQL (standard QL for RDF) endpoint V)

Standard Ontology Language (OWL)

Initial release 10 January 2007 (17 years
ago)
Stable release DBpedia 2016-10/ 4 July 2017

Screenshot [show]

Type of site Knowledge base - Wiki

QDO

Repository  github.com/dbpedia/ 2 # Consistent [X) Available in Multiple languages
Written in Scala - Java ConteXt O Owner Wikimedia Foundation
Type Semantic Web - Linked Data Editor Wikimedia community
License GNU General Public License URL www.wikidata.org/wiki
_ /Wikidata:Main_Page ' #

Website dbpedia.org 2 4 Commercial No

Registration Optional

Launched 29 October 2012; 12 years agol'!
58.167.851 #subjects/nodes 1.790.689.565 #subject
68.687 #properties (117,467,468 #nodes)
1.040.358.853 #triples/edges 60.099 #properties

106.962 #classes

/N\ 8.348.213.968 #triples/edges

““““““““““““““““““


https://www.wikidata.org/wiki/Special:Statistics
https://www.wikidata.org/wiki/Special:Statistics
https://w.wiki/EDWL
https://w.wiki/EDWH
https://w.wiki/EDWw

vs. Status of Graph learning?
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Text,  Data Year Task # Nodes # Edges Domain Source & Notes
L'Igh-i:] rxiv 21205 M 169,343 1,166,243 Academic CHGBE [186]
ugh-pn_miuc_‘lﬁ 20205 M 2449 (129 f1,850 140 FE-commerce (9,8 [] H-ﬁ]
ogb-papers110M 20205 NC 111059956 1,615,685,672 Academic H5E [1846]
oghb-citation2 20205 LP 2827 563 30,561,187 Academic OGE [186]
Cora 2000 N 2,708 5429 Avcademic [10]
Cilesecor 1998 M 3,312 4,732 Avcademic [11]
w DBLF 20231  NC LFP 5,259,858 36,630,661 Academic ww w.aminerorg/ citation
= MAG 2020 MNC, LE Rec RG ~ 108 ~ 30 Academic multiple domains [12] [13]
z Goodreads-books 2018 MNC, LP ~ 2M ~ 20m Books multiple domains [14]
Amazon-iterms 2018 N, LE Rec ~ 15.5M ~ 1008 E-commerce  multiple domains [15]
Scilocs 2020 MNC, UAR LP Rec - - Academic [50]
Fubhed 2020 M 19,717 44,338 Academic 18]
WikidataShi 20821 LI A4 M s 20 \-‘h’ikipﬂ‘lia [17]
Twitter 2023 MNC, LP 176,279 2,373,956 Social [52]
o Goodreads-reviews 2018 EC, LI* ]t | e 10N Books multiple domains [14]
= Amazon-reviews 2018 EC, LD ~ 15.5M ~ 2000 E-commerce  multiple domains [15]
K Stackoverflow 2023 EC,LP 129,322 281,657 Social [73]

Large Language Models on Graphs: A Comprehensive Survey (Jin et al. 2023)
2312.027

h 1//arxiv.or

Open Graph Benchmark: Datasets for Machine Learning on Graphs (Hu et al. 2020)
https://arxiv.org/abs/2005,00687

https://ogb.stanford.edu/docs/linkprop/#ogbl-wikikg?2

Wikidata extract with 539 relation types...
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https://arxiv.org/abs/2312.02783
https://arxiv.org/abs/2005.00687
https://ogb.stanford.edu/docs/linkprop/
https://ogb.stanford.edu/docs/linkprop/
https://ogb.stanford.edu/docs/linkprop/

So, for what are these KGs actually good for
in the age of LLMs and AI?
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Main task:
Complete, factually reliable, efficient query answering

cratceT zo @« KGC23 Keynote: “The Future of Knowledge
Which cities in Austria have more than 2M inhabitants? Gra phS in @ World of LLMs — Den ny
Vrandeci¢, Wikimedia”

@  No city in Austria has more than 2 million inhabitants. Austria's capital and )

largest city, Vienna (Wien), has a population of approximately 1.9 million htt DS WWW.VO Utu be .COM WatCh ?V: WW99 np D h4C (]

people as of recent estimates. It is the only city in Austria with a population

exceeding 1 million. Other cities, such as Graz, Linz, and Salzburg, have much
smaller populations, typically below 300,000.

If you're interested in any specific details about Austrian cities, feel free to ask!

a
i = =

Did Vienna ever have more than 2M inhabitants?

@  Yes, Vienna once had a population exceeding 2 million. During the early 20th

century, particularly around the year 1910, Vienna's population peaked at

approximately 2.1 million people. This was during the Austro-Hungarian Empire, Large generative model Know|edge graph |ookup
when Vienna was a major imperial capital and one of the largest cities in Europe. e 6tokensin put e Find item out of 100m
After World War | and the dissolution of the Austro-Hungarian Empire in 1918, o 60 tokens out put (2 to anS) e Find key out of 10k
Vienna's population began to decline. This was due to several factors, including e 96 Iaye rs ° Loga rithmic oporations
changes in national borders, economic challenges, and shifts in urbanization e 175 bl Il iOﬂ para meters

trends. The city's population has been growing again in recent decades but has
not yet surpassed 2 million.

PO PO
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https://www.youtube.com/watch?v=ww99npDh4cg
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SPARQL: Using KGs to answer questions: G

S
= E.g. from DBpedia

Automatic
Exctractors

11
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* You can use a language called SPARQL endpoint (roughly: SQL
for RDF) to do structured queries over RDF:

+ ,Cities in the UK with more than 1M population®:

Structured queries

https:

(SPARQL):

api.triplydb.com/s/aZZskaR

PREFIX : <http://dbpedia.org/resource/>
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX yago: <http://dbpedia.org/class/yago/>

SELECT DISTINCT ?city ?pop WHERE {
?city a schema:City
?city dbo:country :United Kingdom.
?city dbo:populationTotal ?pop

FILTER ( ?pop > 1000000 )

(_tFMj B Asoci
“Equs Rl ascse <GP AMBA



https://en.wikipedia.org/wiki/London
http://dbpedia.org/resource/London
http://dbpedia.org/resource/London
https://api.triplydb.com/s/gZZskqRpQ

= “Simple” surface query:
Which cities in the UK have more

SELECT DISTINCT 7?city WHERE {
?city wdt:P31/wdt:P279* wd:
?city wdt:P1082 ?population .
?city wdt:P1l7 wd:Q38
FILTER (?population > 1000000) }

instance of (P31)

that elass of which this subject is
a particular example and
member. (Subject typically an
individual member with Proper
Marne label) Differant from P279
(subclass of).

subclass of (P279)

all instances of these items are
instances of those items; this
item is a class (subset) of that
itern. Mot to be confused with
Property:P31 (instance of).

= What's this?

12

The same question as before in Wikidata:
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Note: Wikidata
does not use
standard OWL

Note: Wikidata
uses numeric IDs

city (Q515)
large and permanent human
settlement

population (P1082)

nurmber of people inhabiting the
place; number of people of
subject

country (P17)
soversian state of this item

United Kingdom (Q145)
country in Europe

/_ EFMD
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https://query.wikidata.org/

The same question as before in Wikidata: Wm::.::::
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https://w.wiki/BgRX
Which cities in the Austria have more than 1M/2M people?

Q 8 nhttps:/jwww.wikidata.org/wiki/Q1741

SELECT DISTINCT ?City ?7Pop

T {
Wlkldata 7City wdt:P17 wd:Q40; o
also has wdt:P31/wdt:P279% wd:Q515; Hom | Discussion
such wdt:P1082 7Pop. .
contextual FILTER (?Pop > 1000000) Vienna w4
. . # note: Vienna historically had more than 2M inhabitants! capital of and state in Austria
information! # FILTER (?Pop > 2000000) Wien | Vienna, Austria
}
population £ 1973403
point in time 1 October 2022
. . . . delen:jl. nation method or demographics
So, WHEN did Vienna have 2M inhabitants? o
§ 2,083,630
point in time 1910

- 0 references

/_ EFMD
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https://w.wiki/BqRX

The same question as before in Wikidata: wm:ﬁ:s?f

https://w.wiki/BgRj
Which cities in the Austria have more than 1M/2M people?

SELECT DISTINCT ?7City ?7Pop ?Timepoint
{
7City wdt:P17 wd:0Q40;
wdt:P31/wdt:P279% wd:Q515;
p:P1082 75tmnt.
?Stmnt ps:P1@82 ?Pop;
pq:P585 7Timepoint.
# FILTER (?Pop > 1000000)
# note: Vienna historically had more than 2M inhabitants!
FILTER (?Pop > 2000000)
}

So, WHEN did Vienna have 2M inhabitants? Works!!!!

But needs an understanding of Wikidata’s proprietary RDF reification
model to model context!

See our recent ISWC2024 tutorial:
https://ww101.ai.wu.ac.at/

[
14
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https://w.wiki/BqRj
https://ww101.ai.wu.ac.at/
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Admittedly, Denny didn’t talk about this...
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... at least Wikidata also struggles on some questions: https://w.wiki/CLw9

= Public query endpoints (SPARQL) hard to host
(Note: a bit like hosting/serving large LLMs to many users?)

= Complex queries time out
Challenge: scaling
queries to large-scale,

|II||I|I|| Wikidata Query Service = Examples @ Help | ~ £+ More tools | ~
schemaless KGs

1 # Which settlements had ever over 1M population?

(i)
2 o o

o%s 3 SELECT DISTINCT ?City ?Country ?Pop (Min(?Timepoint) AS ?FirstTime) (Complex JOIntI
4 1

I. 5 7City wdt:P17 ?Country; aggregatlons’ for
6 wdt:P31/wdt:P279% wd:Q486972; m any u Se rs)

L | 7 p:P1082 ?7Stmnt.
8 715tmnt ps:P1@82 ?Pop;

= | 9 pq:P585 7Timepoint.
10 FILTER (?Pop > 1000000)
11

& 12 } GROUP BY ?City ?Country ?Pop

%

For the records: comparison with GPT ;-)
https://chatgpt.com/share/675585c7-04cc-8006-a20e-c70d75619e1l

aaaaaaaaa
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https://w.wiki/CLw9
https://chatgpt.com/share/675585c7-04cc-8006-a20e-c70d75619e13
https://chatgpt.com/share/675585c7-04cc-8006-a20e-c70d75619e13
https://chatgpt.com/share/675585c7-04cc-8006-a20e-c70d75619e13
https://chatgpt.com/share/675585c7-04cc-8006-a20e-c70d75619e13
https://chatgpt.com/share/675585c7-04cc-8006-a20e-c70d75619e13
https://chatgpt.com/share/675585c7-04cc-8006-a20e-c70d75619e13
https://chatgpt.com/share/675585c7-04cc-8006-a20e-c70d75619e13
https://chatgpt.com/share/675585c7-04cc-8006-a20e-c70d75619e13
https://chatgpt.com/share/675585c7-04cc-8006-a20e-c70d75619e13

Challenges: “U

UUUUUUUUUUUU
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= Many queries on DBPEdia’s and Wikidata’s SPARQL endpoint time out
= What can we do about it?

= Bespoke (Compressed) Indexing (HDT) &
= Partitioning (smart-KG) g
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HDT - a “Knowledge Graph” hacker toolkit & S

® Compressed, queryable serialization of RDF
©® Standardized? W3C member submission 2011: https://www.w3.0org/Submission/HDT/

® Allows fast RDF retrieval in compressed space (without prior decompression)

® Includes internal indexes to solve basic queries with small memory footprint.
® Very fast on basic queries (triple patterns), x 1.5 faster than Virtuoso, Jena, RDF3X.

® Supports FULL SPARQL as the compressed backend store of Jena, with an efficiency on the same scale as
current more optimized solutions

ma 837 M.triples NT + gzip | HDT
O 122 GB 9.6 GB 13 GB

D>Slightly more but you can query!

~QJ

® Challenges:

® Publisher has to pay a bit of overhead to convert the RDF dataset to HDT (but then it is ready
to consume efficiently!)

® Inefficient for (live) updates ... (Note: another parallel to LLMs?)

{_evo .
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https://www.w3.org/Submission/HDT/
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HDT (Header-Dictionary-Triples) Overview
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HDT — Header information: ot

$ hdtInfo wikidata20210305.hdt

latest-all.ttl.gz]
latest-all.ttl.gz]
latest-all.ttl.gz]
gz]
gz]
gz]

<file: [
[
[
[latest-all.ttl.
[
[
[

<file:
<file:
<file:
<file:

> <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> <http://purl.org/HDT/hdt#Dataset>
> <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> <http://rdfs.org/ns/void#Dataset>
> <http://rdfs.org/ns/voidfitriples> "14578569927"
> <http://rdfs.org/ns/voidfiproperties> "38867"
latest-all.ttl. > <http://rdfs.org/ns/void#distinctSubjects> "1625057179"
<file: latest-all.ttl. > <http://rdfs.org/ns/voidf#fdistinctObjects> "2538585808"
<file://[latest-all.ttl.gz]> <http://purl.org/HDT/hdt#formatInformation> " :format"
_:format <http://purl.org/HDT/hdt#dictionary> " :dictionary"
_:format <http://purl.org/HDT/hdt#triples> " :triples"
<file://[latest-all.ttl.gz]> <http://purl.org/HDT/hdt#statisticalInformation> " :statistics"”
<file://[latest-all.ttl.gz]> <http://purl.org/HDT/hdt#publicationInformation> " :publicationInformation"

:publicationInformation <http://purl.org/dc/terms/issued> "2021-04-24T12:427"

:dictionary <http://purl.org/dc/terms/format> <http://purl.org/HDT/hdt#dictionaryFour>

:dictionary <http://purl.org/HDT/hdt#dictionarynumSharedSubjectObject> "1451915667"

:triples <http://purl.org/dc/terms/format> <http://purl.org/HDT/hdt#triplesBitmap>

:triples <http://purl.org/HDT/hdt#triplesnumTriples> "14578569927"

:triples <http://purl.org/HDT/hdt#triplesOrder> "SPO"

:statistics <http://purl.org/HDT/hdt#hdtSize> "159085366343"

o .
19 “Equis Jdaacse st AMBA
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<http://example.orgflavier>
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Dictionary+Triples partition e

| “Vienna“@en I

radf:typs foaf:name

<http:/fexample.org/Viennas>

foaf mbox

I “lfergar&wu.ac.at” |

ex;birthPlace ex;birthPlace

Hint: imagine HDT for now

“jfergar@example.org” I

as "SPO-sorted triples"

ex:Vienna foaf:name "Vienna'"(len.
ex:Javier ex:workPlace ex:Vienna;
foaf:mbox "jfergar@example.org",
"Jfergar@wu.ac.at";
rdf:type ex:Researcher .
ex:Paul ex:birthplace ex:Vienna.

ex:Stefan ex:birthplace ex:Vienna.

nnnnnnnnnnnnnnnnnn
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Dictionary+Triples partition

ex:Vienna

ex:Javier

ex:Paul
ex:Researcher
ex:Stefan
ex:birthPlace
ex:workPlace
foaf:mbox
foaf:name

rdf:type
“ifergar@example.org”
“ifergar@wu.ac.at”
“Vienna” @en

OO NOULID WN -

N
= O

=
w N

21
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Dictionary (in practice

1 ex:Vienna

2 ex:Javier

3 ex:Paul

4 ex:Researcher

5 ex:Stefan

6 ex:birthPlace

7 ex:workPlace

8 foaf:mbox

9 foaf:name

10 || rdf:type

11 || “jfergar@example.org”

12 || “jfergar@wu.ac.at”

13 “Vienna” @en
OSplit by role

O Prefix-Based compression for each role
OEfficient ID+String operations

22

D ictionary

ﬁttp://example.org/\lienn» SO

<http://example.org/Javier>
<http://example.org/Paul>
<http://example.org/Stefan>
<http://example.org/Researcher>
“jfergar@example.org”
“ifergar@wu.ac.at”
“Vienna”"@en
ex:birthPlace
ex:workPlace
foaf:mbox

foaf:name
rdf:type

i.e.,dictionary is not
exactly "SPO-sorted"”
but "SO-5-0-P"-
sorted

(_tFMj AR ASSOCATION
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Dictionary compression: Plain Front Coding (PFC)

relies on prefix-based compression
Each string is encoded with two values
OAn integer representing the number of characters shared with the previous string
OA sequence of characters representing the suffix that is not shared with the previous string

A
An
Ant =) (0,a) (1,n) (2,t) (3,ivirus) (9, Software) (0,Best)
Antivirus
Antivirus Software om____———— 1
. ntogmetian
Best RS Sy
— , 5 S
¢ information System =]
_,L‘z—-.gb;L journal nomepage: W _— ' ‘ ARTICLE INFO

034

cived O Wy &

\ revaed foe?

. . vionaries’
ing dicuol ) .
cal conlpfeSS(’d string Rodrigo CAnOVas .

Practi .1 Nieves Brisabod

i ez-Prieto
Miguel A MartineZ ‘cr,:;nm\u Navarro

- - e . ; voliadolal. Spat a1
Francisco Claud | Computier Schrace, Unpversiy of 15 o

greh, D
* DengWird Rese

,,,,,,,,,,,,,,,,,,,



Bitmap Triples Encoding

®Bitmap Triples, idea a bit similar to "sorted Turtle":

ex:Vienna
ex:Javier

ex:Paul
ex:Stefan

foaf:name "Vienna"@en.

ex:workPlace ex:Vienna;

foaf :mbox "jfergar@example.org",
"jfergar@wu.ac.at";

rdf:type ex:Researcher

ex:birthplace ex:Vienna.

ex:birthplace ex:Vienna.

WIRTSCHAFTS
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AND BUSINESS

Dlnilorllry
L i

<hittpcffenamnple o0 It

1 4 5. ;

2 2 1; .

3 3, :

4, 5

5 2. '

31 1. H

41 1. ’
subjects C.le @ @fﬁb

/— B.| 10 0 111 \
Predicates: -
S| 423511
B. | 1101111
Objects: "5
a1 513421

.

" We index the bitsequences to provide a SPO index
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Bitmap Triples Encodin

O®Bitmap Triples: )
P P subjects @ @ @@

4 4 i SPO

2 ; . Predicates: - Sp2

i r $?0
(0 y WS Objects: 7 $??
. - ?2?7?

= E.g. retrieve (2,5,7)
= Find the position of the first and second ‘1’-bits in B, (select)
= Binary search on the list of predicates S, in this range, looking for 5
= Note that such predicate 5is in position 4 of S,
*  Find the position of the fourth ‘1’-bit in B, (select) -> 5% position
= j.e.retrieve 5" value of S, -> 2

/_»Hv\r o
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On-the-fly indexes:
HDT-FoQ (Focus-on-Querying indexes)

O®From the exchanged HDT to the functional HDT-FoQ:

OPublish and Exchange HDT (i.e., B,,S,,B,,S, from last slide) and

@At the consumer:

2
3

iR

«3 I/
[ = 5 3‘)0 , » b: ) . loading: -
p — naf O -y o' 4 - ey s
(o) tO < (S ]
Publisher Encode Publish  Exchang®  Consumer HOT-Fol Load

Consume
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Efficient “Triple pattern”
matching, i.e.
“edge lookups”, e.g.:

{:vienna :country ?.}

Process Type of Index | Patterns
- : Subject SPO, SP?,
index the bitsequences SPO S27. S20. 222
2?2, S?0, ?7?:

|r_1dex the p_0_5|t|o_n of each predicate Predicate 2P?. 2PO separate index
(just a position list) PSO / file , created by

ob consumer client
. . . ject (or published as
index the position of each object OPS 2?0 as well

Martinez-Prieto, M., M. Arias, and J. Fernandez (2012). Exchange and Consumption of Huge RDF Data. In
Proc. of the 9th Extended Semantic Web Conference (ESWC), pp. 437-452.
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Datasets
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https://github.com/rdfhdt C++ and Java tools

.... a bit like an “ollama for KG querying”
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Outlook/Summary: HDT BRI

O Useful tool for compressing, querying and exchanging large KGs (esp.
triple patterns)

®Data ready to be consumed in compressed format, 10-15x faster than loading it
into an RDF triple store

OHDT size << any other RDF format || RDF engine

O Competitive query performance.
OVery fast on triple patterns, x 1.5 faster (Virtuoso, RDF-3x).

O Integration with Jena
O Joins on the same scale of existing solutions (Virtuoso, RDF-3x).

@ Status quo:

®Some company takeup (e.g. QA company, data.world), but Open Source HDT
Development recently less active

O Current RDF Stores like Qlever use similar indexing ideas,
https://dl.acm.org/doi/10.1145/3132847.3132921
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Challenges: “U

UUUUUUUUUUUU
CCCCCCCCC

= Many queries on DBPEdia’s and Wikidata’s SPARQL endpoint time out
= What can we do about it?

= Bespoke (Compressed) Indexing (HDT) & v
= Partitioning (smart-KG) g

/_»Hv\r .
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Server Solution: SPARQL Endpoint “U

UUUUUUUUUUUU
CCCCCCCCC

Client: iNetwork: | Server:
R
SPARQL

@ o Endpoint
@ _; '
@

"Query Shipping”

fails under concurrency

* “Equs Rl ascse <GP AMBA
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Client Solution: Data Dump “U

UUUUUUUUUUUU
CCCCCCCCC
SSSSSSSSSSS

Client: Network: IServer:
]

@@ 2 Web (File)

@ 4
G«’;@ )

Data Shipping: Dumps

might add prohibitive load on the network

/_rH‘v\] .
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Client Solution: Compressed Dumps “U

UUUUUUUUUUUU
CCCCCCCCC
SSSSSSSSSSS

Client: Network: Server:

Web (File)
c1 Cc2«] Server
(@
@® 4
@ MG
Data Shipping — using HDT

still might add prohibitive load on the network
(e.g. DBpedia 2016 Dump 34GB for 1.8B triples)
/

[ EFVD P
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= Jdea:

- Execute single triple patterns on the server
« Let the clients do JOINs etc. by themselves.

- less footprint on the server, only triple patterns and intermediate
results communicated.

- can still have significant overhead by large intermediate results

SELECT » WHERE {

?film dbo: starring ?actress . # tpl
?film foaf :name ?filmName . # tp2
?actress dbo:wikiPageExternalLink ?link . # tp3

?actress dbo: birthPlace ?city . # tpa
?actress foaf :gender "female"@en . # tps
?city dbo:country ?country . } # tp6
C r
tps
tps tpy tp,

tps tpy

R. Verborgh,, M. van der Sande, O. Hartig, J. Van Herwegen, L. De Vocht, B. De Meester, G. Haesendonck, P. Colpaert:
Triple Pattern Fragments: A low-cost knowledge graph interface for the Web. J. Web Semant. 37-38: 184-206 (2016)
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Triple Pattern Fragments (br-TPF): s

= Idea:

« ship intermediate bindings with TP and let server only return results
matching results

- > smaller intermediate results, "join work" distributed between client

and server

SELECT « WHERE {

?film dbo: starring ?actress . # tpl
?film foaf :name ?filmName . # tp2
?actress dbo:wikiPageExternalLink ?link . # tp3
?actress dbo: birthPlace ?city . # tpa
?actress foaf :gender "female"@en . # tps
?city dbo:country ?country . } # tp6

a3 tp,
Q_:/ =

tpa

tps tpy

O. Hartig and C. B. Aranda. 2016. Bindings-Restricted Triple Pattern Fragments. In ODBASE 2016. 762—779
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Can we do better? Remaining

Problems:
High Availability SMART-KG High Availability Low Availability
High Client cost shared Client & Low Client Cost
Low Server Cost : server cost High Server Cost
| I I |
I : l I
< l . I | R
Data (binding-restricted) TPF) SPARQL
Dump Endpoint

- Our experiments show that in highly concurrent query loads, with TPF:
= still the server might get blocked

= still an unncecessarily high number of (uncompressed) intermediate
results may be shipped

Idea 1: "Partition"” Shipping

(o B
35 “Equs Rl ascse <GP AMBA
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Partition Generator (PG): Upon loading a graph KG G, decompose it into
partitions G,....,G,, one per "predicate family".

Shawnee, OK

"BradPitt" Angelina Jolie

“Emma Watson”

(0]
1S @
o Los Angeles,CA N

birthPlace m worksIn birthPlace
Brad —> N @ i
Y, €— U Paris, FR
< SPOUSE Angelina Emma 0764//
s,

University of Missouri

F2: {name, birthPlace, spouse}

Oxford University

F3: {name, birthPlace,almaMater, worksIn}

F4: {name, country, capitalOf}

F4: {name, founded, numberOfStudents}

36
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smart-KG server: Predicate "Family" “U

NNNNNNNNNN

Generator L

Partition Generator (PG): Upon loading a graph KG G, decompose it into
partitions G,....,G,, one per "predicate family" ... and convert these to HDTs.

Familyl.hdt Family2.hdt Family3.hdt

spouse

Brad

/_H»MJ .
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Smart-KG query Processing: S

1. Client decomposes BGPs into "stars"
2. Retrieve relevant information from server to make a query plan
3. Retrieve and joins matching HDT partitions one by one

(use TPF for 1-triple patterns and "pruned" partitions)

SELECT » WHERE {

?film dbo: starring ?actress . # tp1 .

?film foaf:name ?filmName . # tp2 F?:{Starrlng’ name}

? actress dbo:wikiPageExternalLink ?link . # p3

?actress dbo:birthPlace ?city . # tp4 F7.{W|k|PageExtLln k, birthPIace, gender}
? actress foaf:gender "female"@en . # tp5

?city dbo:country ?country . } # tp6

KG Partitions (separate HDTs)

/_ EFMD
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Smart-KG:

Further details, cf. [8]:

+ predicate-restricted families, i.e. pruning+merging:
* too rare or

too common

predicates for partitioning €.9

F2: {name, birthPlace, spouse}

Example: for DBpedia, a naive partitioning would create +600k partially very large families, which are
unfeasible to serve.

J1 e e
. sults
n the We z Rf
ipping for SPARQL Querying ©
SMART-KG: Hybrid Shipp Maribel Acosta SMART-KG Client SMART-KG Server
Javier D. Fernandez 4 Karlsruhe Institute of Technology Suery Parser Storags Modute || ServerOp = |
Amr Azzam Vienna University of Economics & rmany I_Qa;tm_Mg_duls_‘ l—"’%
University of Economics and  Vien e maribel.acosta@kit.edu Family Catalog || [ Query P ]| —ClientRequest _, Family Generator
Vienna e .
N Business Austria — Query Planner & Optimizer G Partitions N I
Austria jl'emm\d@\vu.ac.m K@w s = P q—sawer p— Famil
amazzam@wuacat Axel Polleres jcs and G Ga Pﬂ‘l&h]?f(\)o: n:';::Of
Martin Beno 1 yienna University of Econom [ Result Serializer ] v
Jienna University of Economics Business RDF KG G
Vi Business Austria .
ot ac.al
Austria axelpolleres@wu-ac ‘
inbeno@wuact PEX 1 fields such as neurosciences.
martin.beno he integration of diverse datasets m\ :]
the integra scovery (2 e
arch and drug discovery 187 KGs include DBpe
cancer research an B terinked KGs .
: able exs , available KGs
RACT ' plishing (RDF) oty available examples o ICTOIEL i
AB?TL’ Jed Data (LD) provides s‘;““L‘“bhm:i(‘:l‘l ):n the Web. di:) ‘\::: and Wikidata, and ::dtl:-ln:‘;:l“i‘)a\n [11] principles. us”
While Linke® B7 rying Knowledge Graphs & /2% % s / following the ting query
. erying centralized KGs is iblished now del and suppor’
and (SPARQL) QUeryioe " lc lich open. decentra ple e tured RDF data mo D s ok
> accessing and processing = ublicly available ing the semi-struc ery language. However.
serving. o mpossibe, a5 query "'.“ﬁm.'.:,::“f.ch asTriplePat- 0 (L ough the SPARQL Query L pyp KGs published
often pra oints show. /\\lcmau\-;l ..u“u pn;bkm f availability e verios barriers 10 consume
he s
F) attemp < lient side.
i kload to the clien’
cessi
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Can we do (even) better?

Refinements: S
High Availability SMART-KG High Availability Low Availability
High Client cost [2,3] shared Client & Low Client Cost
Low Server Cost server cost High Server Cost

a

Data
Dump

- In partition shipping, the server is mainly a Web Server distributing partial

dumps

(binding-restricted) TPF)

[
»

SPARQL
Endpoint

- Desideratum: Server should process queries "as far as possible"

[3] Combined client & server processing

[2] Further refinement partitioning per node types (rather
than predicates only).

40
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Possible Discussion/Further ideas: “U

UUUUUUUUUUUU
CCCCCCCCC
SSSSSSSSSSS

= Could similar ideas for modularization work for (agent-based) models?

= Combination of agent frameworks and KGs in extensions of (modular)
Graph RAG?

= (How to) take context information into account for partitioning/indexing?

(o .
41 “equis pWaacs <" AMBA
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Another application: Wmﬁ:ﬁf

How good or bad are KGs with Question answering?

= How good or bad are KGs with Question can answering?

= Interesting Note - IBM Watson - Jeopardy! (2011)
"Super-human” Question Answering was achieved by Knowledge Graphs before the LLM hype!

V

$4oo ' $23 081| I $3 400 |

,{ 271 WATSON

PEAD Ia

Isaac Newton | 97%
Isaac Barrow 28°
Stephen Hawking 15%

Our own contribution in this area:

Svitlana Vakulenko, Javier Fernandez, Axel Polleres, Maarten de Rijke, and Michael Cochez.
Message passing for comp/ex question answering over knowledge graphs. In Proceedings of the 28th

ACM International Conference on Information and Knowledge Management (CIKM2019, pages 1431--
1440, Beijing, China, November 2019. ACM.
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“Message-passing based” KGQA

AND BUSINESS

Another application of HDT: “U

Typical approach
= Natural Language question:

“Which company assembles its hardtop style cars in Broadmeadows, Victoria?”

= Map to a query (or graph matching) on a KG

G company

= Involves typically steps:
= Entity & Relation linking
= Query building (Relation directionality, ...)

] SELECT ?2C
WHERE { 2Car dbo:company 2C
P . w
?Car dbo:assembly . ’%%I|%ﬁ<JﬁWA
?Car style dbr:Breadmedows.} | 7



Another application of HDT: “U
“Message-passing based” KGQA

Typical approach
= Natural Language question:
“Which company assembles its hardtop style cars in Broadmeadows, Victoria?"

= Map to a query (or graph matching) on a KG

located in

Produces@
= Problems:

= Language ambiguity
= Structure could look entirely different
= - (too) large search space

(_H»M) P —
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Better approach:

= Step 1:

WIRTSCHAFTS
UNIVERSITAT
WIEN VIENNA

UNIVERSITY OF
ECONOMICS
AND BUSINESS

= divide query into “hops” of simple (single “star-shaped”) subquestions
= Parse subquestion matching (in parallel) relevant entities and relations with

confidence scores

= Step 2: propagating and aggregate these confidence scores over the KG via

message-passing

- Idea: Possible answers are nodes with highest confidence

G company

hop 2

assembl

hop 1

We model questions (roughly) as sequences over a number of hops where each hop

consists of
E ... (candidate) entity sets,
P ... candicate property sets,

C ... candidate class sets the enity belong to

45
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(b) for each entity (or property,

class, resp.) reference in, we
(a) Using sequence retrieve a ranked list of most
Better a _g q_ similar entities from the KG ST S
pp labeling with alona with the matchin WIEN VIENNA
agm UNIVERSITY OF
conditional random g : g ECONOMICS
fields confidence score. AND BUSINESS

Step 1: (a) Parse question and (b) matching (in parallel) relevant entities and relations with
confidence scores

hop 2 hop 1
Which company | assembles its hardtop style cars in  Broadmeadows, Victoria ?
P} P! E} P ct Ej
dbozcomparny 1 dbo:assembly 0.9 dbr:Hardtop 1 dbo:Automobile 1 dbr:Broadmeadows, Victoria 0.9
dop:companylLogo 0.8 dbp:assembly 0.9 dbr:Car 1 dbr:Victoria 0.2
dbo:parentCompany 0.8 dbo:bodyStyle 0.5

We model questions (roughly) as sequences over a number of hops where each hop consists of

E ... (candidate) entity sets,

P ... candicate property sets,
C ... candidate class sets the enity belong to

— ') 7 i\\ h
Seqq T (<E ’P ’O >)i:1 ’/E—QU'S E¥acse <" AMBA
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Better approach: “U
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= Step 2: propagating and aggregate these confidence scores over the KG
via message-passing (hop, by hop)

2nd hop 1st hop

Which company . assembles its hardiop style cars in  Broadmeadows, Victoria ? . Note: . .
P P E} P} c! £} The weight propagation is less

dbocompany 1) dbo:assembly 0.9 dbr:Hardtop 1 dbo:Automobile 1 dbr:Broadmeadows, Victoria 0.9 important than the fact that we
dbp: Logo 0.8 1 : bly 0.9 dbr:Car 1 dbr:Victoria 0.2 s
m:ﬂ'ﬁ.ﬂ'ﬁ'@iﬂiﬁﬁog: copiassembly dbo:bodyStyle 0.5 i reieena use HDT for very efficient
retrieval of the relevant
subgraphs in each step in the

i i . implementation.
= Hop 1 nai raph and score aggregation: Note: once retrieved we do not

consider direction of the edges

in the original graph here.

dbr:Hardtop dbr:Broadmeadows, _Victoria | (b) Activation sums normalized (see Alg.1, lines 543)
10(c] ) n/rTg]/ 0.8  W(0])=2*(05*1.040.8%09)/(2+2) =066

Wial)=2"(05*1.0+09"0.2)/(2+2) =034
. Wi(al)=2"(0.970.9)/(2+2)=0.41
dbpassembly {a} ;'"" T - TTmmmmmmmmmsmmmmmmmmmssmeees

dbo:bodyStyle . oo
0.9 1 () Aggregated scores (see Alg.1, fine 11)

0.5

dbr:Ford_Falcon_Cobra

Ala])=(0.66+2+2)/(2+2+1) =093

dbu:assembw'i-’ 0.2 @ 5 A(0))=(034+2+2)/(2+2+1)=0.87

1
17) = =
dbr:Car1 dbr:Victoria dbr:Car2 A(%3)=(041+1+1)/(2+2+1)=048

a' ... answers in hop i

/_ EFMD
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Bottomline: w::zzi::zzs

NNNNNNNNNN
UUUUUUUUUUUU
CCCCCCCCC
SSSSSSSSSSS

message-passing in the undirected subgraphs and

efficient retrieval of these subgraphs (HDT), where sufficient to significantly
improve over “query formulation” approaches on KGQA Benchmarks, e.g.
QALD.

Note/Disclaimer:

= That’s where I left off
= The part I contributed in the paper was minor.

Discussion (we’re only starting to look into this): i + ?

Could similar ideas improve other Graph tasks?

How does this relate to other Graph Learning tasks that rely on efficient
subgraph retrieval?

Tying back to the first part: Do these tasks need the whole graph can they
also benefit from modularization/partitioning?

How scalable are other graph learning to Collaborative KGs?

(How) do efficent representations for exact retrieval (i.e., indexing) relate to
vectorized graph representations (embeddings)...?

((((((((((((((((((((
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Motivation cconoucs

More things I did not talkabout:

In our group we have done a lot of work on

. Querying Link analysis [5,6]
* Analysing, and

- Improving the quality Constraint checking

of Collaborative KGs at scale

{_evo
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