

SPARQL Extensibility
● Arbitrary functions in FILTERs

– Identified by URI
– Can extend operators as well

● New semantics for Basic Graph Patterns
– BGPs extract mappings from data sets

● The algebra is independent of the extraction
– We hope!

– One document/graph has many semantics
● Simple, RDF, RDFS, OWL....

– Queries (should be) sensitive to the semantics
● See prior unit for some examples (RDF, etc.)

Trickiness
● Controlling answers

– Too many:
● Simple entailment can yield infinite answers

– Too few:
● Finding all proofs of an answer difficult

● New sorts of issue
– E.g., inconsistent data or equality

● Performance
– Bare consistency of OWL DL is NEXPTIME
– Query languages very expressive!
– Performance model unclear to users

Standardizing these things is hard
● Not a lot of experience

– Conjunctive query for DLs is (fairly) new
● Theoretically and implementationally

– Concept language expressive
● Can express many common queries

– Lots of decisions
● Database experience not always reliable
● LP experience not always reliable

Inconsistency
● Some logics can express inconsistent data

– RDF (with certain datatypes), RDFS, and OWL
– Inconsistencies entail everything

● So, every mapping is a “correct” answer!
– Inconsistencies often signal error

● But may indicate mere disagreement!
● What should a query engine return?

– Nothing
– No answers, but explanations
– Implementation dependent “best” answers
– Answers from a weaker logic

“Strange” queries

● In RDF(S)
– Thin distinction between schema and data

● Schema language very inexpressive
– So easy to treat the schema and data uniformly

● In OWL-DL
– Strong distinction between schema and data

● TBox vs. Abox
● Concept language very expressive

– OWL Full tries to do the RDF thing
● High cost: Undecidability, no implementations, hard to

understand semantics

Types of Query Variables
● 2 key axis of a variable with 4 combinations

A) Distinguished

B) "Semi-"distinguished

C) "Projected away"

D) Non-distinguished
● In a databases, only A and C are possible

– C and D collapse (no non-named entities)
● In DLs, A and D are standard

– D make query answering harder!
● In SPARQL/RDF, all variables are B

In head of query

Binds to
names

only

A. Yes/Yes A. Yes/No

B. No/Yes A. No/No

Considerations

● A and C are easiest
– Bind only to names
– Reduces SPARQL over RDF to relational (mostly)
– Tables don't contain variables
– Lean vs. non-lean source graphs don't matter
– Miss answers!

● Non-distinguished
– Basic answering is much more difficult (esp. in DL)
– But tables and algebra remain the same
– Miss some and co-reference of answers

Semi-distinguishedness

● Semi-distinguished
– Basic answering is much more difficult

● Less so in RDF
● Not clearly defined yet

– A binding is supposed to be true in all models

– How exactly to identify generated individuals across models?

– New issues for the algebra and final results
● Even in RDF!

(Non-)distinguished Example
In (pseudo-)OWL:
 :bob a [onProperty :loves
 someValuesFrom

[onProperty :loves;
 hasValue :bob].
 :sally a [onProperty inv(:loves);
 someValuesFrom Thing]

Semi-distinguished Example

Oedipus Example

The data
 :Patricide a owl:Class .
 :NotPatricide a owl:Class;
 owl:complementOf :Patricide .
 :hasChild a owl:ObjectProperty .

 :IOKASTE
 ns:hasChild :OEDIPUS;
 ns:hasChild :POLYNEIKES .

 :OEDIPUS a ns:Patricide
 ns:hasChild :POLYNEIKES .

 :POLYNEIKES
 ns:hasChild :THERSANDROS .

 :THERSANDROS a ns:NotPatricide .

Reasoning with Oedipus

Thoughts and Implications

● If ?y in the Oedipus query were semi-
distinguished:
– What should its value be?
– Polyneikes or Thersandros?
– _:x instance of ({Polyneikes} or {Thersandros})?

● In the simple/RDF case:
– Entailment can only introduce redundant BNodes
– The data could be non-lean

● Suggests new ways to treat Bnodes
– By the algebra

Counting

● What is a redundant answer?
– BNodes in answers can be tricky

● Several notions of redundancy
● Distinguish between redundancy due to algebra and

stated redundancy and inferred redundancy
– Equality can be tricky

● If two answers differ only by the value of one binding, and
those values are inferred to be sameAs, how many
answers?

● No UNA in RDF-OWL
● We could count answers (instead of entities)

– But then answers proliferate, often pointlessly

Query Variable Position
● “Conjunctive ABox queries”

– Standard in DL systems: KAON2, Racer, Pellet
– No variables in property or class positions

● “Higher order” queries
– ?x rdf:type ?C. ?C rdfs:subClassOf ?D.

– Careful restrictions make this feasible
● “Syntax reflective” queries

– ?s ?p ?o, where ?p can bind to e.g., intersectionOf
– ?x a [a Restriction; someValuesFrom ?C]

● Only bind to asserted axioms? (essentially SPARQL/RDF)
● Variants of latter two coming (see OWLED)

More General OWL Queries

● What should ?x rdf:type ?C return?
– Graph: :bob rdf:type :Person
– Some possible mappings for ?C:

● :Person
● owl:Thing
● unionOf (:Person, not :Person)
● Bnode problem writ large!

● Some hope (but very sketchy)
– Concept matching and unification
– Traditionally defined for logics without disjunction

For more thoughts

● See my presentation “Sparqling Queries”
– http://www.cs.man.ac.uk/~bparsia/2006/row-tutorial/

● Also, at OWLED 2007 SPARQL/OWL?
– Just enough to cover and encourage current

implementations
– Syntax for Distinguished and Non-distinguished

● No Semi-distinguished except perhaps for explicit bnodes
– Mixed Tbox/ABox queries

● I.e., liberalize variable position
● But also perhaps define a profile for strict Abox query

http://www.cs.man.ac.uk/~bparsia/2006/row-tutorial/

