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Outline

 Background: Collaborative KGs

 Efficient KG Archiving and Querying with HDT [1]

 Applications:

 Making SPARQL endpoints more efficient [2,3]

 Making Message-Passing-based Graph processing more 

efficient [4]

 Open Questions … many ☺
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Motivation
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In our group we have done a lot of work on 

• querying,

• analysing, and

• improving the quality

of Collaborative KGs at scale



Collaborative, Open Knowledge Graphs:
DBpedia

RDF+OWL:

Data + 
“Ontology” (i.e. 

class and property 

hierarchy) both 
encoded in a directed 

labeled graph:
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Collaborative, Open Knowledge Graphs:
Wikidata
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▪ Wikidata’s internal Data Model, which consits of claims with additional 

context indormation is fitted into a “flat” RDF (directed labelled 
graph/triples) model:

Expressing everthing as a labelled graph
Wikidata’s proprietary reification model

See our recent ISWC2024 tutorial: 
https://ww101.ai.wu.ac.at/
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https://ww101.ai.wu.ac.at/


▪ i.e. this is just an ugly “reified” form  in RDF…

Not all Graphs are equal: Reification

▪ … of what people often call a Labelled Property Graph (LPG)*:
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* Side note: For more details on different (Knowledge) Graph data models and constraint languages see [8]



▪ DBPedia (since 2007) vs. Wikidata (since 2012)

Scale: Let’s have a look at practical examples of such 

collaboratively curated Knowledge Graphs:

• RDF
• SPARQL (standard QL for RDF) endpoint

• Standard Ontology Language (OWL)
• Consistent
• Context

58.167.851 #subjects/nodes
68.687 #properties
1.040.358.853 #triples/edges

1.790.689.565 #subject
(117,467,468 #nodes)
60.099 #properties
106.962 #classes
8.348.213.968 #triples/edges
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https://www.wikidata.org/wiki/Special:Statistics
https://www.wikidata.org/wiki/Special:Statistics
https://w.wiki/EDWL
https://w.wiki/EDWH
https://w.wiki/EDWw


vs. Status of Graph learning?

Large Language Models on Graphs: A Comprehensive Survey (Jin et al. 2023)
https://arxiv.org/abs/2312.02783

Open Graph Benchmark: Datasets for Machine Learning on Graphs (Hu et al. 2020)

https://arxiv.org/abs/2005.00687
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https://ogb.stanford.edu/docs/linkprop/#ogbl-wikikg2
Wikidata extract with 539 relation types… 

https://arxiv.org/abs/2312.02783
https://arxiv.org/abs/2005.00687
https://ogb.stanford.edu/docs/linkprop/
https://ogb.stanford.edu/docs/linkprop/
https://ogb.stanford.edu/docs/linkprop/


▪ KGC23 Keynote: “The Future of Knowledge 

Graphs in a World of LLMs — Denny 
Vrandečić, Wikimedia”

https://www.youtube.com/watch?v=ww99npDh4cg

So, for what are these KGs actually good for 
in the age of LLMs and AI? 

Main task: 

Complete, factually reliable, efficient query answering

https://www.youtube.com/watch?v=ww99npDh4cg


SPARQL: Using KGs to answer questions:

▪ E.g. from

• You can use a language called SPARQL endpoint (roughly: SQL 
for RDF) to do structured queries over RDF: 

• „Cities in the UK with more than 1M population“:

https://en.wikipedia.org/wiki/London http://dbpedia.org/resource/Londo

n

Automatic 

Exctractors

PREFIX : <http://dbpedia.org/resource/>

PREFIX dbo: <http://dbpedia.org/ontology/>

PREFIX yago: <http://dbpedia.org/class/yago/>

SELECT DISTINCT ?city ?pop WHERE { 

?city a schema:City . 

?city dbo:country :United_Kingdom.

?city dbo:populationTotal ?pop 

FILTER ( ?pop > 1000000 )

} 

Structured queries 

(SPARQL):

https://api.triplydb.com/s/gZZskqRpQ
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https://en.wikipedia.org/wiki/London
http://dbpedia.org/resource/London
http://dbpedia.org/resource/London
https://api.triplydb.com/s/gZZskqRpQ


▪ “Simple” surface query:

Which cities in the UK have more than 1M people?

▪ What’s this?

SELECT DISTINCT ?city WHERE { 

?city wdt:P31/wdt:P279* wd:Q515.

?city wdt:P1082 ?population .

?city wdt:P17 wd:Q38 .

FILTER (?population > 1000000) }

The same question as before in Wikidata:
Note: Wikidata
does not use 
standard OWL

Note: Wikidata
uses numeric IDs
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https://query.wikidata.org/


https://w.wiki/BqRX

Which cities in the Austria have more than 1M/2M people?

So, WHEN did Vienna have 2M inhabitants?

The same question as before in Wikidata:

Note: 
Wikidata

also has 

such 
contextual 

information!
!!!
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https://w.wiki/BqRX


https://w.wiki/BqRj

Which cities in the Austria have more than 1M/2M people?

So, WHEN did Vienna have 2M inhabitants? Works!!!!

But needs an understanding of Wikidata’s proprietary RDF reification 
model to model context!

The same question as before in Wikidata:

See our recent ISWC2024 tutorial: 
https://ww101.ai.wu.ac.at/
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https://w.wiki/BqRj
https://ww101.ai.wu.ac.at/


… at least Wikidata also struggles on some questions:  https://w.wiki/CLw9

▪ Public query endpoints (SPARQL) hard to host 

(Note: a bit like hosting/serving large LLMs to many users?)

▪ Complex queries time out

Admittedly, Denny didn’t talk about this…

https://chatgpt.com/share/675585c7-04cc-8006-a20e-c70d75619e13

For the records: comparison with GPT ;-)

Challenge: scaling 
queries to large-scale, 

schemaless KGs 

(complex joint, 
aggregations, … for 

many users)

https://w.wiki/CLw9
https://chatgpt.com/share/675585c7-04cc-8006-a20e-c70d75619e13
https://chatgpt.com/share/675585c7-04cc-8006-a20e-c70d75619e13
https://chatgpt.com/share/675585c7-04cc-8006-a20e-c70d75619e13
https://chatgpt.com/share/675585c7-04cc-8006-a20e-c70d75619e13
https://chatgpt.com/share/675585c7-04cc-8006-a20e-c70d75619e13
https://chatgpt.com/share/675585c7-04cc-8006-a20e-c70d75619e13
https://chatgpt.com/share/675585c7-04cc-8006-a20e-c70d75619e13
https://chatgpt.com/share/675585c7-04cc-8006-a20e-c70d75619e13
https://chatgpt.com/share/675585c7-04cc-8006-a20e-c70d75619e13


▪ Many queries on DBPEdia’s and Wikidata’s SPARQL endpoint time out

▪ What can we do about it?

▪ Bespoke (Compressed) Indexing (HDT)

▪ Partitioning (smart-KG)

Challenges:
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 Compressed, queryable serialization of RDF

 Standardized? W3C member submission 2011: https://www.w3.org/Submission/HDT/

 Allows fast RDF retrieval in compressed space (without prior decompression)

 Includes internal indexes to solve basic queries with small memory footprint.
 Very fast on basic queries (triple patterns), x 1.5 faster than Virtuoso, Jena, RDF3X.

 Supports FULL SPARQL as the compressed backend store of Jena, with an efficiency on the same scale as 
current more optimized solutions

 Challenges:

 Publisher has to pay a bit of overhead to convert the RDF dataset to HDT (but then it is ready 
to consume efficiently!)

 Inefficient for (live) updates … (Note: another parallel to LLMs?)

HDT - a “Knowledge Graph” hacker toolkit

▷Slightly more but you can query!

837 M.triples  
122 GB

NT + gzip 
9.6 GB

HDT 
13 GB
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https://www.w3.org/Submission/HDT/


HDT (Header-Dictionary-Triples) Overview

RDF

Header

Dictionary

Triples

1 aa..
2 ab..

3 bu ..

🞛 metadata describing the RDF dataset

🞛 Mapping between IDs 🞛 🞛 elements in the dataset
aa..

ab..
bu ..

3
2

1

🞛 Structure of the data after the ID replacement
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$ hdtInfo wikidata20210305.hdt

<file://[latest-all.ttl.gz]> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://purl.org/HDT/hdt#Dataset> .

<file://[latest-all.ttl.gz]> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://rdfs.org/ns/void#Dataset> .

<file://[latest-all.ttl.gz]> <http://rdfs.org/ns/void#triples> "14578569927" .

<file://[latest-all.ttl.gz]> <http://rdfs.org/ns/void#properties> "38867" .

<file://[latest-all.ttl.gz]> <http://rdfs.org/ns/void#distinctSubjects> "1625057179" .

<file://[latest-all.ttl.gz]> <http://rdfs.org/ns/void#distinctObjects> "2538585808" .

<file://[latest-all.ttl.gz]> <http://purl.org/HDT/hdt#formatInformation> "_:format" .

_:format <http://purl.org/HDT/hdt#dictionary> "_:dictionary" .

_:format <http://purl.org/HDT/hdt#triples> "_:triples" .

<file://[latest-all.ttl.gz]> <http://purl.org/HDT/hdt#statisticalInformation> "_:statistics" .

<file://[latest-all.ttl.gz]> <http://purl.org/HDT/hdt#publicationInformation> "_:publicationInformation" .

_:publicationInformation <http://purl.org/dc/terms/issued> "2021-04-24T12:42Z" .

_:dictionary <http://purl.org/dc/terms/format> <http://purl.org/HDT/hdt#dictionaryFour> .

_:dictionary <http://purl.org/HDT/hdt#dictionarynumSharedSubjectObject> "1451915667" .

_:triples <http://purl.org/dc/terms/format> <http://purl.org/HDT/hdt#triplesBitmap> .

_:triples <http://purl.org/HDT/hdt#triplesnumTriples> "14578569927" .

_:triples <http://purl.org/HDT/hdt#triplesOrder> "SPO" .

_:statistics <http://purl.org/HDT/hdt#hdtSize> "159085366343" .

HDT – Header information:
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Dictionary+Triples partition

ex:Vienna foaf:name "Vienna"@en.

ex:Javier ex:workPlace ex:Vienna;

foaf:mbox "jfergar@example.org", 

"jfergar@wu.ac.at";

rdf:type ex:Researcher .

ex:Paul ex:birthplace ex:Vienna.

ex:Stefan ex:birthplace ex:Vienna.

Hint: imagine HDT for now 
as "SPO-sorted triples"
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Dictionary+Triples partition

ex:Vienna
ex:Javier
ex:Paul
ex:Researcher
ex:Stefan
ex:birthPlace
ex:workPlace
foaf:mbox
foaf:name
rdf:type
“jfergar@example.org”
“jfergar@wu.ac.at”
“Vienna”@en

1
2
3
4
5
6
7
8
9
10
11
12
13

2 1
7

12

13

9

4

10

8

5

6

3

6
11

8
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Split by role 

Prefix-Based compression for each role

Efficient ID+String operations

Dictionary (in practice)

ex:Vienna
ex:Javier
ex:Paul
ex:Researcher
ex:Stefan
ex:birthPlace
ex:workPlace
foaf:mbox

foaf:name
rdf:type
“jfergar@example.org”
“jfergar@wu.ac.at”
“Vienna”@en

1
2
3
4
5
6
7
8
9
10
11
12
13
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i.e.,dictionary is not 
exactly "SPO-sorted" 

but "SO-S-O-P"-
sorted



relies on prefix-based compression

Each string is encoded with two values

An integer representing the number of characters shared with the previous string

A sequence of characters representing the suffix that is not shared with the previous string 

Dictionary compression: Plain Front Coding (PFC)

A
An
Ant
Antivirus
Antivirus Software
Best

(0,a) (1,n) (2,t) (3,ivirus) (9, Software) (0,Best)

23
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subjects

Objects:

Predicates: 

Bitmap Triples, idea a bit similar to "sorted Turtle":

Bitmap Triples Encoding

▪ We index the bitsequences to provide a SPO index

ex:Vienna foaf:name "Vienna"@en.

ex:Javier ex:workPlace ex:Vienna;

foaf:mbox "jfergar@example.org", 

"jfergar@wu.ac.at";

rdf:type ex:Researcher .

ex:Paul ex:birthplace ex:Vienna.

ex:Stefan ex:birthplace ex:Vienna.

1 4 5.

2 2 1;

3 3, 

4;

5 2.

3 1 1.

4 1 1.
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Bitmap Triples:

Bitmap Triples Encoding

subjects

Objects:

Predicates: 

S P O

S P ?

S ? O

S ? ?

? ? ?

▪ E.g. retrieve (2,5,?)

▪ Find the position of the first and second ‘1’-bits in Bp (select)

▪ Binary search on the list of predicates Sp in this range, looking for 5

▪ Note that such predicate 5 is in position 4 of Sp

▪ Find the position of the fourth ‘1’-bit in Bo (select)  ->  5th position 

▪ i.e. retrieve 5th value of So -> 2
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From the exchanged HDT to the functional HDT-FoQ:

Publish and Exchange HDT  (i.e., Bp,Sp,Bo,So from last slide) and  

At the consumer:

On-the-fly indexes: 
HDT-FoQ (Focus-on-Querying indexes)

Process Type of Index Patterns

index the bitsequences
Subject

SPO

SPO, SP?, 
S??, S?O, ???

index the position of each predicate

(just a position list)
Predicate

PSO ?P?, ?PO

index the position of each object
Object

OPS ??O

1

2

3

Martínez-Prieto, M., M. Arias, and J. Fernández (2012). Exchange and Consumption of Huge RDF Data. In 
Proc. of the 9th Extended Semantic Web Conference (ESWC), pp. 437-452.

separate index 
file , created by 

consumer client 
(or published as 

as well)

26

Efficient “Triple pattern” 
matching, i.e. 
“edge lookups”, e.g.:

{:vienna :country ?.}



rdfhdt.org
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https://github.com/rdfhdt C++ and Java tools

…. a bit like an “ollama for KG querying”

https://github.com/rdfhdt


Useful tool for compressing, querying and exchanging large KGs (esp. 
triple patterns)

Data ready to be consumed in compressed format, 10-15x faster than loading it 
into an RDF triple store
HDT size << any other RDF format || RDF engine 

Competitive query performance.
Very fast on triple patterns, x 1.5 faster (Virtuoso, RDF-3x).

Integration with Jena
Joins on the same scale of existing solutions (Virtuoso, RDF-3x).

Status quo:
Some company takeup (e.g. QA company, data.world), but Open Source HDT 

Development recently less active 

Current RDF Stores like Qlever use similar indexing ideas, 
https://dl.acm.org/doi/10.1145/3132847.3132921

Outlook/Summary: HDT
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https://dl.acm.org/doi/10.1145/3132847.3132921


▪ Many queries on DBPEdia’s and Wikidata’s SPARQL endpoint time out

▪ What can we do about it?

▪ Bespoke (Compressed) Indexing (HDT)

▪ Partitioning (smart-KG)

29

Challenges:



Server Solution: SPARQL Endpoint

Network:

SPARQL 
Endpoint

Server:Client:

"Query Shipping"

fails under concurrency

C1

C4

C7

C3

C6

C2

C5

C8

30



Network:

Web (File) 
Server

Server:Client:

might add prohibitive load on the network

C1

C4

C7

C3

C6

C2

C5

C8

Client Solution: Data Dump

Data Shipping: Dumps
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Network: Server:Client:

still  might add prohibitive load on the network   
(e.g. DBpedia 2016 Dump 34GB for 1.8B triples)

C1

C4

C7

C3

C6

C2

C5

C8

Client Solution: Compressed Dumps

HDTHDTHDTHDT

Data Shipping – using HDT

Web (File) 
Server
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▪ Idea:

• Execute single triple patterns on the server

• Let the clients do JOINs etc. by themselves.

→ less footprint on the server, only triple patterns and intermediate 

results  communicated.

→ can still have significant overhead by large intermediate results

Triple Pattern Fragments (TPF):

HDT

C1
?film ?act

… …

… …

… …

… …

33

R. Verborgh,, M. van der Sande, O. Hartig, J. Van Herwegen, L. De Vocht, B. De Meester, G. Haesendonck, P. Colpaert:

Triple Pattern Fragments: A low-cost knowledge graph interface for the Web. J. Web Semant. 37-38: 184-206 (2016)



O. Hartig and C. B. Aranda. 2016. Bindings-Restricted Triple Pattern Fragments. In ODBASE 2016. 762–779

▪ Idea:

• ship intermediate bindings with TP and let server only return results  
matching results

• → smaller intermediate results, "join work" distributed between client 

and server

Refinement: Binding-restricted
Triple Pattern Fragments (br-TPF):

HDT

C1
?film ?actress

… …?actres
s

…

…

…

…
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Can we do better? Remaining 

Problems:

SPARQL

Endpoint

Data 

Dump

High Availability

High Client cost

Low Server Cost

Low Availability

Low Client Cost

High Server Cost

High Availability

shared Client & 

server cost

(binding-restricted) TPF)

Idea 1: "Partition" Shipping

SMART-KG

• Our experiments show that in highly concurrent query loads, with TPF:

▪ still the server might get blocked

▪ still an unncecessarily high number of (uncompressed) intermediate 
results may be shipped
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Partition Generator (PG): Upon loading a graph KG G, decompose it into 
partitions G1,...,Gm, one per "predicate family".

smart-KG server: "Family" Partitions

Emma

Oxford University

“Emma Watson” 

Brad

"BradPitt"

Angelina

“Angelina Jolie"

spouse

University of Missouri

worksIn

Shawnee, OK

F1: {name, birthPlace, spouse, almaMater}

F2: {name, birthPlace, spouse}

F3: {name, birthPlace,almaMater, worksIn}

birthPlace

F4: {name, country, capitalOf}

F4: {name, founded, numberOfStudents}
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Partition Generator (PG): Upon loading a graph KG G, decompose it into 
partitions G1,...,Gm, one per "predicate family"   … and convert these to HDTs.

smart-KG server: Predicate "Family" 

Generator

Family1.hdt Family2.hdt Family3.hdt

Brad

birthPlace
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1. Client decomposes BGPs into "stars"

2. Retrieve relevant information from server to make a query plan

3. Retrieve and joins matching HDT partitions one by one 

(use TPF for 1-triple patterns and "pruned" partitions)

Smart-KG query Processing:

KG Partitions (separate HDTs)

C1

F?:{starring, name}

F?:{wikiPageExtLink, birthPlace, gender}

TPF

38



▪ Further details, cf. [8]:

• predicate-restricted families, i.e. pruning+merging:

• too rare or 

• too common

predicates for partitioning

Example: for DBpedia, a naive partitioning would create +600k partially very large families, which are 

unfeasible to serve.

• client-side partition caching

Smart-KG:

F1: {name, birthPlace, spouse, almaMater}F2: {name, birthPlace, spouse}e.g

F1_2: {name, birthPlace, spouse, almaMater}

39



Can we do (even) better? 

Refinements:

SPARQL

Endpoint

Data 

Dump

High Availability

High Client cost

Low Server Cost

Low Availability

Low Client Cost

High Server Cost

High Availability

shared Client & 

server cost

(binding-restricted) TPF)

[3] Combined client & server processing
[2] Further refinement partitioning per node types (rather 
than predicates only).

SMART-KG

• In partition shipping, the server is mainly a Web Server distributing partial 
dumps

• Desideratum: Server should process queries  "as far as possible"

[2,3]
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▪ Could similar ideas for modularization work for (agent-based) models?

▪ Combination of agent frameworks and KGs in extensions of (modular) 
Graph RAG?

▪ (How to) take context information into account for partitioning/indexing?

Possible Discussion/Further ideas:
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▪ How good or bad are KGs with Question can answering? 

▪ Interesting Note  - IBM Watson  - Jeopardy! (2011) 

“Super-human” Question Answering was achieved by Knowledge Graphs before the LLM hype! 

Our own contribution in this area:

▪ Svitlana Vakulenko, Javier Fernández, Axel Polleres, Maarten de Rijke, and Michael Cochez. 
Message passing for complex question answering over knowledge graphs. In Proceedings of the 28th 
ACM International Conference on Information and Knowledge Management (CIKM2019, pages 1431--
1440, Beijing, China, November 2019. ACM.

Another application: 
How good or bad are KGs with Question answering? 

will return to us via VRG                grant!
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Typical approach 

▪ Natural Language question:

“Which company assembles its hardtop style cars in Broadmeadows, Victoria?”

▪ Map to a query (or graph matching) on a KG

▪ Involves typically steps:

▪ Entity & Relation linking

▪ Query building (Relation directionality, …)

▪ …

Another application of HDT: 
“Message-passing based” KGQA

?C
assembly

Broadmeadows, 
Victoria?Car

style

Hardtop

company

SELECT ?C 

WHERE {  ?Car dbo:company ?C .

?Car dbo:assembly .

?Car style dbr:Breadmedows.}
43



Typical approach 

▪ Natural Language question:

“Which company assembles its hardtop style cars in Broadmeadows, Victoria?”

▪ Map to a query (or graph matching) on a KG

▪ Problems: 

▪ Language ambiguity

▪ Structure could look entirely different

▪ → (too) large search space

Another application of HDT: 
“Message-passing based” KGQA

?C

located_in
Broadmeadows, 

Victoria

?Car

style

Hardtop

produces

44



▪ Step 1: 

▪ divide query into “hops” of simple (single “star-shaped”) subquestions

▪ Parse subquestion matching (in parallel) relevant entities and relations with 
confidence scores

▪ Step 2: propagating and aggregate these confidence scores over the KG via 
message-passing

→ Idea: Possible answers are nodes with highest confidence

We model questions (roughly) as sequences over a number of hops where each hop 
consists of 

E … (candidate) entity sets, 

P … candicate property sets, 

C … candidate class sets the enity belong to

Better approach:

?C
assembly

Broadmeadows, 
Victoria?Car

style

Hardtop

company

hop 1

hop 2
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▪ Step 1: (a) Parse question and  (b) matching (in parallel) relevant entities and relations with 
confidence scores

We model questions (roughly) as sequences over a number of hops where each hop consists of 

E … (candidate) entity sets, 

P … candicate property sets, 

C … candidate class sets the enity belong to

Better approach:

hop 1hop 2

(a) Using sequence 
labeling with 

conditional random 
fields

(b) for each entity (or property, 
class, resp.) reference in, we 
retrieve a ranked list of most 
similar entities from the KG 

along with the matching 
confidence score.
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▪ Step 2: propagating and aggregate these confidence scores over the KG 

via message-passing (hop, by hop)

▪ Hop 1 candidate subgraph and score aggregation:

ai … answers in hop i

Better approach:

Note:
The weight propagation is less 
important than the fact that we 

use HDT for very efficient 
retrieval of the relevant 

subgraphs in each step in the 
implementation.

Note: once retrieved we do not 
consider direction of the edges 

in the original graph here.
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Bottomline:

▪ message-passing in the undirected subgraphs and 

▪ efficient retrieval of these subgraphs (HDT), where sufficient to significantly 
improve over “query formulation” approaches on KGQA Benchmarks, e.g. 
QALD.

▪ Note/Disclaimer:

▪ That’s where I left off

▪ The part I contributed in the paper was minor.

Discussion (we’re only starting to look into this):

▪ Could similar ideas improve other Graph tasks?

▪ How does this relate to other Graph Learning tasks that rely on efficient 
subgraph retrieval?

▪ Tying back to the first part: Do these tasks need the whole graph can they 
also benefit from modularization/partitioning?

▪ How scalable are other graph learning to Collaborative KGs?

▪ (How) do efficent representations for exact retrieval (i.e., indexing) relate to 
vectorized graph representations (embeddings)…?

▪ … and can we leverage retrieval-efficient representations in Graph-Learning?

+ ?
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Motivation

In our group we have done a lot of work on 

• Querying 

• Analysing, and

• Improving the quality

of Collaborative KGs at scale

Link analysis [5,6]

More things I did not talkabout:

Constraint checking 
and repair [7,      ]
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