
Axel Polleres

Vienna University of Economics and Business (WU)
Institute for Data, Process and Knowledge Management

Querying (Knowledge) Graphs
(vs. Graph Learning and LLMs?)

Recap of some past work and how it could connect to the present

The presented research was
funded in whole or in part
by the Austrian Science Fund
(FWF) [10.55776/COE12]

Outline

 Background: Collaborative KGs

 Efficient KG Archiving and Querying with HDT [1]

 Applications:

 Making SPARQL endpoints more efficient [2,3]

 Making Message-Passing-based Graph processing more

efficient [4]

 Open Questions … many ☺

2

Motivation

3

In our group we have done a lot of work on

• querying,

• analysing, and

• improving the quality

of Collaborative KGs at scale

Collaborative, Open Knowledge Graphs:
DBpedia

RDF+OWL:

Data +
“Ontology” (i.e.

class and property

hierarchy) both
encoded in a directed

labeled graph:

4

Collaborative, Open Knowledge Graphs:
Wikidata

5

▪ Wikidata’s internal Data Model, which consits of claims with additional

context indormation is fitted into a “flat” RDF (directed labelled
graph/triples) model:

Expressing everthing as a labelled graph
Wikidata’s proprietary reification model

See our recent ISWC2024 tutorial:
https://ww101.ai.wu.ac.at/

6

https://ww101.ai.wu.ac.at/

▪ i.e. this is just an ugly “reified” form in RDF…

Not all Graphs are equal: Reification

▪ … of what people often call a Labelled Property Graph (LPG)*:

7

* Side note: For more details on different (Knowledge) Graph data models and constraint languages see [8]

▪ DBPedia (since 2007) vs. Wikidata (since 2012)

Scale: Let’s have a look at practical examples of such

collaboratively curated Knowledge Graphs:

• RDF
• SPARQL (standard QL for RDF) endpoint

• Standard Ontology Language (OWL)
• Consistent
• Context

58.167.851 #subjects/nodes
68.687 #properties
1.040.358.853 #triples/edges

1.790.689.565 #subject
(117,467,468 #nodes)
60.099 #properties
106.962 #classes
8.348.213.968 #triples/edges

8

https://www.wikidata.org/wiki/Special:Statistics
https://www.wikidata.org/wiki/Special:Statistics
https://w.wiki/EDWL
https://w.wiki/EDWH
https://w.wiki/EDWw

vs. Status of Graph learning?

Large Language Models on Graphs: A Comprehensive Survey (Jin et al. 2023)
https://arxiv.org/abs/2312.02783

Open Graph Benchmark: Datasets for Machine Learning on Graphs (Hu et al. 2020)

https://arxiv.org/abs/2005.00687

9

https://ogb.stanford.edu/docs/linkprop/#ogbl-wikikg2
Wikidata extract with 539 relation types…

https://arxiv.org/abs/2312.02783
https://arxiv.org/abs/2005.00687
https://ogb.stanford.edu/docs/linkprop/
https://ogb.stanford.edu/docs/linkprop/
https://ogb.stanford.edu/docs/linkprop/

▪ KGC23 Keynote: “The Future of Knowledge

Graphs in a World of LLMs — Denny
Vrandečić, Wikimedia”

https://www.youtube.com/watch?v=ww99npDh4cg

So, for what are these KGs actually good for
in the age of LLMs and AI?

Main task:

Complete, factually reliable, efficient query answering

https://www.youtube.com/watch?v=ww99npDh4cg

SPARQL: Using KGs to answer questions:

▪ E.g. from

• You can use a language called SPARQL endpoint (roughly: SQL
for RDF) to do structured queries over RDF:

• „Cities in the UK with more than 1M population“:

https://en.wikipedia.org/wiki/London http://dbpedia.org/resource/Londo

n

Automatic

Exctractors

PREFIX : <http://dbpedia.org/resource/>

PREFIX dbo: <http://dbpedia.org/ontology/>

PREFIX yago: <http://dbpedia.org/class/yago/>

SELECT DISTINCT ?city ?pop WHERE {

?city a schema:City .

?city dbo:country :United_Kingdom.

?city dbo:populationTotal ?pop

FILTER (?pop > 1000000)

}

Structured queries

(SPARQL):

https://api.triplydb.com/s/gZZskqRpQ

11

https://en.wikipedia.org/wiki/London
http://dbpedia.org/resource/London
http://dbpedia.org/resource/London
https://api.triplydb.com/s/gZZskqRpQ

▪ “Simple” surface query:

Which cities in the UK have more than 1M people?

▪ What’s this?

SELECT DISTINCT ?city WHERE {

?city wdt:P31/wdt:P279* wd:Q515.

?city wdt:P1082 ?population .

?city wdt:P17 wd:Q38 .

FILTER (?population > 1000000) }

The same question as before in Wikidata:
Note: Wikidata
does not use
standard OWL

Note: Wikidata
uses numeric IDs

12

https://query.wikidata.org/

https://w.wiki/BqRX

Which cities in the Austria have more than 1M/2M people?

So, WHEN did Vienna have 2M inhabitants?

The same question as before in Wikidata:

Note:
Wikidata

also has

such
contextual

information!
!!!

13

https://w.wiki/BqRX

https://w.wiki/BqRj

Which cities in the Austria have more than 1M/2M people?

So, WHEN did Vienna have 2M inhabitants? Works!!!!

But needs an understanding of Wikidata’s proprietary RDF reification
model to model context!

The same question as before in Wikidata:

See our recent ISWC2024 tutorial:
https://ww101.ai.wu.ac.at/

14

https://w.wiki/BqRj
https://ww101.ai.wu.ac.at/

… at least Wikidata also struggles on some questions: https://w.wiki/CLw9

▪ Public query endpoints (SPARQL) hard to host

(Note: a bit like hosting/serving large LLMs to many users?)

▪ Complex queries time out

Admittedly, Denny didn’t talk about this…

https://chatgpt.com/share/675585c7-04cc-8006-a20e-c70d75619e13

For the records: comparison with GPT ;-)

Challenge: scaling
queries to large-scale,

schemaless KGs

(complex joint,
aggregations, … for

many users)

https://w.wiki/CLw9
https://chatgpt.com/share/675585c7-04cc-8006-a20e-c70d75619e13
https://chatgpt.com/share/675585c7-04cc-8006-a20e-c70d75619e13
https://chatgpt.com/share/675585c7-04cc-8006-a20e-c70d75619e13
https://chatgpt.com/share/675585c7-04cc-8006-a20e-c70d75619e13
https://chatgpt.com/share/675585c7-04cc-8006-a20e-c70d75619e13
https://chatgpt.com/share/675585c7-04cc-8006-a20e-c70d75619e13
https://chatgpt.com/share/675585c7-04cc-8006-a20e-c70d75619e13
https://chatgpt.com/share/675585c7-04cc-8006-a20e-c70d75619e13
https://chatgpt.com/share/675585c7-04cc-8006-a20e-c70d75619e13

▪ Many queries on DBPEdia’s and Wikidata’s SPARQL endpoint time out

▪ What can we do about it?

▪ Bespoke (Compressed) Indexing (HDT)

▪ Partitioning (smart-KG)

Challenges:

16

 Compressed, queryable serialization of RDF

 Standardized? W3C member submission 2011: https://www.w3.org/Submission/HDT/

 Allows fast RDF retrieval in compressed space (without prior decompression)

 Includes internal indexes to solve basic queries with small memory footprint.
 Very fast on basic queries (triple patterns), x 1.5 faster than Virtuoso, Jena, RDF3X.

 Supports FULL SPARQL as the compressed backend store of Jena, with an efficiency on the same scale as
current more optimized solutions

 Challenges:

 Publisher has to pay a bit of overhead to convert the RDF dataset to HDT (but then it is ready
to consume efficiently!)

 Inefficient for (live) updates … (Note: another parallel to LLMs?)

HDT - a “Knowledge Graph” hacker toolkit

▷Slightly more but you can query!

837 M.triples
122 GB

NT + gzip
9.6 GB

HDT
13 GB

17

https://www.w3.org/Submission/HDT/

HDT (Header-Dictionary-Triples) Overview

RDF

Header

Dictionary

Triples

1 aa..
2 ab..

3 bu ..

🞛 metadata describing the RDF dataset

🞛 Mapping between IDs 🞛 🞛 elements in the dataset
aa..

ab..
bu ..

3
2

1

🞛 Structure of the data after the ID replacement

18

$ hdtInfo wikidata20210305.hdt

<file://[latest-all.ttl.gz]> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://purl.org/HDT/hdt#Dataset> .

<file://[latest-all.ttl.gz]> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://rdfs.org/ns/void#Dataset> .

<file://[latest-all.ttl.gz]> <http://rdfs.org/ns/void#triples> "14578569927" .

<file://[latest-all.ttl.gz]> <http://rdfs.org/ns/void#properties> "38867" .

<file://[latest-all.ttl.gz]> <http://rdfs.org/ns/void#distinctSubjects> "1625057179" .

<file://[latest-all.ttl.gz]> <http://rdfs.org/ns/void#distinctObjects> "2538585808" .

<file://[latest-all.ttl.gz]> <http://purl.org/HDT/hdt#formatInformation> "_:format" .

:format <http://purl.org/HDT/hdt#dictionary> ":dictionary" .

:format <http://purl.org/HDT/hdt#triples> ":triples" .

<file://[latest-all.ttl.gz]> <http://purl.org/HDT/hdt#statisticalInformation> "_:statistics" .

<file://[latest-all.ttl.gz]> <http://purl.org/HDT/hdt#publicationInformation> "_:publicationInformation" .

_:publicationInformation <http://purl.org/dc/terms/issued> "2021-04-24T12:42Z" .

_:dictionary <http://purl.org/dc/terms/format> <http://purl.org/HDT/hdt#dictionaryFour> .

_:dictionary <http://purl.org/HDT/hdt#dictionarynumSharedSubjectObject> "1451915667" .

_:triples <http://purl.org/dc/terms/format> <http://purl.org/HDT/hdt#triplesBitmap> .

_:triples <http://purl.org/HDT/hdt#triplesnumTriples> "14578569927" .

_:triples <http://purl.org/HDT/hdt#triplesOrder> "SPO" .

_:statistics <http://purl.org/HDT/hdt#hdtSize> "159085366343" .

HDT – Header information:

19

Dictionary+Triples partition

ex:Vienna foaf:name "Vienna"@en.

ex:Javier ex:workPlace ex:Vienna;

foaf:mbox "jfergar@example.org",

"jfergar@wu.ac.at";

rdf:type ex:Researcher .

ex:Paul ex:birthplace ex:Vienna.

ex:Stefan ex:birthplace ex:Vienna.

Hint: imagine HDT for now
as "SPO-sorted triples"

20

21

Dictionary+Triples partition

ex:Vienna
ex:Javier
ex:Paul
ex:Researcher
ex:Stefan
ex:birthPlace
ex:workPlace
foaf:mbox
foaf:name
rdf:type
“jfergar@example.org”
“jfergar@wu.ac.at”
“Vienna”@en

1
2
3
4
5
6
7
8
9
10
11
12
13

2 1
7

12

13

9

4

10

8

5

6

3

6
11

8

21

Split by role

Prefix-Based compression for each role

Efficient ID+String operations

Dictionary (in practice)

ex:Vienna
ex:Javier
ex:Paul
ex:Researcher
ex:Stefan
ex:birthPlace
ex:workPlace
foaf:mbox

foaf:name
rdf:type
“jfergar@example.org”
“jfergar@wu.ac.at”
“Vienna”@en

1
2
3
4
5
6
7
8
9
10
11
12
13

22

i.e.,dictionary is not
exactly "SPO-sorted"

but "SO-S-O-P"-
sorted

relies on prefix-based compression

Each string is encoded with two values

An integer representing the number of characters shared with the previous string

A sequence of characters representing the suffix that is not shared with the previous string

Dictionary compression: Plain Front Coding (PFC)

A
An
Ant
Antivirus
Antivirus Software
Best

(0,a) (1,n) (2,t) (3,ivirus) (9, Software) (0,Best)

23

23

subjects

Objects:

Predicates:

Bitmap Triples, idea a bit similar to "sorted Turtle":

Bitmap Triples Encoding

▪ We index the bitsequences to provide a SPO index

ex:Vienna foaf:name "Vienna"@en.

ex:Javier ex:workPlace ex:Vienna;

foaf:mbox "jfergar@example.org",

"jfergar@wu.ac.at";

rdf:type ex:Researcher .

ex:Paul ex:birthplace ex:Vienna.

ex:Stefan ex:birthplace ex:Vienna.

1 4 5.

2 2 1;

3 3,

4;

5 2.

3 1 1.

4 1 1.

24

Bitmap Triples:

Bitmap Triples Encoding

subjects

Objects:

Predicates:

S P O

S P ?

S ? O

S ? ?

? ? ?

▪ E.g. retrieve (2,5,?)

▪ Find the position of the first and second ‘1’-bits in Bp (select)

▪ Binary search on the list of predicates Sp in this range, looking for 5

▪ Note that such predicate 5 is in position 4 of Sp

▪ Find the position of the fourth ‘1’-bit in Bo (select) -> 5th position

▪ i.e. retrieve 5th value of So -> 2

25

From the exchanged HDT to the functional HDT-FoQ:

Publish and Exchange HDT (i.e., Bp,Sp,Bo,So from last slide) and

At the consumer:

On-the-fly indexes:
HDT-FoQ (Focus-on-Querying indexes)

Process Type of Index Patterns

index the bitsequences
Subject

SPO

SPO, SP?,
S??, S?O, ???

index the position of each predicate

(just a position list)
Predicate

PSO ?P?, ?PO

index the position of each object
Object

OPS ??O

1

2

3

Martínez-Prieto, M., M. Arias, and J. Fernández (2012). Exchange and Consumption of Huge RDF Data. In
Proc. of the 9th Extended Semantic Web Conference (ESWC), pp. 437-452.

separate index
file , created by

consumer client
(or published as

as well)

26

Efficient “Triple pattern”
matching, i.e.
“edge lookups”, e.g.:

{:vienna :country ?.}

rdfhdt.org

27

https://github.com/rdfhdt C++ and Java tools

…. a bit like an “ollama for KG querying”

https://github.com/rdfhdt

Useful tool for compressing, querying and exchanging large KGs (esp.
triple patterns)

Data ready to be consumed in compressed format, 10-15x faster than loading it
into an RDF triple store
HDT size << any other RDF format || RDF engine

Competitive query performance.
Very fast on triple patterns, x 1.5 faster (Virtuoso, RDF-3x).

Integration with Jena
Joins on the same scale of existing solutions (Virtuoso, RDF-3x).

Status quo:
Some company takeup (e.g. QA company, data.world), but Open Source HDT

Development recently less active

Current RDF Stores like Qlever use similar indexing ideas,
https://dl.acm.org/doi/10.1145/3132847.3132921

Outlook/Summary: HDT

28

https://dl.acm.org/doi/10.1145/3132847.3132921

▪ Many queries on DBPEdia’s and Wikidata’s SPARQL endpoint time out

▪ What can we do about it?

▪ Bespoke (Compressed) Indexing (HDT)

▪ Partitioning (smart-KG)

29

Challenges:

Server Solution: SPARQL Endpoint

Network:

SPARQL
Endpoint

Server:Client:

"Query Shipping"

fails under concurrency

C1

C4

C7

C3

C6

C2

C5

C8

30

Network:

Web (File)
Server

Server:Client:

might add prohibitive load on the network

C1

C4

C7

C3

C6

C2

C5

C8

Client Solution: Data Dump

Data Shipping: Dumps

31

Network: Server:Client:

still might add prohibitive load on the network
(e.g. DBpedia 2016 Dump 34GB for 1.8B triples)

C1

C4

C7

C3

C6

C2

C5

C8

Client Solution: Compressed Dumps

HDTHDTHDTHDT

Data Shipping – using HDT

Web (File)
Server

32

▪ Idea:

• Execute single triple patterns on the server

• Let the clients do JOINs etc. by themselves.

→ less footprint on the server, only triple patterns and intermediate

results communicated.

→ can still have significant overhead by large intermediate results

Triple Pattern Fragments (TPF):

HDT

C1
?film ?act

… …

… …

… …

… …

33

R. Verborgh,, M. van der Sande, O. Hartig, J. Van Herwegen, L. De Vocht, B. De Meester, G. Haesendonck, P. Colpaert:

Triple Pattern Fragments: A low-cost knowledge graph interface for the Web. J. Web Semant. 37-38: 184-206 (2016)

O. Hartig and C. B. Aranda. 2016. Bindings-Restricted Triple Pattern Fragments. In ODBASE 2016. 762–779

▪ Idea:

• ship intermediate bindings with TP and let server only return results
matching results

• → smaller intermediate results, "join work" distributed between client

and server

Refinement: Binding-restricted
Triple Pattern Fragments (br-TPF):

HDT

C1
?film ?actress

… …?actres
s

…

…

…

…

34

Can we do better? Remaining

Problems:

SPARQL

Endpoint

Data

Dump

High Availability

High Client cost

Low Server Cost

Low Availability

Low Client Cost

High Server Cost

High Availability

shared Client &

server cost

(binding-restricted) TPF)

Idea 1: "Partition" Shipping

SMART-KG

• Our experiments show that in highly concurrent query loads, with TPF:

▪ still the server might get blocked

▪ still an unncecessarily high number of (uncompressed) intermediate
results may be shipped

35

Partition Generator (PG): Upon loading a graph KG G, decompose it into
partitions G1,...,Gm, one per "predicate family".

smart-KG server: "Family" Partitions

Emma

Oxford University

“Emma Watson”

Brad

"BradPitt"

Angelina

“Angelina Jolie"

spouse

University of Missouri

worksIn

Shawnee, OK

F1: {name, birthPlace, spouse, almaMater}

F2: {name, birthPlace, spouse}

F3: {name, birthPlace,almaMater, worksIn}

birthPlace

F4: {name, country, capitalOf}

F4: {name, founded, numberOfStudents}

36

Partition Generator (PG): Upon loading a graph KG G, decompose it into
partitions G1,...,Gm, one per "predicate family" … and convert these to HDTs.

smart-KG server: Predicate "Family"

Generator

Family1.hdt Family2.hdt Family3.hdt

Brad

birthPlace

37

1. Client decomposes BGPs into "stars"

2. Retrieve relevant information from server to make a query plan

3. Retrieve and joins matching HDT partitions one by one

(use TPF for 1-triple patterns and "pruned" partitions)

Smart-KG query Processing:

KG Partitions (separate HDTs)

C1

F?:{starring, name}

F?:{wikiPageExtLink, birthPlace, gender}

TPF

38

▪ Further details, cf. [8]:

• predicate-restricted families, i.e. pruning+merging:

• too rare or

• too common

predicates for partitioning

Example: for DBpedia, a naive partitioning would create +600k partially very large families, which are

unfeasible to serve.

• client-side partition caching

Smart-KG:

F1: {name, birthPlace, spouse, almaMater}F2: {name, birthPlace, spouse}e.g

F1_2: {name, birthPlace, spouse, almaMater}

39

Can we do (even) better?

Refinements:

SPARQL

Endpoint

Data

Dump

High Availability

High Client cost

Low Server Cost

Low Availability

Low Client Cost

High Server Cost

High Availability

shared Client &

server cost

(binding-restricted) TPF)

[3] Combined client & server processing
[2] Further refinement partitioning per node types (rather
than predicates only).

SMART-KG

• In partition shipping, the server is mainly a Web Server distributing partial
dumps

• Desideratum: Server should process queries "as far as possible"

[2,3]

40

▪ Could similar ideas for modularization work for (agent-based) models?

▪ Combination of agent frameworks and KGs in extensions of (modular)
Graph RAG?

▪ (How to) take context information into account for partitioning/indexing?

Possible Discussion/Further ideas:

41

▪ How good or bad are KGs with Question can answering?

▪ Interesting Note - IBM Watson - Jeopardy! (2011)

“Super-human” Question Answering was achieved by Knowledge Graphs before the LLM hype!

Our own contribution in this area:

▪ Svitlana Vakulenko, Javier Fernández, Axel Polleres, Maarten de Rijke, and Michael Cochez.
Message passing for complex question answering over knowledge graphs. In Proceedings of the 28th
ACM International Conference on Information and Knowledge Management (CIKM2019, pages 1431--
1440, Beijing, China, November 2019. ACM.

Another application:
How good or bad are KGs with Question answering?

will return to us via VRG grant!

42

Typical approach

▪ Natural Language question:

“Which company assembles its hardtop style cars in Broadmeadows, Victoria?”

▪ Map to a query (or graph matching) on a KG

▪ Involves typically steps:

▪ Entity & Relation linking

▪ Query building (Relation directionality, …)

▪ …

Another application of HDT:
“Message-passing based” KGQA

?C
assembly

Broadmeadows,
Victoria?Car

style

Hardtop

company

SELECT ?C

WHERE { ?Car dbo:company ?C .

?Car dbo:assembly .

?Car style dbr:Breadmedows.}
43

Typical approach

▪ Natural Language question:

“Which company assembles its hardtop style cars in Broadmeadows, Victoria?”

▪ Map to a query (or graph matching) on a KG

▪ Problems:

▪ Language ambiguity

▪ Structure could look entirely different

▪ → (too) large search space

Another application of HDT:
“Message-passing based” KGQA

?C

located_in
Broadmeadows,

Victoria

?Car

style

Hardtop

produces

44

▪ Step 1:

▪ divide query into “hops” of simple (single “star-shaped”) subquestions

▪ Parse subquestion matching (in parallel) relevant entities and relations with
confidence scores

▪ Step 2: propagating and aggregate these confidence scores over the KG via
message-passing

→ Idea: Possible answers are nodes with highest confidence

We model questions (roughly) as sequences over a number of hops where each hop
consists of

E … (candidate) entity sets,

P … candicate property sets,

C … candidate class sets the enity belong to

Better approach:

?C
assembly

Broadmeadows,
Victoria?Car

style

Hardtop

company

hop 1

hop 2

45

▪ Step 1: (a) Parse question and (b) matching (in parallel) relevant entities and relations with
confidence scores

We model questions (roughly) as sequences over a number of hops where each hop consists of

E … (candidate) entity sets,

P … candicate property sets,

C … candidate class sets the enity belong to

Better approach:

hop 1hop 2

(a) Using sequence
labeling with

conditional random
fields

(b) for each entity (or property,
class, resp.) reference in, we
retrieve a ranked list of most
similar entities from the KG

along with the matching
confidence score.

46

▪ Step 2: propagating and aggregate these confidence scores over the KG

via message-passing (hop, by hop)

▪ Hop 1 candidate subgraph and score aggregation:

ai … answers in hop i

Better approach:

Note:
The weight propagation is less
important than the fact that we

use HDT for very efficient
retrieval of the relevant

subgraphs in each step in the
implementation.

Note: once retrieved we do not
consider direction of the edges

in the original graph here.

47

Bottomline:

▪ message-passing in the undirected subgraphs and

▪ efficient retrieval of these subgraphs (HDT), where sufficient to significantly
improve over “query formulation” approaches on KGQA Benchmarks, e.g.
QALD.

▪ Note/Disclaimer:

▪ That’s where I left off

▪ The part I contributed in the paper was minor.

Discussion (we’re only starting to look into this):

▪ Could similar ideas improve other Graph tasks?

▪ How does this relate to other Graph Learning tasks that rely on efficient
subgraph retrieval?

▪ Tying back to the first part: Do these tasks need the whole graph can they
also benefit from modularization/partitioning?

▪ How scalable are other graph learning to Collaborative KGs?

▪ (How) do efficent representations for exact retrieval (i.e., indexing) relate to
vectorized graph representations (embeddings)…?

▪ … and can we leverage retrieval-efficient representations in Graph-Learning?

+ ?

48

Motivation

In our group we have done a lot of work on

• Querying

• Analysing, and

• Improving the quality

of Collaborative KGs at scale

Link analysis [5,6]

More things I did not talkabout:

Constraint checking
and repair [7,]

49

References:

1. Javier D. Fernández, Miguel A. Martinez-Prieto, Claudio Gutiérrez, Axel Polleres, and Mario Arias. Binary
RDF Representation for Publication and Exchange (HDT). Journal of Web Semantics (JWS), 19(2),
2013 https://dl.acm.org/doi/10.1016/j.websem.2013.01.002

2. Amr Azzam, Axel Polleres, Javier D. Fernandez, and Maribel Acosta. smart-KG: Partition-based linked
data fragments for querying knowledge graphs. Semantic Web -- Interoperability, Usability, Applicability
(SWJ), 15(5):1791--1835, 2024. http://dx.doi.org/10.3233/SW-243571

3. Amr Azzam, Christian Aebeloe, Gabriela Montoya, Ilkcan Keles, Axel Polleres, and Katja Hose. WiseKG:
Balanced Access to Web Knowledge Graphs. In Proceedings of the Web Conference 2021, pages 1422–--
1434, Ljubljana, Slovenia, 2021. ACM / IW3C2. https://doi.org/10.1145/3442381.3449911

4. Svitlana Vakulenko, Javier Fernández, Axel Polleres, Maarten de Rijke, and Michael Cochez. Message
passing for complex question answering over knowledge graphs. In Proceedings of the 28th ACM
International Conference on Information and Knowledge Management (CIKM2019, pages 1431--1440,
Beijing, China, November 2019. ACM. http://dx.doi.org/10.1145/3357384.3358026

5. Armin Haller, Javier D. Fernández, Maulik R. Kamdar, and Axel Polleres. What are links in linked open
data? a characterization and evaluation of links between knowledge graphs on the web. ACM Journal of
Data and Information Quality (JDIQ), 2(2):1–--34, May 2020. http://dx.doi.org/10.1145/3369875

6. Romana Pernisch, Daniil Dobriy, and Axel Polleres. The massive problem of remote changes in ontology
reuse. In The Web Conference 2025, Sydney, Australia, 2025. WWW25 Companion Proceedings, to
appear (short paper)

7. Nicolas Ferranti, Jairo Francisco de Souza, Shqiponja Ahmetaj, and Axel Polleres. Formalizing and
validating Wikidata's property constraints using SHACL and SPARQL. Semantic Web -- Interoperability,
Usability, Applicability (SWJ), 2024. https://journals.sagepub.com/doi/epub/10.3233/SW-243611

8. Shqiponja Ahmetaj, Iovka Boneva, Jan Hidders, Katja Hose, Maxime Jakubowski, Jose-Emilio Labra-
Gayo, Wim Martens, Filip Murlak, Cem Okulmus, Axel Polleres, Ognjen Savković, and Mantas Simkus ans
Dominik Tomaszuk. Common foundations for SHACL, PShEx, and PG-Schema. In The Web Conference
2025, Sydney, Australia, 2025. http://dx.doi.org/10.1145/3696410.3714694

50

https://journals.sagepub.com/doi/epub/10.3233/SW-243611
https://journals.sagepub.com/doi/epub/10.3233/SW-243611
https://journals.sagepub.com/doi/epub/10.3233/SW-243611
http://dx.doi.org/10.1145/3696410.3714694

	Slide 1: Querying (Knowledge) Graphs (vs. Graph Learning and LLMs?) Recap of some past work and how it could connect to the present
	Slide 2: Outline
	Slide 3: Motivation
	Slide 4: Collaborative, Open Knowledge Graphs: DBpedia
	Slide 5: Collaborative, Open Knowledge Graphs: Wikidata
	Slide 6: Expressing everthing as a labelled graph Wikidata’s proprietary reification model
	Slide 7: Not all Graphs are equal: Reification
	Slide 8: Scale: Let’s have a look at practical examples of such collaboratively curated Knowledge Graphs:
	Slide 9: vs. Status of Graph learning?
	Slide 10: So, for what are these KGs actually good for in the age of LLMs and AI?
	Slide 11: SPARQL: Using KGs to answer questions:
	Slide 12: The same question as before in Wikidata:
	Slide 13: The same question as before in Wikidata:
	Slide 14: The same question as before in Wikidata:
	Slide 15: Admittedly, Denny didn’t talk about this…
	Slide 16: Challenges:
	Slide 17: HDT - a “Knowledge Graph” hacker toolkit
	Slide 18: HDT (Header-Dictionary-Triples) Overview
	Slide 19: HDT – Header information:
	Slide 20: Dictionary+Triples partition
	Slide 21: Dictionary+Triples partition
	Slide 22: Dictionary (in practice)
	Slide 23: Dictionary compression: Plain Front Coding (PFC)
	Slide 24: Bitmap Triples Encoding
	Slide 25: Bitmap Triples Encoding
	Slide 26: On-the-fly indexes: HDT-FoQ (Focus-on-Querying indexes)
	Slide 27: rdfhdt.org
	Slide 28: Outlook/Summary: HDT
	Slide 29: Challenges:
	Slide 30: Server Solution: SPARQL Endpoint
	Slide 31: Client Solution: Data Dump
	Slide 32: Client Solution: Compressed Dumps
	Slide 33: Triple Pattern Fragments (TPF):
	Slide 34: Refinement: Binding-restricted Triple Pattern Fragments (br-TPF):
	Slide 35: Can we do better? Remaining Problems:
	Slide 36: smart-KG server: "Family" Partitions
	Slide 37: smart-KG server: Predicate "Family" Generator
	Slide 38: Smart-KG query Processing:
	Slide 39: Smart-KG:
	Slide 40: Can we do (even) better? Refinements:
	Slide 41: Possible Discussion/Further ideas:
	Slide 42
	Slide 43: Another application of HDT: “Message-passing based” KGQA
	Slide 44: Another application of HDT: “Message-passing based” KGQA
	Slide 45: Better approach:
	Slide 46: Better approach:
	Slide 47: Better approach:
	Slide 48: Bottomline:
	Slide 49: Motivation
	Slide 50: References:

