
Updates in the Context of
Ontology-Based Data

Management

PhD THESIS

submitted in partial fulfillment of the requirements for the degree of

Doctor of Technical Sciences

within the

Vienna PhD School of Informatics

by

MSc. Aljbin Ahmeti
Registration Number 1128387

to the Faculty of Informatics

at the Vienna University of Technology

Advisor: Prof. Axel Polleres

External reviewers:
Domenico Lembo. Sapienza University of Rome, Italy.
Werner Nutt. Free University of Bozen-Bolzano, Italy.

Vienna, 24th January, 2020
Aljbin Ahmeti Axel Polleres

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at





Declaration of Authorship

MSc. Aljbin Ahmeti
Address

I hereby declare that I have written this Doctoral Thesis independently, that I have
completely specified the utilized sources and resources and that I have definitely marked
all parts of the work - including tables, maps and figures - which belong to other works
or to the internet, literally or extracted, by referencing the source as borrowed.

Vienna, 24th January, 2020
Aljbin Ahmeti

iii





To my daughter Arya, who is a Godsend.





Acknowledgements

I would like to express my sincere gratitude to my advisor Prof. Axel Polleres for his
guidance, feedback and immense knowledge that helped me conduct the research, which
resulted with this PhD thesis. I also thank him for giving me the opportunity to work
as a researcher at the outstanding campus at WU Wien.

Besides my advisor, I would like to thank the thesis committee: Prof. Domenico Lembo
and Prof. Werner Nutt, for their constructive comments as well as encouragement, which
helped in polishing, and ultimately creating a much better presentation of the thesis from
many different perspectives.

A special thanks goes to Dr. Vadim Savenkov, who was always supportive and available
to answer my questions any time I was in need. Apart Vadim, I also thank my other
co-authors: Prof. Diego Calvanese for his immense knowledge and his valuable input,
especially during the early phase; Dr. Javier D. Fernández, with whom I had fruitful
discussions at WU Wien; Dr. Simon Razniewski, who helped me to settle during my
short spell at Free University of Bolzano. I was very lucky to meet all of you in person,
to write papers, and to learn from each one of you. A very big thank you!

Next, I would take the opportunity to thank Prof. Nysret Musliu, with whom I spent a big
chunk of my time while at TU Wien, and for his guidance that helped me tremendously,
especially in the period when I started my PhD studies. Also, I would like to thank
Prof. Reinhard Pichler for allowing me to join Database and Artificial Intelligence (DBAI)
group as a PhD student, where I had the chance to learn a lot from the DBAI seminars.
There, I would also thank an unsung hero - Toni Pisjak, who was very friendly and open
to solve any technical questions that I had regarding the facilities.

Next, I thank all my colleagues at PhD School of Informatics for the great time spent
together, for the ups and downs, and for everything we shared during our unforgettable
time as PhD students. For this to happen, I have to thank both Clarissa Schmid and
Maria del Carmen Moreno who did an outstanding job regarding the organisational
aspects. A big shout out to the directors of PhD School for the hard work, and for the
continuous strive to raise the bar of the PhD School in order to make it an ultimate model,
namely to Prof. Hannes Werthner, Prof. Hans Tompits, and currently to Prof. Andreas
Steininger.

vii



Next, I would like to express my gratitude to Prof. Maurizio Lenzerini, who introduced
me to the area of Data Integration/Semantic Web during my previous studies at Sapienza
University of Rome. Thanks to his unforgettable lectures and our co-operation during
my master thesis, that instilled passion in me for the subjects, I chose my PhD thesis in
this area, and even now working as a professional at Semantic Web Company (SWC).

Next, I would like to thank all my colleagues at SWC, especially Helmut Nagy and
Martin Kaltenböck, for their continuous support and for simultaneously making me feel
bad when asking about my thesis ;-). I also thank Hakim Tafer for doing the first draft
translation of the thesis’ abstract into German language.

Last but not least, I would like to say a big thank you to my family: my parents and
siblings for their endless motivational, financial and spiritual support, and to my wife
Saranda for her patience, unconditional love, especially for taking care of our daughter
Arya - while I was busy writing this thesis.

The research presented herein was supported by the Vienna Science and Technology
Fund under the project SEE: ICT12-15 and the Austrian Federal Ministry of Transport,
Innovation and Technology (BMVIT) under the project Open Data for Local Communi-
ties (CommuniData, grant no. 855407).



Kurzfassung

Die Einführung von standardisierten Vokabularen und Ontologien sowie die Standardisie-
rung der Abfragesprache SPARQL hat in den letzten Jahren zu einem starken Wachstum
an im Web verfügbarer strukturierter Daten geführt. Ontologien als konzeptionelle, for-
male Repräsentation bestimmter Wissensdomäne, werden zur Beschreibung der Daten
verwendet und bieten damit eine Grundlage für die Anwendung von Methoden des logi-
schen Schließens über diese Daten. Sowohl Daten als auch Ontologien werden in diesem
Semantischen Web als sogenannte RDF Tripel dargestellt und bilden so einen seman-
tischen Graphen von Fakten und Axiomen. Sogenannte SPARQL Entailment Regimes
spezifizieren das Zusammenspiel zwischen SPARQL-Abfragen und Ontologien formal,
sodass als Antwort auf Abfragen auch implizite Tripel zurückgegeben werden.

Da strukturierte Daten im Laufe der Zeit, auch dank der Personen und Agenten, die sie
unter Einhaltung der Linked-Open-Data-Prinzipien veröffentlichen, gewachsen sind, wur-
den Herausforderungen bezüglich der Datenverwaltung und -speicherung deutlich. Als
Konsequenz daraus wurden verschiedene Datenmanagement Systeme für RDF entwickelt,
so genannte Triple Stores, die in der Lage sind, Milliarden von Triples zu speichern und zu
verwalten, sowie es erlauben, komplexe Abfragen unter Berücksichtigung von logischen
Entailments zu beantworten. Solche Triple-Stores sind in der Lage, große Wissensba-
sen wie z.B. DBpedia, das sich im Zentrum der Linked Open Data Cloud befindet, zu
speichern. Die strukturierten Daten in DBpedia werden über eine Reihe von Mappings,
sogenannte Extraktoren, aus Wikipedia-Infoboxen extrahiert. Die Datenbasis von DBpe-
dia kann von diversen Anwendungen konsumiert mit Hilfe von SPARQL-Abfragen über
sogenannte SPARQL-Endpunkte konsumiert werden, die wiederum auf Triple-Stores auf-
gebaut sind. Dennoch geht die Vision des Semantischen Web einen Schritt weiter, das
im Sinne nicht nur das “Lesen” sondern auch das “Schreiben” von strukturierten Da-
ten zu ermöglichen; aus diesem Grund wurde in SPARQL auch eine Update Sprache
definiert. Auffallend ist jedoch, dass die SPARQL Entailment Regimes Spezifikation des
W3C das Zusammenspiel zwischen den SPARQL Updates und logischem Schließen über
Ontologien nicht definieren.

Diese Dissertation zielt darauf ab, verschiedene semantiken für SPARQL Updates zu
untersuchen, die über Daten im Zusammenspiel mit Ontologien gestellt werden, indem
Ontologiesprachen bzw. Mappings unterschiedlicher Ausdrucksstärke berücksichtigt wer-
den. Anders ausgedrückt, geht es darum, SPARQL Updates im Kontext von Ontology-
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basiertem Datenmanagement (kurz: OBDM) zu untersuchen. Zunächst schlagen wir ver-
schiedene Update Semantiken für Triple Stores vor, die Daten zusammen mit Ontologien
speichern, die in der RDFS-Ontologiesprache ausgedrückt sind. Wir unterscheiden darin
zwischen der Updates die nur Daten betreffen und solchen, die auch die Axiome der
Ontologien betreffen, indem wir diese getrennt behandeln. Als nächsten Schritt untersu-
chen wir wir Updates in einer Ontologiesprache, die auch Axiome zu disjunkten Klassen
und somit Inkonsistenzen zulässt, wobei wir in dieser Konstellation verschiedene, von
der Belief Revision inspirierte Update Semantiken vorschlagen, die in der Lage sind, mit
Inkonsistenzen in den Daten umzugehen. Zuletzt untersuchen wir verschiedene Update-
Semantiken im vollen Rahmen von OBDM, d.h. dort, wo auch Mappings zu darunterlie-
genden, relationalen Datenquellen berücksichtigt werden und die Ontologiesprache noch
ausdrucksstärker ist – wobei wir speziell DBpedia als Anwendungsfall behandeln.



Abstract

Nowadays, the amount of structured data on the Web has increased dramatically with the
adoption of standardised vocabularies and ontologies and the standardisation of SPARQL
query language. Ontologies as a conceptual, formal representation of a domain, are used
to describe the data and, as a key functionality to provide reasoning capabilities. Both
data and ontologies in the realm of the Semantic Web are represented as triples in RDF
building a “semantic graph” of facts and axioms. SPARQL Entailment Regimes clearly
specify the interplay between SPARQL queries and ontologies, so that as answer to
queries implicit triples are returned as well.

As structured data have grown over time—also thanks to people and agents publishing
them adhering to the Linked Open Data principles—questions of data management and
storage became apparent. As a consequence, we have witnessed a development of be-
spoke RDF data management systems called triple stores capable of storing, managing
and reasoning over billions of triples. Such triple stores are capable of storing big knowl-
edge bases, for instance, DBpedia, being in the centre of the Linked Open Data cloud.
The structured data in the case of DBpedia are extracted from Wikipedia infoboxes via
a set of mappings, so-called extractors. DBpedia is a dataset that many applications
consume by using SPARQL queries via so-called SPARQL endpoints, which in turn are
established on top of triple stores. Nevertheless, the vision of the Semantic Web is
to enable “Read/Write” Web of structured data; for this reason, the SPARQL Update
language was introduced. Remarkably though, the SPARQL Entailment Regimes spec-
ification by the W3C does not define the interplay between the SPARQL updates and
ontologies.

This dissertation aims to study different update semantics posed over data and ontolo-
gies, by taking into account different ontology language and mapping expressiveness
respectively. In other words, the aim is to study SPARQL updates in the context of
Ontology-Based Data Management (abbr. OBDM). First, we propose different update
semantics for triple stores that store ontologies together with data, expressed in the
RDFS ontology language. We distinguish therein between update semantics for data
versus ontologies, by treating them separately. Then, as a next step, we increase the
expressivity of the ontology language by adding class disjointness axioms, where in this
setting we propose different update semantics inspired by belief revision that are able to
handle inconsistencies in the data. In the end, we investigate different update semantics
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in the full setting of OBDM, i.e., where also mappings to underlying relational data
sources are considered and the ontology language is even more expressive – adopting
DBpedia as a use case.
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CHAPTER 1
Introduction

In the last years, the amount of structured data on the Web has increased dramat-
ically. This growth originated partially from the standardisation efforts around the
Semantic Web for representing structured data using the Resource Description Format
(RDF)[Hay04] as underlying graph data format, and on the other hand due to Linked
Data principles being put in practice12 for publishing, connecting and discovering such
data. Nowadays, both humans and agents are able to consume and publish structured
data, thus slowly yet steadily approaching the Semantic Web vision [BLHL01].

In its core, the Semantic Web is about enabling “Read/Write”3, i.e., reading and writing
structured data for agents that could both be humans and machines. Naturally, having
already the structured data in place, the necessity for an appropriate query and update
language emerged and we have recently also witnessed the standardisation of SPARQL
Query [HS13] and SPARQL Update languages [GPP13], respectively. The importance
of SPARQL for querying and manipulating graph data is closely tied with the success of
the Semantic Web, being an important factor on the emergence of RDF as well. There
has been a well-established work in SPARQL querying and its interplay with the data
schemata expressed in ontology languages such as RDFS [BGe04] and OWL [MGH+12]
in the SPARQL 1.1 Entailment Regimes specification [GOH+13]. Nevertheless, still a
major challenge remains on how to properly implement the “write” part, namely on
how the interplay between updates and the data schemata takes part in the context of
Semantic Web technologies, especially when legacy sources are mapped to RDF on the
Web of data.

1https://www.w3.org/TR/ld-bp/
2https://www.w3.org/DesignIssues/LinkedData.html
3https://www.w3.org/community/rww/
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1. Introduction

1.1 Background
Today many of the datasets available in RDF—as witnessed by the Linked Open Data
cloud4—are extracted by custom wrappers in a typical Extract Transform Load (ETL)
process. These data are stored separately in dedicated databases and used mainly in a
read-only fashion, i.e., data to be linked for consumption only. DBpedia [LIJ+14] being
the focal point of this cloud to which other datasets are tightly interlinked, is often
referred to as a core Semantic Web success story. The DBpedia dataset is generated
using a custom set of wrappers having as input the key-value pairs from Wikipedia
infoboxes, the largest online encyclopaedia. The English version of the DBpedia dataset
as of year 2015 contains information about 4.8 million entities in the form of 176 million
statements (triples) constituting the DBpedia graph5.

Complementing the standardisation efforts for Semantic Web languages for representing
structured data as mentioned previously, in different communities and various domains
a number of ontologies6 have been published on the Web of data, that is, axiomatic
schema descriptions of the terms used in RDF and Linked Data. Ontologies formally
describe the world (or a specific domain as part of the world) in terms of concepts and
relationships between them. Therefore, using a standard, well-adopted ontology, one
is able to describe the data, as well as to interlink concepts and terms appearing in
the Linked Open Data cloud. On top of that, what is a distinguishing characteristic of
ontologies in the context of Semantic Web standards compared to conventional schemata,
is the ability to do reasoning, i.e., deriving implicit knowledge by using the pre-defined
set of axioms encoded in the ontology. For instance, DBpedia has its own community-
driven ontology enabling to derive new implicit data from the extracted data, which are
not explicitly stated in Wikipedia itself.

It is of a common practice that data and ontology altogether are stored in a knowledge
base. In the terminology of Description Logic (DL) [BCM+03] we refer to the instances
of the data as ABox, and to the ontology as TBox respectively. The most common ABox
and TBox services7 are queries and updates, which are posed over the knowledge base
and results are returned to the user in the case of queries. A number of systems, in
no particular ordering: OWLIM [BKO+11] (now GraphDB), Sesame [BKVH02] (now
RDF4J), Jena TDB8, RDFox [NPM+15], Virtuoso9, Stardog10, Marklogic11, Allegro-

4http://lod-cloud.net
5http://wiki.dbpedia.org/services-resources/datasets/dataset-2015-10/

dataset-2015-10-statistics
6As yet another definition, one would say that an ontology is a collection of axioms describing the

terms in a schema.
7Other important DL reasoning services are TBox classification, ABox and TBox satisfiability check-

ing and so forth. For more details refer to [BCM+03].
8https://jena.apache.org/documentation/tdb/index.html
9https://virtuoso.openlinksw.com

10http://www.stardog.com
11http://www.marklogic.com
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1.1. Background

Graph12, Blazegraph13 (now Neptune) appeared recently that are known as triple stores.
These systems are designed to store such knowledge bases and have a scalable architec-
ture similar to database management systems (DBMS), but specialised for RDF triples.
Typically, they serve as containers for both ABoxes and TBoxes, which both can be rep-
resented in terms of RDF triples. Such systems are able to store and manage billions of
triples, offering standard services such as querying and updating as well as other features
such as parsing, serialising and usually some limited reasoning support. With parsing
we mean taking as input the triples serialised in different formats such as RDF/XML,
Turtle, N3 etc. and representing and storing them internally as RDF triples, whereas,
with serialising we mean taking the RDF triples in the triple store and exporting them in
one of these mentioned formats. Going back to the query and update operations, triple
stores typically use the standard SPARQL language. So-called “SPARQL-endpoints”,
that is, web services accessible via the standard SPARQL protocol, are able to delegate
SPARQL requests over to a triple store.

SPARQL queries posed over a triple store—depending on the use case, or for the sake of
query completeness—should also return implicit data that can be inferred by ontologies,
hence such systems should have a means to exploit the ontology. In order to achieve this
goal, different triple stores equipped with reasoning capabilities, based on the expressivity
of the query and respectively of the ontology language, are able to perform re-writing
of the query with respect to an ontology. This is known as the “top-down” approach
to reasoning. Or, on the other hand, the alternative is to start from the triples and
recursively derive all implicit triples with respect to ontology, until no new triples can
be derived, and to store them explicitly in the triple store. This reasoning technique
called materialisation (or reaching the “fix-point” in deductive databases), is also known
as “bottom-up” approach. Both techniques have clearly advantages and disadvantages:
materialisation would be more suitable in a data-warehouse context, as such it would
improve the performance of query evaluation, but at the expense of re-materialisation
due to the underlying data changes; whereas re-writing would be more suitable in the use
cases where data changes are more frequent and queries are less time-critical. Also, in
the context of more expressive ontology languages e.g., DL-Lite, it is not possible to do
materialisation, since it allows for mandatory participations and cycles in the assertions
resulting with an infinite chase. As mentioned earlier, for instance DBpedia performs
(a partial, based on the hierarchy of classes) materialisation, falling into the category
of bottom-up reasoning. SPARQL Entailment regimes [GOH+13] specify a semantics
for SPARQL queries on how a SPARQL-endpoint should deal with queries respecting
ontological inferences. However, for updates it is still an open issue on how a SPARQL
endpoint should treat implicit triples, more specifically, how a delete, insert or update
operation affecting an implicit triple should be handled in a standard way by such a
system.

Apart from Linked Data and Semantic Web, in the context of data integration [Len02],

12http://www.allegrograph.com
13https://www.blazegraph.com
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1. Introduction

integrating data using ontologies is a topic which recently has been getting significant
attention. In particular, in the data integration framework called Ontology-Based Data
Management (OBDM) [Len18]—which extends Ontology-Based Data Access (OBDA)
[PLC+08] so that not only queries, but also updates are considered—the original data are
physically stored in legacy relational databases (as well as other standard heterogeneous
formats such as XML, CSV, JSON14), which are exposed as a virtual view using a set
of mappings15 and an ontology vocabulary. A Description Logics knowledge base is
used as both a global vocabulary and as a conceptual view (TBox), whereas the data
reside in the original location, and are not extracted and physically materialised as in
the case of triple stores. The user is able to query the view by using the vocabulary of
the ontology, but she has no idea where and how the data is stored, which in turn can
also be federated.

We mention three main reasons to use OBDM as opposed to the classic ETL and triple
stores, and depending on these driving the respective use cases:

• Synchronisation. Data need not to be synchronised, as it is residing in the legacy,
typically relational layer only. Hence, data is always up-to-date and no need for
any additional data governance workflows to keep relational and ontology layers
in sync;

• Duplication. Data is not duplicated, but instead only a view is computed in the
ontology layer. This can be critical in the context of Big Data, such as stream
data processing, where data storage is of crucial importance;

• Metadata preservation. The integrity constraints encoded in the relational layer
are very often neglected and not consequently translated when an RDF “data lake”
is created in the triple store. This calls for explicit translation to OWL axioms or
SHACL16 rules.

OBDM systems such as Ontop [CCK+17], MASTRO [CCD+13], Ultrawrap [Seq16],
in the process of evaluating queries, usually employ three phases: first, the query by
exploiting the ontology, is re-written in a top-down fashion by the system17; second, the
rewritten query is translated back to a SQL query – a step called unfolding; and in the
last step, the SQL query is executed over a relational database. The results are bindings
of variables of the original query to resources or values. Queries can either be expressed
as a conjunctive query (CQ) over the ontology or—as a syntactic variant thereof—as a
SPARQL query.

14For instance, refer to [BCC+16] as regards to OBDM on top of MongoDB.
15Yet, another notion for wrappers.
16https://www.w3.org/TR/shacl/
17As a side note, Ontop perform the so-called “mapping saturation” instead of query rewriting to

reach the very same result [CCK+17].
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1.2. Methodology

Nowadays, some triple store vendors such as Stardog, are going towards hybrid systems
offering “virtual graph” functionalities, in this way mixing both materialised and virtual
graphs, which support reasoning via query rewriting.

Regarding OBDM, even though there exists a well-established body of works for queries,
the same unfortunately cannot be said for updates. The problem of updates in the
context of OBDM is challenging since the problem lies in updating a database view,
which still is an open problem in the area of database theory. The updates despite having
to take into account the ontology—as stated previously in the case of queries—have also
to be exactly translated back to the underlying relational sources. Such translation can
be both ambiguous and it can also introduce facts (namely tuples) in the view, which
are not always intuitive with respect to the original update, i.e., tuples known as “side-
effects”. It is of paramount importance, especially for enterprises, to have a means to
correctly update the view, as such a functionality is very essential in practice. Typically,
enterprises are reluctant to “change management”, as such creating a (semantic) view
on top of existing legacy data and providing read and write operations while preserving
the old business processes and data workflows is often a more viable option for them.

1.2 Methodology
In this dissertation, we tackle the problem of updates in the context of both triple stores
respecting ontological inference as well as OBDM, by de-constructing it into the core
OBDM components. We start from a minimal setting, and then extend incrementally
the expressivity by introducing ontology language or/and mapping constructs. This
approach will enable us to see the problem through different lenses and thus to tackle
the problem within specific settings: we approach the problem in a step-by-step fashion,
i.e., starting with an ontology and data extracted physically in a triple store and not
using mappings at all. Later on, we introduce new types of ontology axioms (constructs)
and analyse the new challenges that arise. The same procedure is followed for adding
mapping constructs as well. Likewise, we first consider only ABox updates, whereas
afterwards we also discuss implications of TBox updates.

This dissertation tackles the original problem starting with minimal requirements, by
using the minimal possible fragment, i.e., the minimal RDFS ontology language and no
mappings at all18. We emphasize that, it is known that the existing structured data on
the Web are currently using mostly RDFS, plus some few OWL axioms [GHKP12].

In the belief revision literature, there are in general two approaches dealing with updates:
formula-based and model-based approaches [Win05]. In formula-based approaches the
update and the knowledge base are represented as a set of axioms, and a result is a
satisfiable conjunction of these two sets of axioms. In the model-based approaches, one
is looking for a set of update models that in some specified way minimise the distance to

18In fact, one can easily translate the OBDM setting with no mappings to the respective one where
1-1 (one-to-one) mappings exist [CDGL+07].
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the set of original models. All the studies in the model-based area came up with solutions
which are not satisfactory (the result of an update is not always expressible in the same
logic [CKNZ10]), henceforth we focus on formula-based approaches to updates, which
specifically we aim at implementing them by rewritings in terms of SPARQL updates,
consistent with the standard semantics of SPARQL update and therefore implementable
with “onboard” means of standard triple stores that support SPARQL.

Using the formula-based approach to updates and relying on implementable solutions,
we tackle the problem in a “from theory to practice” methodology: by having covered
the theory and all the corner cases that come along with the interplay of updates and
reasoning (using the respective ontology fragments), it opens the way for concrete im-
plementation. Thus, the problem is tackled by having a well-defined, unambiguous and
formal update semantics that this dissertation strives to define and implementing it via
update rewritings in SPARQL. As it is the case with belief revision, each of these se-
mantics ought to be judged against a given set of postulates that should be fulfilled.
Therefore, inspired by belief revision we have designed and adopted a special set of
postulates for SPARQL/Update and compare each semantics against these postulates.

In particular, in this dissertation we are going to look into what we call materialised-
preserving and reduced-preserving semantics. Materialised-preserving semantics always
leaves the triple store in a materialised state. Reduced-preserving semantics, in the other
extreme, would leave just the core of the ABox19, and consequently not store any other
facts which can be derived.

Once the update semantics are defined in terms of SPARQL rewritings, then one can
test their feasibility by implementing the rewriting. For this, one can take any off-
the-shelf triple store that implements the SPARQL specification and on top of that
architecture develop the re-writing as defined by the respective update semantics. This
dissertation also contributes a “benchmark” in the form of a set of updates based on the
LUBM [GPH05] as ontology and benchmark for querying to perform experiments with
different university sizes. The idea is to check how the different semantics perform in
real-case scenarios and on different systems.

Besides increasing expressivity of ontological axiomatic constructs, the other major chal-
lenge is when increasing expressivity in the mapping language to the underlying (re-
lational) data. In the case where mappings are not restricted to be one-to-one, we
might end up with ambiguous update translations. In many-to-one mapping settings
where two schema columns are mapped to the same entity/resource, then an insert
operation is ambiguous. Also, in the case where joins are present, upon updates we
end up in the same problematic cases that are known from the view update problem
[Kel85][BS81][FG13][DB82].

In the following, we introduce the research problems that are tackled by this disserta-
tion together with the corresponding challenges, contributions, and impact in terms of

19As we will see, the core is uniquely determined for the minimal fragment of RDFS, but not necessarily
for other entailment regimes defined on top of more expressive ontology languages.
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scientific publications.

1.3 Problem 1: Updating Implicit ABox and TBox
Triples using SPARQL

The first problem we tackle in this dissertation is to define an update semantics that
defines the behaviour of a SPARQL endpoint in a standard way when encountering the
task of updating implicit triples using SPARQL. The input is a SPARQL update request.
The main research question is the following:

What does it mean to delete, insert, as well as update an implicit triple?

We assume that the triples are either stored in a materialised or reduced triple store.
Therefore, such semantics should also preserve materialisation or reducedness. Now,
the input is a SPARQL update and a triple store which is already in a materialised
(respectively, reduced) state. The more specific research question is the following:

Given a SPARQL update request, how can we preserve materialisation or reducedness
of the triple store while capturing the intuition of the update? Which additional triples
should be deleted or inserted in order to achieve this intuition?

The last part of the research question calls for an efficient update semantics, which
ideally should be performed using rewritings instead of relying upon the costly materi-
alise/reduce operator.

The first challenge is to define materialised- and reduced-preserving semantics for ABox
updates in SPARQL. The second challenge is to also consider semantics for TBox updates
in SPARQL. After that, we will study the proposed update semantics with respect to a
set of postulates similar to belief revision.

Challenge 1.1: Updating Implicit RDFS ABox-es

The challenge is to update implicit ABox-es, i.e., instance triples in materialised or
reduced triple stores. We are considering a triple store as container that contains RDFS
axioms and assertions, namely, schema and instances, where either the materialise or
reduce operator is already applied using the respective RDFS rules. In this setting, a
triple can be derived from different triples in a derivation tree, due to four minimal RDFS
axioms: subclass, subproperty, domain and range constraints. These axioms are used in
order to perform materialisation or reducedness of the triple store. Current state-of-the-
art approaches propose different semantics, using different tractable fragments of logic
ranging from RDFS [GHV11] to DL-Lite [CKNZ10][LS11], albeit they do not consider
general and bulk SPARQL updates. An operation for deleting implicit triples, calls for
traversing back and deleting all triples in a derivation tree, so-called “causes”. We restrict
ourselves to the minimal RDFS fragment, as in this fragment it is feasible to compute
such causes non-ambiguously and thus always achieve a deterministic result. This does
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not hold in a more expressive ontology languages containing a disjunction operator in
the left-hand side of such axiom constructs, i.e., in premises.

Contribution 1.1: Several Materialised-preserving ABox Update
Semantics

This dissertation contributes with several materialised-preserving update semantics for
SPARQL under minimal RDFS entailment (see Fig. 11): Semmat

0 , Semmat
1a , Semmat

1b ,
Semmat

2 and Semmat
3 . Semmat

0 is the baseline semantics that performs a naive update
followed by the materialise operation. This semantics is commonly used in all the imple-
mentations of SPARQL endpoints, and is used as a baseline semantics to be compared
with. Semmat

1a and Semmat
1b deal with the problem of deleting triples altogether with all

the corresponding derived triples—so-called “dangling effects”—which are not derived by
other non-deleted triples in any other alternative derivation path. Semmat

1b is a variant of
Semmat

1a which distinguishes between explicit and implicit triples by keeping them stored
separately. Both of these semantics rely on the materialise operator, making them more
computationally intensive. Semmat

2 deals with the problem of deleting implicit triples
by deleting all the “causes” of triples that are designated to be deleted. This seman-
tics is defined by a rewriting-based approach and not based on the materialise operator.
Semmat

3 can be thought as a combination of Semmat
1a or Semmat

1b with Semmat
2 . As fol-

lows from their definition, this semantics deletes all the causes of the triples designated
to be deleted, as well as all of their dangling effects.
These update semantics are then characterised by a set of postulates, adapted from the
well-known AGM framework [AGM85] and “translated” into SPARQL context.

Contribution 1.2: Two Reduced-Preserving ABox Update Semantics

This dissertation contributes with two reduced-preserving update semantics for SPARQL
(see Fig. 11): Semred

0 and Semred
1 . Semred

0 is the baseline reduce semantics, similar to
Semmat

0 , it performs a naive update followed by the reduce operator. Semred
1 extends

Semred
0 by also deleting the causes of the triple designated to be deleted, as it is the case

with Semmat
2 . As with the materialised-preserving semantics, both reduced-preserving

semantics are characterised by a set of postulates inspired by the AGM framework.

Challenge 1.2: Updating Implicit RDFS TBox-es

The second main challenge is on updating TBox axioms, i.e., schema triples in mate-
rialised triple stores. In this case, materialisation has to take into account also RDFS
TBox inference rules, which are used to do a transitive closure on subclass and sub-
property axioms respectively. In fact, inserts are trivial as they merely boil down to
a merge of graphs. On the other hand, deletes are challenging as there not always ex-
ists a deterministic way of performing a deletion of implicit schema triples. This holds
even for deleting a single implicit schema triple. State-of-the-art approaches perform a
minimal multicut on a graph, yielding a possible number of candidates for the minimal
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multicut [GHV11]. The number of such combinations is exponential in the worst case
with respect to the size of the schema. In practice it is more feasible as schemas tend
to be smaller and instances are considered much bigger. This dissertation strives to
define a semantics, which provides a canonical, namely deterministic way of performing
a deletion of an implicit schema triple.

Contribution 1.3: Several Materialised-Preserving TBox Update
Semantics

This dissertation contributes with two materialised-preserving semantics for TBox up-
dates (see Fig. 11): Semmat

incut and Semmat
outcut. We assume that the triple store is already

in materialised state, i.e., transitive closure is applied. The idea behind Semmat
outcut is for

every triple :A rdfs:subClassOf :B ought to be deleted, to delete all directly out-
going rdfs:subClassOf edges from A that lead into paths to B, or, resp., in Semmat

incut

all directly incoming edges to B. As such, both semantics provide a canonical means of
performing a deletion of an implicit TBox triple. They both rely upon a rewriting-based
approach using SPARQL 1.1 property path queries. As with ABox semantics, the pro-
posed TBox semantics are characterised in terms of postulates, inspired by the AGM
framework.

Impact

The above contributions have resulted in the following peer-reviewed publications:

• Albin Ahmeti and Axel Polleres. SPARQL update under RDFS entailment in fully
materialized and redundancy-free triple stores. In 2nd International Workshop on
Ordering and Reasoning (OrdRing 2013), CEUR Workshop Proceedings, Sydney,
Australia, October 2013. CEUR-WS.org.

• Albin Ahmeti, Diego Calvanese, and Axel Polleres. Updating RDFS ABoxes and
TBoxes in SPARQL. In Proceedings of the 13th International Semantic Web Con-
ference (ISWC 2014), Lecture Notes in Computer Science (LNCS). Springer, Oc-
tober 2014.

• Albin Ahmeti, Diego Calvanese, and Axel Polleres. SPARQL Update for Material-
ized Triple Stores under DL-LiteRDF S Entailment. In 27th International Workshop
on Description Logics (DL2014), Vienna, Austria, July 2014.

1.4 Problem 2: Preserving Consistency and
Materialisation in ABox Updates using SPARQL

The goal of the second problem is to define an update semantics, which defines the
behaviour of a SPARQL endpoint in an exact, standard way when encountering the task
of preserving the consistency of a triple store using SPARQL under entailment regimes

9
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on top of minimal RDFS ontologies that additionally allow class disjointness axioms.
We call this fragment RDFS¬. The input is a SPARQL update and a triple store in
materialised state. The research question is the following:

Given a SPARQL update posed over a triple store, how can we preserve consistency
as well as materialisation of the triple store? Which triples (belonging to the update
vs triple store) should be given priority when resolving inconsistencies?

Given the fact that general SPARQL updates contain variables yet to be instantiated,
such variables can lead to triples that violate the TBox without considering the ABox.
We call such updates “intrinsically inconsistent”. Note that this problem is not only
typical of SPARQL, but also has surfaced in other OBDM approaches, e.g., [DLO+17]
that given the update at the source level and given the mappings, it aims to compute
the corresponding update at the ontology level. Such update can easily be inconsistent
because the rules at the ontology level are not necessarily specified at the source level. In
this context, the first sub-challenge is to define a semantics for intrinsically inconsistent
updates. The second sub-challenge is to define a consistency- and materialised-preserving
update semantics for general ABox updates in SPARQL.

Challenge 2: Updating RDFS¬ ABox-es in materialised triple stores

The next challenge lies in resolving inconsistencies that occur due to newly inserted
triples, which contradict with the old triples that are already in the triple store. The
contradiction is now possible because of the addition of class disjointness axioms (nega-
tion ¬) to RDFS. As this problem is well-known in the area of belief revision, typically
one has either to give priority to the new triples, old ones or just insert the subset of
triples that are consistent. Nonetheless, this problem has not been studied in the con-
text of SPARQL before. On top of that, as mentioned before, in SPARQL one can also
encounter intrinsically inconsistent updates.

Contribution 2.1: Safe rewriting

This dissertation contributes with a semantics called “safe rewriting” that deals with the
problem of intrinsically inconsistent updates. Safe rewriting removes all the inconsistent
triples from the insert template of the SPARQL update. These triples are inconsistent
in isolation with respect to the TBox alone, and not with respect to the ABox triples
in the triple store. This approach of removing all “intrinsically” inconsistent triples is
considered the safest approach, as there is no cue of which triples we shall keep and the
ones we shall drop.

Contribution 2.2: Several consistency- and materalised-preserving
ABox update semantics

On top of the initial, safe rewriting, this dissertation contributes with several consistency-
and materialised-preserving ABox update semantics (see Fig. 11): brave Semmat

brave, cau-
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tious Semmat
caut and faint-hearted Semmat

faint. Brave semantics Semmat
brave gives priority to the

new triples to be inserted by removing the inconsistent triples (i.e., triples that lead to in-
consistency with respect to TBox) residing in the triple store, whereas cautious Semmat

caut
semantics drops entirely an update in case it is inconsistent with respect to triples re-
siding in the triple store. Faint-hearted semantics Semmat

faint is in-between Semmat
brave and

Semmat
caut, by inserting only a consistent subset of triples. All three semantics are defined

again in terms of SPARQL update rewritings. On top of that, all the semantics are
characterised in terms of postulates, inspired by the AGM framework.

Impact

The above contributions resulted in the following peer-reviewed publications:

• Albin Ahmeti, Diego Calvanese, Vadim Savenkov, and Axel Polleres. Dealing with
Inconsistencies due to Class Disjointness in SPARQL Update. In 28th Interna-
tional Workshop on Description Logics (DL2015), Athens, Greece, June 2015.

• Albin Ahmeti, Diego Calvanese, Axel Polleres, and Vadim Savenkov. Handling
inconsistencies due to class disjointness in SPARQL updates. In Harald Sack,
Eva Blomqvist, Mathieu d’Aquin, Chiara Ghidini, Simone Paolo Ponzetto, and
Christoph Lange, editors, Proceedings of the 13th European Semantic Web Con-
ference (ESWC2016), volume 9678 of Lecture Notes in Computer Science (LNCS),
pages 387–404, Heraklion, Greece, June 2016. Springer.

1.5 Problem 3: Updating DBpedia using SPARQL
As the final piece of research, we looked into a real use-case of updates in OBDM, namely
on the problem of updating DBpedia using SPARQL: In order to translate SPARQL
updates posed over DBpedia, one has to propagate updates to Wikipedia infoboxes by
resolving DBpedia mappings. The input is a SPARQL update and the DBpedia OBDM,
i.e., OBDM consisting of DBpedia ontology, DBpedia mappings and Wikipedia infoboxes.
The research question is the following:

Given a SPARQL update, how can we resolve mappings and translate it into updates
of the underlying DBpedia infoboxes? Or, the other way around, can any of the
update semantics discussed before capture an infobox update?

The first challenge is on top-down20 approach to updates in OBDM, where the focus is on
the translation of SPARQL updates posed over DBpedia to Wiki updates. The second
challenge is the bottom-up approach where the focus is to find an update semantics
which captures the corresponding infobox update.

20To clarify here: top-down and bottom-up in this context refer to the “update translation”, and not
to “reasoning” as used before.
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Challenge 3.1: Updates in OBDM - Top-down: Updating DBpedia
triples using mappings and infoboxes

The first challenge is on updates in OBDM, i.e., the approach where the goal is to
find an adequate translation of SPARQL updates to Wiki updates by resolving DBpedia
mappings. This problem is similar to the view update problem in database theory, which
in the general case has not been solved yet as of now. The mappings in the view update
problem can comprise of join operations, whereas in DBpedia case, we can still have
many-to-one, many-to-many mappings leading to ambiguity of translation as well. The
current state-of-the-art approaches typically deal with either restricting mappings to
one-to-one and considering the TBox fixed in the process [HRG10], or by providing user-
interaction [NRG12] in order to get feedback from the (expert) users which option to
choose from. We are rather interested in a solution that does not limit the expressivity
of the mapping, but helps users to “break ties” with statistical information based on
the real data used in practice. Therefore, having Wikipedia as a curated source with
a history of updates captured through Wikipedia’s update history, we have adopted
DBpedia as a use case.

Challenge 3.2: Updates in OBDM - Bottom-up: Dealing with
side-effects of wiki updates

The final challenge is on dealing with bottom-up translation of updates, i.e., given a
Wiki infobox update as well as DBpedia infobox mappings, find the exact corresponding
SPARQL update. On top of that, we have to include the DBpedia ontology (TBox) in
the translation process as well. A Wiki infobox update can cause deletion or insertion
of triples in DBpedia—due to non-monotonic DBpedia mappings—consequently poten-
tially leading to introducing new inconsistent triples with respect to DBpedia TBox.
Therefore, the update semantics we discussed in Problem 2 can be adopted to deal with
this challenge.

Contribution 3: DBpedia-SUE

The last contribution of this dissertation is DBpedia-SUE (DBpedia SPARQL/Update
Endpoint), an implementation of SPARQL updates for DBpedia which deals with the
previous challenges. DBpedia-SUE takes a SPARQL update, evaluates the WHERE
clause and processes the results in a triple-by-triple fashion. For each of the triples, it
computes a corresponding set of wiki update translations. For insert operations, in case
of ambiguous mappings (i.e., mappings that lead to more than one update translation)
it gives a statistical information based on existing Wikipedia data on which infobox
property is more probable as an adequate translation for the insertion. For delete (as well
as insert) operations, it relies upon the previous user interactions: for each interaction
stores them as patterns, and afterwards retrieves these patterns in future interactions
– in this way assisting the user. The resulting infobox updates based on mappings can
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Figure 11: A tree representation of all the update semantics discussed in this dissertation
grouped into materialise- and reduce-preserving.

re-trigger additional updates in DBpedia, which are treated as additional updates posed
over DBpedia.

Impact

The above contribution resulted in the following peer-reviewed publications:

• Albin Ahmeti, Simon Razniewski and Axel Polleres. Assessing the Completeness
of Entities in Knowledge Bases. ESWC2017 Poster & Demos, 2017.

• Albin Ahmeti, Javier Fernández, Axel Polleres, and Vadim Savenkov. Updating
wikipedia via DBpedia mappings and SPARQL. In Eva Blomqvist, Diana Maynard,
Aldo Gangemi, Rinke Hoekstra, Pascal Hitzler, and Olaf Hartig, editors, Proceed-
ings of the 14th European Semantic Web Conference (ESWC2017), volume 10249
of Lecture Notes in Computer Science (LNCS), pages 485–501, Portoro, Slovenia,
May 2017. Springer.

• Vadim Savenkov, Albin Ahmeti, Javier D. Fernández, and Axel Polleres. Towards
updating Wikipedia via DBpedia mappings and SPARQL. In Alberto Mendelzon In-
ternational Workshop on Foundations of Data Management (AMW2016), Panama
City, Panama, June 2016. Short paper.
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1.6 Structure of the Dissertation
This dissertation is structured as follows. The next Chapter 2 prepares the ground by
introducing the theory and necessary definitions that are needed for the upcoming chap-
ters. Chapter 3 defines and motivates the update problem, as well as it describes a set of
postulates to be fulfilled by the proposed update semantics discussed in the next chap-
ters. Chapter 4 is about updating implicit ABox and TBox triples using SPARQL, where
several update semantics are introduced. Chapter 5 is about preserving consistency in
ABox updates using SPARQL, where three update semantics are introduced. Chapter 6
is about the real use case of updates in OBDM: Updates in DBpedia. Chapter 7 dis-
cusses the implementation and experimental evaluations of previous three chapters. In
the end, Chapter 8 puts the dissertation’s work into the context of the state-of-the-art,
reflecting upon the novelties provided by the dissertation, and finally commenting on
the issues that are left open beyond the scope of the dissertation for future work.
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CHAPTER 2
Preliminaries

In this chapter, we provide all the basic definitions that are used throughout the next
chapters of this dissertation. Other definitions that are specific to a chapter will be
introduced in the respective chapter as it goes on. Initially, we define a more abstract,
general setting of Ontology-Based Data Management, which we then put it into a more
tangible Semantic Web setting.

2.1 Ontology-Based Data Management
Ontology-Based Data Management [PLC+08] [Len18] [XCK+18] is a data-integration
framework, which defines a fixed, common ontology connecting relational databases via
a set of mappings. The ontology is used to model a domain at the conceptual level,
encoding the semantics of the application by providing reasoning capabilities as well.
Between the relational and ontology models—that each form a different layer—there is an
impedance mismatch: integrity constraints in the relational databases, such as primary
and foreign key constraints are mandatory, whereas in the ontology layer not necessarily;
relational tables in databases consist of arbitrary n-tuples, whereas ABox assertions in
ontologies refer to binary relations at most. Ontologies are rather meant to model and
deal with incomplete information adhering to the Open World Assumption (OWA) as
opposed to the Closed World Assumption (CWA) in databases. With OWA a fact is
inferred to be unknown if it is not known to be true, whereas with CWA the opposite
holds, i.e., a fact is inferred to be false if it is not known to be true. This mismatch
between these models is addressed by means of mappings, which are in principle sets of
rules meant to bridge these two worlds. In the OBDM setting, data is not physically
stored in the ontology layer, hence queries defined in terms of the ontology concepts and
roles are translated to the database layer.

Users interacting with OBDM via a query language and pose queries to the ontology
layer, which are automatically translated to the underlying databases by query rewriting
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techniques. In fact, OBDM systems typically use three-step operations: query rewriting,
query unfolding and query execution. Hence, a lot of details are hidden and abstractions
are transparent to the user. In the following the necessary definitions are given on
OBDM, starting from the bottom, i.e., the relational layer. We give only the basic
definitions of relational databases, the reader is referred to [RG03] for more details.

Definition 1 (Schemas, Instances) A database schema S is a finite set of relation
schemas S = {R1, . . . ,Rn}, where Ri consists of a finite set of attributes which we
denote by [] and whose size m is called the arity of Ri. Each attribute as a domain has
a fixed, countably infinite set ∆ of constants. An instance D of S consists of a relation
Ri, for every relation schema Ri, i.e., D = {R1, . . . , Rn}, where relation Ri is a set of
tuples a = (a1, . . . , am), such that m is the arity of Ri, by mapping each attribute of Ri

to a value in ∆ or to the NULL value. The active domain adom(D) of D is the set of all
constants and NULL that occur in the tuples of D.

Example 1 Let S be the schema consisting of relations with the following signature:

employees[ID:INTEGER, EMPNAME:VARCHAR, City:VARCHAR, Salary:VARCHAR],
departments[ID:INTEGER, DEPTNAME:VARCHAR],

empdepts[EMPID:INTEGER, DEPTID:INTEGER],

and let the database instance D consist of the tuples shown in Fig. 21:

employees = {(1, John, Vienna, 2400), (2, Joe, London, 2300), (3, Anna, Rome, 2700),
. . . }

departments = {(101, Finance), (102, Marketing), . . . }
empdepts = {(1, 101), (2, 102), (3, 101), (3, 102), . . . }

Definition 2 (Database queries) A query over S is semantically defined as a map-
ping q that associates with every instance D of S a set of answers q(D) ⊆ adom(D)n,
where n ⩾ 0 is the arity of q. If n = 0, then we say that q is a Boolean query, and
we write q(D) = ⊤ if () ∈ q(D) and q(D) = ⊥ otherwise. Queries can be specified by
means of a first-order formula ϕ = f(x1, . . . , xn) with free variables x1, . . . , xn, also often
referred to as a FO-query, that uses only relation names from S (and, possibly, =,<,>).
Then query evaluation comes down to checking satisfaction in first-order logic:

qϕ,S(D) = {(a1, . . . , an) ∈ adom(D)n | D |= ϕ[a1, . . . , an]}

Here, ϕ[a1, . . . , an] = f(x1/a1, . . . , xn/an), i.e., a substitution of variables xi with actual
values ai. Furthermore, instead of FO-queries we will often refer to SQL queries that
are common in databases1.

1As a remark, we mention that the semantics of SQL is based on bags as opposed to sets in FOL.
However, herein we consider FO-expressible SQL queries with set semantics.
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Figure 21: The figure depicts an adopted fragment of the classic “employee-department”
database schema populated with hypothetical data.

Definition 3 (Integrity constraints) There are two main types of integrity constraints
applied to schemas S:

• Functional dependencies (e.g., primary key constraints): “X → A”, where X is a
set of attributes and A an attribute. Intuition: The value of A is fully determined
by the values of X. As a first-order formula we can express functional dependencies:
∀x⃗y⃗z⃗uv(R(x⃗, y⃗, u) ∧ R(x⃗, z⃗, v) → u = v). We define candidate key as a minimal
set of attributes that functionally determine all of the attributes in a relation. A
primary key is a choice of candidate key. We denote the primary keys of a relation
R with key(R) = X.

• Inclusion dependencies (e.g., foreign key constraints): “R[X] ⊆ S[Y ]”, where X is
a subset of attributes in R and Y is a subset of attributes in S with the same arity.
Intuition: All value combinations occurring in X also occur in Y . As a first-order
formula we can express inclusion dependencies as: ∀x⃗y⃗(R(x⃗, y⃗)→ (∃z⃗)S(x⃗, z⃗))

Example 2 Let the following integrity constraints be applied to schema S from Ex. 1:

17



2. Preliminaries

key(employee) = {ID}
key(department) = {ID}

empdept[EMPID] ⊆ employee[ID]
empdept[DEPTID] ⊆ department[ID]

Definition 4 (Ontology) An ontology O consists of first-order axioms represented in
an ontology language. An ontology language L is a fragment of first-order logic (i.e., a
set of FO axioms), and an L-ontology O is a finite set of axioms from L. In our context,
we will be talking exclusively about axioms of predicates of arity one (representing concept
membership) and two (representing role membership2). To define the semantics of an
ontology, we rely on the standard notions of (first-order logic) interpretation, satisfaction
of assertions, and model.

Usually when speaking about ontologies, facts about instances denoting class and role
membership (ABox) and schema axioms (TBox) are often distinguished. Specifically
in Description Logics, ABox and TBox are asserted by means of relations of arity one
and two, called concepts and roles respectively. In the following, we talk about the
basic Description Logic ALC, whereas throughout the dissertation we will adjust these
concepts as needed in order to capture the expressivity of more expressive logics3. An
ALC-concept is formed according to the syntax rule:

C,D ::= A | ⊤ | ⊥ | ¬C | C ⊓D | C ⊔D | ∃P.C | ∀P.C,

where A is an (atomic) concept name and P is a role name. We also refer to the signature
or vocabulary Γ, which is the set of all individual, concept and role names.

An ALC TBox is a finite set of concept inclusions C ⊑ D, with C and D being ALC
concepts, whereas an ABox is a finite set of concept assertions C(a) and role assertions
P (a, b). Together both ALC TBox axioms and ABox assertions comprise the ALC
ontology. ALCI is an extension of ALC by capturing also role inverses.

Example 3 An example of an ALCI ontology O with TBox T , is defined as follows
(we will sometimes use UML notation to visualise ontological concepts, cf. Fig. 22):

2For simplicity, attributes (data properties) are treated in the following as they were to be roles
(object properties).

3For more details refer to [BCM+03].
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Employee Department

belongsTo

Manager worksFor

x

Person

0..* 0..*

Organisation

Figure 22: The figure conceptualises the axioms in Ex. 3 by using an UML diagram.
For the sake of simplicity, we abuse the notation and for “subproperty” we use the same
notation as for the UML “subclass”. Notice that we also use the symbol ‘x’ to denote
disjointness, which is not standard in UML.

∃worksFor.⊤ ⊑ Employee

∃worksFor−.⊤ ⊑ Department

worksFor ⊑ belongsTo

Employee ⊑ Person

Department ⊑ Organization

Manager ⊑ ¬Employee

⇐⇒

∀x, y.worksFor(x, y)→ Employee(x)
∀x, y.worksFor(x, y)→ Department(y)
∀x, y.worksFor(x, y)→ belongsTo(x, y)
∀x.Employee(x)→ Person(x)

∀x.Department(x)→ Organization(x)
∀x.Manager(x)→ ¬Employee(x)

A = {worksFor(john,marketing), worksFor(joe, finance),
worksFor(anna,marketing), worksFor(anna, finance)}

In the future, we will write axioms ∃worksFor.⊤ ⊑ Employee (∃worksFor−.⊤ ⊑
Department) shortly as ∃worksFor ⊑ Employee (∃worksFor− ⊑ Department) re-
spectively. The semantics of ALCI is given via a translation to FO-axioms with one free
variable as shown in the following [BtCLW13].

Definition 5 (Interpretation, satisfaction, model) An ALCI interpretation ⟨∆I , ·I⟩
consists of a non-empty set ∆I called the object domain, and an interpretation function
·I , which maps:

• each atomic concept A to a subset AI of ∆I ,
• each atomic role P to a binary relation P I over ∆I , and
• each element of Γ to an element of ∆I .

For concept expressions, the interpretation function is defined as follows:
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• (¬C)I = ∆I \ CI

• (C ⊓D)I = CI ∩DI

• (C ⊔D)I = CI ∪DI

• (∃P.C)I = {x ∈ ∆I | ∃y.(x, y) ∈ P I ∧ y ∈ CI}
• (∀P.C)I = {x ∈ ∆I | ∀y.(x, y) ∈ P I → y ∈ CI}
• (∃P−.C)I = {y ∈ ∆I | ∃x.(x, y) ∈ P I ∧ x ∈ CI}
• (∀P−.C)I = {y ∈ ∆I | ∀x.(x, y) ∈ P I → x ∈ CI}

An interpretation I satisfies an inclusion assertion C ⊑ D, if CI ⊆ DI . Analogously,
I satisfies an ABox assertion of the form (where x, y ∈ Γ)

• A(x), if xI ∈ AI , and
• P (x, y), if (xI , yI) ∈ P I .

An interpretation I is called a model of an ontology O (resp., a TBox T , an ABox A),
denoted I |= O (resp., I |= T , I |= A), if I satisfies all assertions in O (resp., T , A).

Definition 6 (Ontology queries) In this dissertation, besides general FO-queries as
defined in Def. 2, we also consider the special case of conjunctive queries posed over
ontologies.

A conjunctive query (CQ) q is a rule of the form

q(x⃗0)← body

where the body is a set of atoms of the form A(x1) and P (x1, x2), and equalities; where
xi are terms, i.e., variables or constants. The variables in x⃗0 are the distinguished
variables, the others occurring in the query body only are the non-distinguished variables.
Furthermore, x⃗0 consists of distinct variables only. A union of conjunctive queries (UCQ)
Q is a set of CQs with the same arity.

Example 4 The following conjunctive query asks for all persons who work for the de-
partment of “finance” :

q : q(x)← Person(x), worksFor(x, y), Department(y), y = finance

Note that x is a distinguished variable, whereas y is a non-distinguished variable.

Definition 7 (Certain answers) For a CQ q with distinguished variables x⃗0 = x1, . . . ,
xn and an ontology O, we say that a⃗ = a1, . . . , an is an answer for q in O, in symbols
O |= q[⃗a], if I |= q[⃗a] for every model I of O. As defined before, q[⃗a] is the substitution
of distinguished variables x⃗0 with values a⃗. By ans(q,O) we denote the set of all answers
for q in O.

Example 5 Given the previous query q in Ex. 4, TBox T and ABox A as defined in
Ex. 3, then certain answers to the query q are:
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ans(q,O) = {joe, anna}

OBDM systems typically rewrite queries in order to return certain answers, as it will
be discussed in the following. The most well-known query rewriting algorithm in the
context of OBDM is called PerfectRef , which is tailored to ontologies restricted to the
DL-Lite family of logics [CDGL+07]. Given that in this dissertation we will leverage
on PerfectRef , albeit it is used in the context of less expressive ontology languages, we
explain herein DL-Lite in order to understand the difference of applying PerfectRef in
various ontology languages. We will also discuss some of the related (state-of-the-art)
approaches in Chapter 8 that are based on different fragments of the DL-Lite family of
logics [ACKZ14]. DL-Lite is a family of logics able to express and capture most of the
constructs of Entity-Relationship and UML diagrams, while at the same time keeping
the computational complexity of reasoning tasks (most importantly, query answering)
tractable. DL-Lite is able to capture the following constructs [CDGL+07]:

• ISA, A1 ⊑ A2,

• disjointness, A1 ⊑ ¬A2,

• role-typing, ∃P ⊑ A (∃P− ⊑ A),

• mandatory participation, A ⊑ ∃P (A ⊑ ∃P−),

• mandatory non-participation, A ⊑ ¬∃P (A ⊑ ¬∃P−),

• functionality restrictions on roles, funct P (funct P−).

DL-Lite provides a robust foundation for OBDM, as it is able to capture very important
constructs, and query answering can be done via query rewriting that returns certain
answers. Let us provide more details on the algorithm that computes the query rewriting.

PerfectRef rewrites the query q to q′, which is computed starting from the UCQ Q = q
and expanding Q by exhaustively applying, to every CQ in Q the following rewriting
steps:

1. AtomRewrite (lines 5-11, cf. Alg. 2.1): use every (positive4) inclusion axiom as a
rewriting rule (from right to left);

2. Reduce (lines 12-16, cf. Alg. 2.1): apply the most general unifier5 to two unifiable
atoms.

4On the other hand, negative inclusion axioms A1 ⊑ ¬A2 are not used in query answering, though
they can be used to chase inconsistencies.

5Quoting Russell & Norvig [RN10], the most general unifier (or MGU) is the substitution that makes
the least commitment on the bindings of the variables.
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Algorithm 2.1: rewrite(q, T )
Input: Conjunctive query q, TBox T
Output: Union (set) of conjunctive queries

1 P := {q}
2 repeat
3 P ′ := P
4 foreach q ∈ P ′ do
5 foreach g in q do // expansion
6 foreach inclusion assertion I in T do
7 if I is applicable to g then
8 P := P ∪

{
q[g/ gr(g, I)]

}
9 end

10 end
11 end
12 foreach g1, g2 in q do // reduction
13 if g1 and g2 unify then
14 P := P ∪ {τ(red(q, g1, g2))}
15 end
16 end
17 end
18 until P ′ = P
19 return P

Let us dissect the algorithm in more detail. AtomRewrite in its most basic form, uses
(positive) inclusion axioms C ⊑ D to derive C(x) from D(x). In this way, we say that a
TBox axiom C ⊑ D is applicable (line 7) to the atom D(a), given that we do not have
C(a) yet on our list of processed atoms6. Arguments are not affected by the rewriting,
they are merely propagated, i.e., preserving constants or variables. gr(g, I) indicates
the atom obtained from the atom g by applying the applicable inclusion axiom I. The
semantics of gr(g, I) is given in Table 21. In line 8, g is substituted by gr(g, I), and
q[g/ gr(g, I)] denotes the conjunctive query obtained from q by replacing an atom g with
a new atom gr(g, I).

Reduce is a function (line 14) that takes as input a conjunctive query q and two atoms
g1 and g2 occurring in the body of q, and returns a conjunctive query q′ obtained by
applying to q the most general unifier between g1 and g2. τ is a function that takes as
input a conjunctive query q and returns a new conjunctive query obtained by replacing
each occurrence of a non-distinguished variable in q which occurs only once with the
symbol _, which stands as a placeholder for a “fresh”, “anonymous” variable.

6Similarly, applying such axioms in the reverse direction can be used to create the chase or materi-
alisation of the knowledge base.
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g I gr(g/I)

A(x) A1 ⊑ A A1(x)
A(x) ∃P ⊑ A P (x,_)
A(x) ∃P− ⊑ A P (_, x)
P (x, y) P1 ⊑ P P1(x, y)
P (x,_) A ⊑ ∃P A(x)
P (x,_) ∃P1 ⊑ ∃P P1(x,_)
P (x,_) ∃P−

1 ⊑ ∃P P1(_, x)
P (_, x) A ⊑ ∃P− A(x)
P (_, x) ∃P1 ⊑ ∃P− P1(x,_)
P (_, x) ∃P−

1 ⊑ ∃P− P1(_, x)
P (x, y) P1 ⊑ P− P1(y, x)

Table 21: Semantics of gr(g, I) in Alg. 2.1. In an atom, ‘_’ stands for a “fresh” variable.
Note that for the minimal RDFS rules [MPG07] only the first top-most four apply,
whereas for DL-Lite all of them apply.

The following example shows the peculiarities of query rewriting under DL-Lite when
both AtomRewrite and Reduce are applied, thus ensuring that the rewritten query indeed
returns certain answers.

Example 6 (PerfectRef in DL-Lite) Consider an ontology with the following TBox
and ABox:

T = {Employee ⊑ ∃worksFor, worksFor ⊑ belongsTo}
A = {Employee(john)}

and the query

q(x, y)← worksFor(x, z), belongsTo(y, z) (2.1)

First, an AtomRewrite step rewrites belongsTo(y, z), another new CQ is generated:

q′(x, y)← worksFor(x, z), worksFor(y, z) (2.2)

Then, a Reduce step can be applied, and another new CQ is generated:

q′(x, x)← worksFor(x, z) (2.3)

which in turn is equivalent (after application of τ) with:
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q′(x, x)← worksFor(x,_) (2.4)

Now, after the Reduce step, again AtomRewrite can be applied and consequently using
Employee ⊑ ∃worksFor another new CQ is generated:

q′(x, x)← Employee(x) (2.5)

The result of the rewriting is the union of the generated CQs plus the initial CQ
((2.1), (2.2), (2.4) and (2.5)). After the evaluation, the result of the rewritten query
is: john, john.

In the end, let us stress that for each atom, AtomRewrite generates at most a linear
number of rewritings with respect to the TBox size. Nonetheless, in the end of the
rewriting process, the result is a UCQ that could potentially have an exponential number
of CQs with respect to the number of atoms of the initial query. For this reason, there
exist other query rewriting algorithms, to name a few Presto [RA10], Rapid [CTS11],
REQUIEM [PMH09] etc., which focus on optimising, that is, reducing the number of
queries generated by PerfectRef .

Next, let us switch the discussion to updates.

Definition 8 (General update operation) Let ϕw be an FO-query (possibly involv-
ing disjunction). Then a general update operation u(ϕd, ϕi, ϕw) has the form:

DELETE ϕd INSERT ϕi WHERE ϕw

Intuitively, given an ontology O and an update u(ϕd, ϕi, ϕw), where ϕd and ϕi are sets
of:

• ABox atoms over the ontology predicates with constants or variables from the free
variables in the query ϕw (ABox update), or

• TBox axioms, where the allowed form varies with respect to the ontology language,
i.e., for instance inclusion axioms, where variables from the free variables in the
query ϕw can take the positions of ontology predicates (that is, typically roles or
concepts) (TBox update).

Then, the semantics of the general update operation is defined as (O \ Od) ∪ Oi, where
Od =

∪
θ∈ans(ϕw,O) ϕdθ and Oi =

∪
θ∈ans(ϕw,O) ϕiθ. Here, by θ we mean a substitution

replacing the free variables according to answers of ϕw.
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We note that in languages such as RDF where both assertional and terminological knowl-
edge are expressed by triples, the borders between TBox and ABox updates are blurred
and additional syntactic constraints are necessary to separate them, or, respectively, to
avoid such updates to not create non-standard use [PHDU13] of the RDF(S) and OWL
vocabulary.

Proposition 1 (Atomic update) Given an ontology O and a general update U =
u(Od,Oi, ∅), where Od (Oi) are the facts and assertions to be removed (added respec-
tively), then the semantics of the atomic update U over ontology O is defined simply as
U(O) = (O \ Od) ∪ Oi.

Example 7 Consider the following general update u1 that deletes and inserts—yet to
be instantiated by a WHERE clause—ABox assertions of class Person and Department
respectively:
DELETE { Person(x) }
INSERT { Department(y)}
WHERE { Person(x), worksFor(x, y), Department(y), y=finance}

after instantiation of the WHERE clause as in Ex. 5, it boils down to the following
atomic update7:
DELETE { Person(joe), Person(anna)}
INSERT { Department(finance) }

Whereas this update affects the ABox, the following update operation u2 = INSERT {
∀x.Manager(x)⇒ Person(x)} incorporates a new TBox axiom to the ontology.

Notice that a deletion or insertion of TBox axioms based on a WHERE clause is not
possible in FOL, because variables can not take the positions of concept or role names8.

Now, we extend the definitions to the setting of OBDM. Before giving the semantics of
OBDM, we initially give the definition of the syntax and semantics of mappings to the
underlying relational data sources.

In order to create objects of the ontology from the tuples in the database we need
constructors, i.e., speaking in formal terms we need Skolem functions. First, let us intro-
duce an alphabet λ of function symbols f each associated with arity n, whose attributes
are universally quantified variables occurring in the left-hand side of the mapping, as a
means to produce distinct fresh values in the ontology, which depend on certain values
in the source database.

7Note that this particular update has no effect, since it deletes and inserts implicit facts. In the
future, we will see various update semantics that tackle this issue.

8This can be expressed in SPARQL though, for instance:
INSERT { ?s rdfs:subClassOf ?o } WHERE { ?s skos:broader ?o }.
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When instantiated, a Skolem term f(x1, . . . , xn) gives rise to an object term f(a1, . . . , an)
where ai is an instantiation of a variable xi, for all i in 1 . . . n. We assume that such
object terms are distinct from any constant occurring in a source database or in the
target ontology, and thus each triggering of a rule with a distinct assignment (a1, . . . , an)
for the universally quantified values generates a distinct fresh value f(a1, . . . , an) in the
ontology.

Definition 9 (Mappings) Let ϕ(x⃗) be a query over D, whereas ψ(f(x⃗), x⃗) is the body
of the conjunctive query with distinguished variables, whose variables appearing in object
terms f(x⃗) are from x⃗. Then, we define a mapping [Len02] between ϕ(x⃗) and ψ(f(x⃗), x⃗)
as:

ϕ(x⃗)→ ψ(f(x⃗), x⃗)

In Ex. 9 examples of mappings in different formalisms, are given first by using the
notation we just described and their counterpart using FOL and Datalog notation.

We proceed with the semantics of mappings.

Definition 10 (Semantics of mapping(s)) We extend the interpretation, so that an
interpretation I satisfies ϕ(x⃗) → ψ(f(x⃗), x⃗) w.r.t. a database instance D, if for every
tuple of values v⃗ in the answer of the query ϕ(x⃗) over D, and for each ground atom X
in ψ(f(v⃗), v⃗), we have that:

• if X has the form A(s), then sI ∈ AI

• if X has the form P (s1, s2), then (sI
1 , s

I
2 ) ∈ P I .

Example 8 Given D as defined in Ex. 1, mappingsM as defined in Ex. 9, then we can
compute the virtual view:

M(D) = A ∪ {Employee(john), name(john, John), Employee(joe),
name(joe, Joe),Manager(anna), name(anna,Anna),
Department(finance), deptName(finance, F inance),

Department(marketing), deptName(marketing,Marketing),
. . .}

Note that for the sake of readability, we omit the object terms and we use the assertions
as in Ex. 3, for instance, instead of emp(3) we use anna and so on.
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OBDM is a framework which consists of database schemas S, mappings M, a common
ontology T , and concerns answering queries Q and updates U posed over T . Each query
and update language has its own syntax and respectively its own semantics. We formalise
and give more details in the following definition.

Definition 11 (OBDM framework) An OBDM (Ontology-Based Data Management)
framework is characterised by a triple ⟨S,M, T ⟩S,L parameterised by the semantics spec-
ification S and language specification L such that:

• S is the source schema, possibly encoding integrity constraints,

• M is the set of mappings, i.e., rules that associate database schema with ontology
schema of the form defined in Def. 9,

• T is the TBox (ontology),

• S = ⟨Q,U⟩ is the semantics: Q typically standing for the certain answer semantics,
and U is the semantics of ontology updates,

• L = ⟨Q,U⟩ is the pair of query and update languages over T used to access and
manipulate the data.

After the definition of the OBDM framework, we provide the concrete instantiation by
using the database instance D, hence the definition of OBDM system.

Definition 12 (OBDM system) An OBDM system is a pair of ⟨Om,D⟩ where:

• Om = ⟨S,M, T ⟩S,L is an OBDM framework,

• D satisfies integrity constraints, if they are present in S.

Finally, with all the previous definitions in place, we can give the definition of the
semantics of OBDM.

Definition 13 (Semantics of OBDM) An interpretation I is a model of an OBDM
system ⟨Om,D⟩ if

• I is a model of T ,

• I satisfies M w.r.t. D, i.e., satisfies every assertion in M w.r.t. D.

Intuitively, it is clear that an interpretation not only should satisfy TBox axioms, but
also the virtual view, which is in turn created by D and M.

Next, we extend the definition of queries to the OBDM setting.
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Definition 14 (Queries over OBDM) The certain answers to q(x⃗) over ⟨Om,D⟩, de-
noted with cert(q,Om,D), are the tuples t⃗ of ground object terms (including Skolem
functions) and constants from D such that t⃗ ∈ qI , for every model I of ⟨Om,D⟩.

In order to compute the certain answers in the context of mappings, OBDM systems
typically after the rewriting of the query, translate it to SQL query via a translation
procedure called unfolding.

Example 10 Given the CQ query from Ex. 4, according to the defined mappings in
Ex. 9, can be translated to the following SQL query (simplified here):

SELECT EmpID
FROM Employee Emp, Department Dept, EmpDept ED
WHERE Emp.ID = ED.EmpID
AND Dept.ID = ED.DEPTID
AND Dept.ID = 102

One can observe that the returned tuples as the answer of the query coincide with Ex. 5,
i.e., ans={joe, anna}.

2.2 Semantic Web
The Semantic Web is based on a set of standards: RDF [HPS14] as a graph data model,
RDFS [BGe04] and OWL [MGH+12] as ontology languages, and SPARQL [HS13] as a
language for querying and manipulating graph data. Since in this dissertation, ideas are
drawn from OBDM and DL-Lite, these are introduced in a way that is compatible with
the notions from the previous section.

2.2.1 RDF

RDF (Resource Description Framework) is a framework for representing data resources
on the Web. With resource we mean anything in the world including physical things,
documents, abstract concepts etc. RDF consists for three types of terms:

• Resource identifiers (IRIs) I,
• literals L to denote datatype values,
• blank nodes B to denote existent, but unnamed resources; one can think of blank

nodes as existentially quantified variables for making statements about existent
but unknown resources.

Let us assume there are infinite sets of pairwise disjoint IRIs of I, L and B.

Definition 15 (RDF triple, graph) A triple (s, p, o) ∈ (I ∪ B) × I × (I ∪ B ∪ L) is
called an RDF triple, where s is the subject, p is the predicate (property) and o is the
object value. A finite set of RDF triples is called an RDF graph.
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TBox RDFS

1 A′ ⊑ A A′ sc A.
2 P ′ ⊑ P P ′ sp P .

TBox RDFS

3 ∃P ⊑ A P dom A.
4 ∃P− ⊑ A P rng A.

ABox RDFS

5 A(x) x a A.
6 P (x, y) x P y.

Table 22: DL-Literdfs assertions vs. RDF(S), where A, A′ denote concept (or, class)
names, P , P ′ denote role (or, property) names, Γ is a set of constants, and x, y ∈ Γ. For
RDF(S) vocabulary, we make use of similar abbreviations (sc, sp, dom, rng, a) introduced
in [MPG07].

2.2.2 Ontology Languages RDFS and OWL

We initially use a minimal definition of RDFS, in line with Muñoz et al. [MPG07], which
represents a minimal subset of DL axioms, in order to stay in the intersection of RDFS
and DLs.

Definition 16 (RDFS ontology, ABox, TBox, triple store) We call a set T of in-
clusion assertions of the forms 1–4 in Table 22 an RDFS ontology, or (RDFS) TBox,
a set A of assertions of the forms 5–6 in Table 22 is called an (RDF) ABox. Finally,
we call a container, or a knowledge base G = TG ∪AG holding a TBox TG and an ABox
AG an (RDFS) triple store.

In the context of RDF(S), Γ is the set of constants (cf. Table 22), which coincides with
the set I of IRIs. We assume the IRIs used for concepts, roles, and individuals to be
disjoint from IRIs of the RDFS and OWL vocabularies9, listed in Table 23, which are
used in this dissertation.

In the following, we view RDF and DL notation interchangeably, i.e., we treat any RDF
graph consisting of triples without non-standard RDFS vocabulary as a set of TBox and
ABox assertions.

Example 11 As a running example, we assume a triple store G with RDF (ABox) data
and an RDFS ontology (TBox) (in Turtle syntax [BBLPC13]) as follows:

ABox:

:john :worksFor :marketing. :joe :worksFor :finance.
:anna :worksFor :marketing; :worksFor :finance .

TBox:

9That is, we assume no “non-standard use” [PHDU13] of these vocabularies. While we could assume
concept names, role names, and individual constants to be mutually disjoint, we rather distinguish
implicitly between them “per use” (in the sense of “punning” [Mot07]) based on their position in atoms
or RDF triples.
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Axiom type RDFS/OWL Abbreviation

1 type rdf:type a
2 subclass rdfs:subClassOf sc
3 subproperty rdfs:subPropertyOf sp
4 domain rdfs:domain dom
5 range rdfs:range rng
6 differentFrom owl:differentFrom df
7 inverse property owl:inverse inv
8 class disjointness owl:disjointWith dw
9 property disjointness owl:propertyDisjointWith pdw
10 functional property owl:FunctionalProperty func

Table 23: RDFS and OWL terms together with their respective IRIs and abbreviations,
which are used in this dissertation within axioms.

:Employee sc :Person. :Department sc :Organisation.
:worksFor sp :belongsTo. :worksFor rng :Department; dom :Employee.

In order to define the semantics of RDFS—as we have previously defined the semantics of
ALCI—we rely on the standard notions of (first-order logic) interpretation, satisfaction
of assertions, and model (cf. Def. 5).

Besides RDFS, there exist three ontology profiles (fragments, sublanguages) of OWL
2 10 that are more expressive, namely: OWL 2 EL11, OWL 2 QL12 and OWL 2 RL13.
The purpose of these ontology profiles is to have languages that have a good expressivity
while at the same time being tractable; the latter does not hold for OWL 2 in general.
These profiles are distinguished by their expressivity. They have been tailored to specific
use cases, taking into account the complexity of reasoning tasks14.

OWL 2 EL, QL and RL subsume the constructs of minimal RDFS that we covered:
subclass, subproperty, domain and range; and on top of that they also contain, among
others, “equivalentClass” (A1 ≡ A2) and “equivalentProperty” (P1 ≡ P2) axioms. Note
that these two axioms can always be split up in two axioms of subclass (A1 ⊑ A2,
A2 ⊑ A1) and subproperty (P1 ⊑ P2, P2 ⊑ P1) respectively. Now, let us briefly discuss
each profile:

10https://www.w3.org/TR/owl2-overview/
11https://www.w3.org/TR/owl2-profiles/#OWL_2_EL
12https://www.w3.org/TR/owl2-profiles/#OWL_2_QL
13https://www.w3.org/TR/owl2-profiles/#OWL_2_RL
14https://www.w3.org/TR/owl2-profiles/#Computational_Properties
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• OWL 2 EL is designed for ontologies that consist of big class and/or property hier-
archies, using fairly few OWL features, such as transitive properties. A typical use
case is the medical ontology SNOMED CT, which has more than hundred thou-
sand classes and properties. Other ontologies in life sciences are also a candidate
for this profile. OWL 2 EL is based on the EL++ Description Logic [BBL05].

• OWL 2 QL is based on DL-Lite [CDGL+07] while keeping the constructs which
make sense in the realm of Semantic Web such as owl:sameAs, and at the same
time dropping the Unique Name Assumption1516 in DL-Lite. As it is based on DL-
Lite, it is designed for data-driven applications, i.e., it is used on ontologies where
ABox data is large and stored in a database layer managed by DBMS. Notably,
this profile contains symmetric and inverse properties.

• OWL 2 RL is designed to represent rules in ontologies, which can be leveraged by
reasoners and other rule-based reasoning engines. It is used by applications that
require scalable reasoning without sacrificing too much expressive power, while
being more expressive than RDFS. It is based on Description Logic Programs
(DLP) [GHVD03]. Notably, this profile also contains constructs such as inverse
and symmetric properties.

For a more thorough treatment of OWL 2 profiles, as well as the restrictions where
constructs can be applied, we refer to [Kr12]. Next, we focus our discussion on the
SPARQL query language, which can be used to query and update both RDF data and
ontologies.

2.2.3 SPARQL Query Language

SPARQL is the standard query language for RDF and is designed to have a similar “look
and feel” like SQL, by adopting a similar syntax. SPARQL queries contain a set of triple
patterns called basic graph patterns (BGPs), which correspond to sets of RDF triples
that may contain variables in subject, predicate or object position.

Let V be a countably infinite set of variables, but now written as ’?’-prefixed alphanu-
meric strings.

Definition 17 (BGP, CQ) A basic graph pattern (BGP) P is a set of atoms of the
forms 5–6 from Table 22, where x, y ∈ Γ ∪ V. As for UCQs, we denote with V(q) (or
V(Q)) the set of variables from V occurring in q (resp., Q).

15Unique Name Assumption means that different names (symbols) refer to different entities (objects)
in the world [RN10].

16Notice that technically UNA is not adopted in OWL 2 QL, but in practice w.r.t. query answering
this does not change anything (because there are no equalities between terms that can be inferred in
OWL 2 QL).
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Example 12 The following SPARQL query is equivalent to the CQ in Ex. 4, under the
assumption that :finance a :Department:

SELECT ?X WHERE { ?X a :Person . ?X :worksFor :finance .}

Notice that SPARQL basic graph patterns (BGPs) correspond to CQs in which all
variables are distinguished (i.e., are answer variables). From the SPARQL perspective,
we allow only for BGPs that correspond to standard CQs as formulated over a DL
ontology; that is, we rule out BGPs with variables in predicate positions, and on the other
hand “terminological” queries, e.g., {?x sc ?y.}. We will relax this latter restriction when
we talk about TBox updates (see Sec. 4.5). Also, we do not consider here blank nodes
separately17. By these restrictions, we can treat query answering and BGP matching in
SPARQL analogously and define it in terms of interpretations and models (as usual in
DLs). We mention though that there is a fundamental distinction between the two, as
SPARQL is based upon the bag/multiset semantics, whereas UCQs are based upon the
set semantics.

More complex graph patterns can be formed by combining BGPs with different operators
such as OPTIONAL , UNION , FILTER, NOT EXISTS , MINUS and concatenation via a
. (point) symbol. Brackets {} are used for grouping patterns.

Following [PAG09], the syntax of SPARQL graph patterns is presented by an alge-
braic formalism, using operators AND for ., UNION for UNION , OPT for OPTIONAL ,
MINUS for MINUS , FILTER for FILTER, and SELECT for SELECT.

Definition 18 A general SPARQL graph pattern is defined recursively as follows:

1. {} is a graph pattern;

2. a tuple from (I∪V)×(I∪V)×(I∪L∪V) is a graph pattern, called a triple pattern;

3. if P1 and P2 are graph patterns, then the expressions (P1 AND P2),
(P1 OPT P2), (P1 UNION P2) and (P1 MINUS P2) are graph patterns;

4. if P is a graph pattern and R is a SPARQL built-in condition, then the expression
P FILTER R is a graph pattern;

A SPARQL built-in condition is constructed using elements of the set I∪V and constants,
logical connectives (¬,∧,∨), inequality symbols (<,≤,≥, >), the equality symbol =, and
unary predicates such as bound, isBlank, and isIRI.

17Blank nodes in a triple store may be considered as constants and we do not allow blank nodes in
queries, which does not affect the expressivity of SPARQL.
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Note that BGPs as per Def. 17 are covered as the restriction of allowing only triple
patterns and the operator AND in Def. 18.

The evaluation of SPARQL queries is based on matching graph patterns or BGPs against
the triple store18, resulting in a list of variable bindings. In order to better comprehend
the evaluation of SPARQL queries, let us give a few definitions on SPARQL semantics.
For further details on the SPARQL semantics, the reader should refer to the official
specification [HS13], or to the actual paper that influenced the specification [PAG09].

Definition 19 (SPARQL query answers) The semantics of SPARQL [PAG09] is
defined as a function J·KG that, given a triple store G, takes a graph pattern expres-
sion and returns a finite set of mappings µ, where µ is a partial function from the set V
to (I ∪ L ∪ B). For a triple pattern t we denote by µ(t) the triple obtained by replacing
the variables in t according to µ. The domain of µ, denoted by dom(µ), is the subset of V
where µ is defined. Two mappings µ1 and µ2 are compatible, denoted by µ1 ∼ µ2, when
for all x ∈ dom(µ1) ∩ dom(µ2), it is the case that µ1(x) = µ2(x), i.e., when µ1 ∪ µ2 is
also a mapping. The mapping with empty domain is denoted by µ∅, and it is compatible
with any other mapping.

The evaluation of a graph pattern P over a triple store G, denoted by JP KG is defined
recursively as follows:

1. If P is {} and G is non-empty, then JP KG = µ∅.

2. If P is {} and G = ∅, then JP KG = ∅.

3. If P is a triple pattern t, then JP KG = {µ|dom(µ) = var(t) and µ(t) ∈ G}

4. If P is (P1 AND P2), then JP KG = {µ1∪µ2 | µ1 ∈ JP1KG, µ2 ∈ JP2KG and µ1 ∼ µ2}.

5. If P is (P1 OPT P2), then JP KG = {µ1 ∪ µ2 | µ1 ∈ JP1KG, µ2 ∈ JP2KG and
µ1 ∼ µ2} ∪ {µ ∈ JP1KG | for every µ′ ∈ JP2KG : µ ̸∼ µ′}.

6. If P is (P1 UNION P2), then JP KG = {µ | µ ∈ JP1KG or µ ∈ JP2KG}.

7. If P is (P1 MINUS P2), then JP KG = {µ ∈ JP1KG | for every µ′ ∈ JP2KG : µ ̸∼ µ′

or dom(µ) ∩ dom(µ′) = ∅}.

The semantics of filter expressions goes as follows; for simplicity we restrict ourselves to
the equality symbol only. Given a mapping µ and a built-in condition R, we say that µ
satisfies R, denoted by µ |= R, if:

1. R is bound(?X) and ?X ∈ dom(µ);

18As we have defined the triple stores as collection of ABox and TBox data, we refer to them instead
of merely graphs.
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2. R is ?X = c, ?X = dom(µ) and µ(?X) = c;

3. R is ?X = ?Y, ?X ∈ dom(µ), ?Y ∈ dom(µ) and µ(?X) = µ(?Y );

4. R is (¬R1), R1 is a built-in condition, and is not the case that µ |= R1;

5. R is (R1 ∨R2), R1 and R2 are built-in conditions, and µ |= R1 or µ |= R2;

6. R is (R1 ∧R2), R1 and R2 are built-in conditions, and µ |= R1 and µ |= R2.

Definition 20 (The semantics of FILTER) Given a triple store G and a filter expres-
sion P FILTER R, then:

J(P FILTER R)KG = {µ ∈ JP KG | µ |= R}.

Example 13 The following SPARQL query is equivalent to the CQ in Ex. 4, and to
SPARQL query in Ex. 12 (now written with FILTER):

SELECT ?X WHERE { ?X a :Person . ?X :worksFor ?Y .
?Y a :Department . FILTER (?Y=:finance) }

We conclude the discussion on the SPARQL query answers, and now we extend it in the
context of entailment regimes.

2.2.4 SPARQL Entailment Regimes

In SPARQL terminology, an entailment regime with respect to an ontology language,
refers to an extension of the concept of SPARQL query answers, such that query answers
are extended in the sense that BGPs, i.e., CQs also return those answers entailed with
respect to inferences in the given ontology language. That is, entailment regimes are the
equivalent of certain answers in ontologies, which in turn are defined by query rewriting
in DL-Lite.

For the case of RDFS, the SPARQL specification defines an entailment regime that takes
into account RDFS inferences plus other aspects such as axiomatic triples etc. [GOH+13].

For the purposes of this dissertation, we slightly simplify the entailments under RDFS
in the spirit of [MPG07], i.e., by RDFS entailment we mean only certain answers with
respect to the minimal set of entailment rules given by Munoz et al., cf. Fig. 23. Under
this simplifying view of RDFS entailments, the RDFS SPARQL entailment regime can
actually be defined in terms of either query rewriting or rule-based materialisation.

First, let us define query answering under RDFS entailment as query rewriting. In
order to do that, we need to borrow the rewriting techniques from DL-Lite and OBDM.
Precisely, we will leverage upon PerfectRef (Alg. 2.1) which is an algorithm that takes
as input a DL-Lite TBox T and a CQ q and returns an UCQ q′.
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The following definition formalises the previous discussion.

Definition 21 (Query Rewriting) Given a CQ q and a triple store G = TG ∪ AG,
then rewrite(q, TG) is the UCQ resulting from applying PerfectRef Alg. 2.1 to q and G.

The goal rewrite operator gr(g, I) in PerfectRef also in the case of properties introduces
fresh variables in a non-relevant position (cf. Table 21). In the ontology language we are
currently elaborating, i.e., minimal RDFS, the “Reduce” operator (lines 12-16, Alg. 2.1)
which is tailored to DL-Lite, it is not applicable herein (note that in Ex. 6 after the
reduce step one can apply mandatory participation axioms, and such constructs are not
contained in RDFS ontology language). In the end, we get a rewritten query UCQ
obtained from the original CQ that is able to return implicit answers.

Definition 22 (Query answers) For a CQ q (or, UCQ Q, resp.) and a triple store G,
a substitution θ from variables in V(q) to constants in Γ such that q′θ ∈ rewrite(q, TG)θ
is true (or, there exists a q ∈ Q with q′θ is true) in every model of G is called an answer
(under RDFS Entailment) to q, and we denote the set of all answers by ansrdfs(q,G) (or
simply ans(q,G)). The set of answers to a UCQ Q is

∪
q∈Q ans(q,G).

Example 14 (cont’d) The rewriting q′ = rewrite(q, TG) of the query in Ex. 13 accord-
ing to PerfectRef with respect to TG as a DL TBox written in SPARQL yields:

SELECT ?X
WHERE {

{ ?X a :Person . ?X :worksFor ?Y . ?Y a :Department .
FILTER (?Y=:finance) }

UNION
{ ?X a :Employee . ?X :worksFor ?Y . ?Y a :Department .

FILTER (?Y=:finance) }
UNION
{ ?X :worksFor ?Y1 . ?X :worksFor ?Y. ?Y a :Department .

FILTER (?Y=:finance) }
UNION
{ ?X a :Person . ?X :worksFor ?Y . ?X1 :worksFor ?Y .

FILTER (?Y=:finance) }
UNION
{ ?X a :Employee . ?X :worksFor ?Y . ?X1 :worksFor ?Y .

FILTER (?Y=:finance) }
UNION
{ ?X :worksFor ?Y1 . ?X :worksFor ?Y. ?X1 :worksFor ?Y .

FILTER (?Y=:finance) }
}

Indeed, this query evaluated over the ABox returns both :joe and :anna. This rewrit-
ing returns certain answers even in the case where mappings as in Ex. 9 are present
[CDGL+07], modulo a further unfolding step.
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?C sc ?D. ?S a ?C.
?S a ?D.

?P sp ?Q. ?S ?P ?O.
?S ?Q ?O.

?P dom ?C. ?S ?P ?O.
?S a ?C.

?P rng ?C. ?S ?P ?O.
?O a ?C.

?C sc ?D. ?D sc ?E.
?C sc ?E.

?P sp ?Q. ?Q sp ?R.
?P sp ?R.

Figure 23: Minimal RDFS rules from [MPG07]

An alternative19 to rewriting is to materialise all inferences in the triple store, such that
the original query can be used ‘as is’, for instance using the minimalistic inference rules
for RDFS from [MPG07]20 shown in Fig. 23.

The materialisation of a triple store, denoted mat(G), is computed by performing a
deductive closure for all the triples subject to a given ontology language. In this case, we
provide a set of minimal inference rules in RDFS (cf. Fig. 23)—which can be represented
as Datalog rules (cf. Fig. 24)—that are used to compute the materialisation of a triple
store. These rules are fired recursively until no new triple can be entailed by the given
set of explicit triples plus the newly derived implicit triples. We will provide a more
formal definition of mat(G) in Chapter 4.

Example 15 (Materialised G) The materialised version of G would contain the fol-
lowing triples – for conciseness only assertional implied triples are shown here, that is
triples from the four leftmost rules in Fig. 23.

:john a :Employee ; :Person .
:joe a :Employee ; :Person .
:anna a :Employee ; :Person .
:finance a :Department ; :Organization .

triple(S, a, D) :- triple(S, rdfs:subClassOf, D), triple(S, a, C) .
triple(S, Q, O) :- triple(P, rdfs:subPropertyOf, Q), triple(S, P, O) .
triple(S, a, C) :- triple(P, rdfs:domain, C), triple(S, P, O) .
triple(O, a, C) :- triple(P, rdfs:range, Q), triple(S, P, O) .
triple(C, rdfs:subClassOf, E) :- triple(C, rdfs:subClassOf, D),

triple(D, rdfs:subClassOf, E) .
triple(P, rdfs:subPropertyOf, R) :- triple(P, rdfs:subPropertyOf, Q),

triple(Q, rdfs:subPropertyOf, R) .

Figure 24: In order to represent the minimal RDFS rules Fig. 23 in Datalog, we need
an auxiliary predicate called “triple”.

19This alternative is viable for RDFS, but not necessarily for more expressive DLs.
20These rules correspond to rules 2), 3), 4) of [MPG07]; they suffice since we ignore blank nodes.
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:marketing a :Department ; :Organization .
:john :belongsTo :marketing . :joe :belongsTo :finance .
:anna :belongsTo :marketing . :anna :belongsTo :finance .

On the materialised triple store, the query from Ex. 13 would return the expected results
(without rewriting).

The next result follows immediately from, e.g., [MPG07, GHV11, CDGL+07] and shows
that query answering under RDFS can be done by either query rewriting or materialisa-
tion.

Proposition 2 Let G = TG ∪ AG be a triple store, q a CQ, and A′
G the set of ABox

assertions in mat(G). Then, ans(q,G) = ans(rewrite(q, TG),AG) = ans(q,A′
G).

Various triple stores (e.g., BigOWLIM [BKO+11]) perform ABox materialisation directly
upon loading data. However, such triple stores do not necessarily materialise the TBox:
in order to correctly answer UCQs as defined above, a triple store actually does not need
to consider the two rightmost rules in Fig. 23. Accordingly, we will call a triple store, or
an ABox materialised if in each state it is always materialised.

On the other extreme, we find triple stores that do not store any redundant ABox triples.
Such triple stores are space-efficient to the expense of query rewriting and evaluation,
given that they have to rewrite a query and evaluate it in order to obtain the complete
set of results including the implicit triples.

By red(G) we denote the hypothetical operator that produces the reduced “core” of a
triple store G. Note that computing the core is not always feasible in a more expressive
ontology languages, but we show that it is possible in the case of the minimal RDFS
ontology language and we give a possible implementation in Sec. 7.1. Similarly, we will
call a triple store, or an ABox reduced if in each state it is always reduced. We will
provide a more formal definition of red(G) in Chapter 4.

An example of reduced store is given in the following.

Example 16 (Reduced G) The reduced version of G from Ex. 15 contains the follow-
ing triples:

:john :worksFor :marketing. :joe :worksFor :finance.
:anna :worksFor :marketing; :worksFor :finance .

Note that in this example, the reduced G contains only the triples that are not redundant,
i.e., hence by removing all the implicit triples using the operator red(G).
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2.2.5 SPARQL Update

Finally, we introduce the notion of a SPARQL update operation.

Definition 23 (SPARQL update operation) Let Pd and Pi be BGPs, and Pw a
BGP or UNION pattern. Then an update operation u(Pd, Pi, Pw) has the form

DELETE Pd INSERT Pi WHERE Pw.

Intuitively, the semantics of executing u(Pd, Pi, Pw) on G, denoted as Gu(Pd,Pi,Pw)
21

is defined by interpreting both Pd and Pi as “templates” to be instantiated with the
solutions of ans(Pw, G), resulting in sets of ABox statements Ad to be deleted from G,
and Ai to be inserted into G. A naïve update semantics follows straightforwardly.

Definition 24 (Naïve update semantics) Let G = TG ∪ AG be a triple store, and
u(Pd, Pi, Pw) an update operation. Then, the naïve update of G with u(Pd, Pi, Pw),
denoted Gu(Pd,Pi,Pw), is defined as (G \ Ad) ∪Ai, where Ad =

∪
θ∈ans(Pw,G) ground(Pdθ),

Ai =
∪

θ∈ans(Pw,G) ground(Piθ), and ground(P ) denotes the set of ground triples in
pattern P .

We will often refer to naive update semantics using the notation Gnaive
u , whereas for any

other semantics sem, we will similarly use the notation Gsem
u .

2.2.6 Mapping Relational Databases to RDF

In order to get data out of relational databases, in general one has to rely on SQL
queries involving complex constructs and join operators, in addition to simply map-
ping each column of a table to a symbol from vocabulary. OBDM systems allow to
define mappings to relational databases either in their native mapping language, or in
a more well-established mapping language endorsed by W3C such as direct mapping22

and R2RML23.

Example 17 Table 24 shows the mappings from Ex. 9 in the native Ontop syntax
[CCK+17], where results from a query are mapped to a set of RDF triples having vari-
ables in either subject or object positions.

21Note that in the following, we write just Gu for Gu(Pd,Pi,Pw) as a a shortcut or when clear from the
context.

22https://www.w3.org/TR/rdb-direct-mapping/
23https://www.w3.org/TR/r2rml/
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m1 : :{EMPID} :worksFor :{DEPTID} ← SELECT EMPID, DEPTID
FROM empdept

m2 : :{ID} a :Employee . :{ID} :name :{EmpName} ←
SELECT ID, EmpName
FROM employee emp, empdept ed
WHERE emp.ID=empdept.EMPID
AND emp.Salary < 2500

m3 : :{ID} a :Manager . :{ID} :name :{EmpName} ←
SELECT ID, EmpName
FROM employee emp, empdept ed
WHERE emp.ID=empdept.EMPID
AND emp.Salary >= 2500

m4 : :{ID} a :Department . :{ID} :deptName :{DeptName} ←
SELECT ID, DeptName
FROM department dept, empdept ed
WHERE dept.ID=ed.DEPTID

Table 24: Mappings in Ontop syntax

When we will be discussing the other related approaches in Chapter 8, we will refer
to other examples of OBDM with mappings expressed in R2RML (cf. Fig. 84), or in
another well-known mapping language called D2RQ24 (cf. Fig. 82).

Allowing SQL queries in the rule bodies in the mapping language enables the flexibility
of having very complex view definitions. While this makes querying and data retrieval
more convenient, on the other hand it makes view updates challenging. As known from
database theory, in the cases where as a view definition we have a SQL query using
joins of two different tables, one can easily run into the “view update problem.” In other
words, this means that the translated update would not precisely reflect the intended
update on the view (for motivational examples see Sec. 3.1). For that reason, to avoid
such cases, it is common practice to either restrict oneself to one-to-one mappings or to
no mappings at all. The latter case boils down to the case of triples stored in a triple
store (cf. Fig. 25).

Proposition 3 (Triple store as OBDM) Given a triple store G = TG ∪AG, then G
can be considered as an OBDM, with a singular underlying (ternary) relational table t
(using the subject-predicate-object format [s, p, o]), where there is a mapping of the form:

triple(S, P, O) :- t(S, P, O)

In fact, nowadays we have triple stores, e.g., Stardog, that can play the role of a “genuine”
OBDM, i.e., they access heterogeneous data stored in the relational layer or MongoDB,
without explicitly translating them to RDF, and on top of that they provide query
answering that is based on query rewriting. Moreover, such triple stores can mix virtual
and materialised graphs, in this way creating a hybrid approach to data management.

Fig. 25 depicts an OBDM where mappings are one-to-one. The mappings are displayed
in the same way as in [HRG10], where boxes indicate different mappings, i.e., whether

24http://d2rq.org
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Figure 25: The figure on the left side visually depicts all the components of OBDM,
yielding a view with ABox (or a graph) and TBox. On the right side triples are dis-
played serialised in Turtle that correspond to the left side. These triples can either be
materialised in a dedicated triple store in ETL fashion, or they can be used simply as a
view. SPARQL is used to query and update the triples.

the mapping is from table to a class, or from attribute to a property respectively (note
that not all generated triples are displayed in the figure, but those can be easily deduced
by the reader from the database instance and the definition of mappings).

Direct mappings such as direct mapping endorsed by W3C, or DM [Seq16], also fall
in the category of one-to-one mappings, given that RDF triples are generated with a
predefined vocabulary in an unambiguous way from the database schema.

2.3 Formula-Based Approaches to Updates
When updating an ontology a main difficulty lies in keeping the updated ontology con-
sistent. Several approaches to preserve the update intuition while keeping consistency
have been proposed in the literature.

In this dissertation, based on [Win05], we distinguish between two means of performing
an update, which are orthogonal to each other: (1) the users decide about the semantics
of the update, i.e., what to delete and insert from the knowledge base – the easier
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option, and (2) performing an update intentionally by a formula which satisfies the
new state of the world, and letting algorithms accomplish that change in the knowledge
base. The latter approaches as of [Win05] are accordingly divided into model-based
and formula-based and they both differently affect the outcome of the knowledge base
update. Given that model-based approaches to updates in general do not give intuitive
results [CKNZ10], we elaborate only formula-based approaches herein.

In formula-based approaches to updates, the objects of change are sets of formulas. The
challenge in evolution in formula-based approaches of ontology O with U , denoted by
O ⋄ U , is to find a unique maximal subset O′ of O, which is consistent with the new
knowledge U . In the literature [Win05], there are two main approaches to formula-
based semantics when dealing with new information to be incorporated into the existing
ontology: Cross-Product and WIDTIO (When In Doubt Throw It Out).

Definition 25 (Cross-Product) (Adapted from [CKNZ10]) Let O be an ontology in
the materialised state (i.e., deductively closed), and let U be the new information to be
incorporated. Furthermore, letM(O,U) be the set of maximal subsets of O, i.e., O′ ⊆ O,
that are consistent with U . Then, the Cross-Product (abbr. CP) is the disjunction of
these maximal subsets, defined as follows:

OCP =
∨

O′∈M(O,U)
(

∧
ϕ∈O′

ϕ)

The disadvantage of CP is that in some logics (e.g., DL-Lite) the result can not be
captured due to the disjunction operator not being expressible within DL-Lite, plus the
result might be of exponential size in the worst-case.

Definition 26 (WIDTIO) (Adapted from [CKNZ10]) Let O be the ontology in the
materialised state, and let U be the new information to be incorporated. As before, let
M(O,U) be the set of maximal subsets of O, i.e., O′ ⊆ O, which are consistent with U .
Then, the WIDTIO (When In Doubt Throw It Out) approach is to take the intersection
of all the maximal subsets, defined as follows:

OW IDT IO =
∩

O′∈M(O,U)
O′

Although using WIDTIO there are no issues regarding capturing the result of the update
as it was the case with CP, the disadvantage is that it might throw away too many
axioms.

Example 18 (Cross-Product and WIDTIO) Given the following ontology O con-
sisting of an empty ABox and TBox T = {Manager ⊑ Employee, TopManager ⊑
Manager}, and an update U = {TopManager ⊑ ¬Employee}.
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The update U posed over the ontology O makes the concept TopManager unsatisfiable,
while the ontology is still consistent though, i.e., has at least one model. If we want to
apply a stronger notion of consistency where each concept has at least one individual
assigned after an update (see coherence [CKNZ10]), then one can either drop Manager ⊑
Employee, or TopManager ⊑ Manager. Thus, M(O,U) = {O′

(1),O
′
(2)}, where O′

(1) =
O \ {Manager ⊑ Employee} and O′

(2) = O \ {TopManager ⊑Manager}.

Then, according to Cross-Product and WIDTIO, the results respectively are:

U ∪ OCP = U ∪ (O \ {TopManager ⊑Manager}) ∨ (O \ {Manager ⊑ Employee})
U ∪ OW IDT IO = U ∪ (O′

(1) ∩ O
′
(2))

= U ∪ O \ {TopManager ⊑Manager,Manager ⊑ Employee}

As two further algorithms from the literature for ontology and view updates, we introduce
DRed and Counting, which also fall into the category of formula-based approaches.

The seminal paper [GMS93] introduces two algorithms DRed (short for Delete and Red-
erive) and Counting for maintaining materialised views where updates occur in the un-
derlying relational sources. DRed can also be used in top-down approach of propagating
updates, i.e., in the same fashion as updates over views.

DRed is an algorithm that maintains the materialisation of recursive views (defined
in terms of a Datalog program) with negation and aggregation. The DRed algorithm
essentially computes:

1. Delete a superset of the derived (inferred) tuples using semi-naive evaluation25,
so-called “overestimation”,

2. re-insert deleted tuples that have an alternative derivation, i.e., “re-derive”,

3. insert new tuples plus the corresponding derived tuples (using semi-naive evalua-
tion).

Step 3 is used only in the case of updates involving both deletes and inserts.

We illustrate the approach by a simple example when we consider the ontology from
Ex. 3 as the “program” defining a recursive view.

Example 19 (Incremental Update using DRed) Given G = TG∪AG as in Ex. 3 in
an already materialised state. Let us consider the following update u:

25Semi-naive evaluation keeps track of the derived atoms, such that there is no need to do the forward-
chaining from the scratch [Ull88].
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DELETE { :john a :Employee .}
INSERT { :john a :Manager . }

In Step 1, DRed deletes:
DELETE { :john a :Employee . :john a :Person . }

In Step 2, DRed due to application of :john :worksFor :marketing, re-derives:
INSERT { :john a :Employee . :john a :Person . }

In Step 3, DRed inserts:
INSERT { :john a :Manager . :john a :Person .}

Note that the output of the algorithm renders the ontology inconsistent, as DRed unlike
Cross-Product or WIDTIO, is not able to deal with inconsistencies in general.

For non-recursive views, DRed can be used as well, but Counting is more efficient in
that respect. Counting stores the count of derived tuples in the materialised view,
and thus a tuple would be removed from the view only if its respective count value is
equal to 0, meaning that there exists no tuple supporting it. The drawback of DRed
is the delete step which computes an overestimation of the triples to be deleted, which
is fixed afterwards by the rederive step. To circumvent this drawback, the Counting
algorithm takes a different approach by storing along each triple also the number of
direct derivations. Thus, in the delete step, deleting a triple would be done by first
decrementing the count value of the triple by 1. Also, all the directly dependent triples
entailed by rules—as in the case of DRed—would be decremented by 1. The operation
goes on for n iterations, because the deleted triples (triples with count=0 in the current
step) could also decrement other triples that are entailed using the rules, and the process
goes on, in the end resulting with deleted triples if the respective count values are 0. The
Counting algorithm does not need the “rederive” step as DRed, to the expense of keeping
track the counts. Hence, it distinguishes which triples are to be deleted (and thus are
not derivable from mat(G) \ Ad) and the triples that persist (that are derivable, i.e.,
having alternative derivation).

Example 20 (Counting algorithm) Given G = TG ∪AG as in Ex. 3 in a materialised
state G = mat(G). Fig. 26 depicts the counts denoted in circle for the respective
assertions, i.e., triples. TBox triples always have count=1, whereas ABox triples depend
on the number of times they are derived based on the respective rules. Now, deleting
u=DELETE { :anna :worksFor :finance } would delete all the derived (ABox)
triples connected via an arrow having count=1 – as their respective count would then
be decreased to 0. However, the triple :anna a :Person would persist as its count
value would then be 1. On the other hand, deleting u=DELETE {:john :worksFor
:marketing} would indeed delete also the triple :john a :Person.
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:anna :worksFor :marketing

count=1

:anna a :Person

count=2

:worksFor dom :Person

:anna :worksFor :finance

count=1

count=1

:john :worksFor :marketing

count=1

:john a :Person

count=1

Figure 26: The Counting algorithm keeps track of the count of directly derived triples.
Explicit ABox triples are denoted in bold, whereas implicit ABox triples here are derived
by the rules in the Fig. 23. Note here that the triple :anna a :Person is derived
twice (hence its count=2), derived from the triples :anna :worksFor :marketing
and :worksFor dom :Person, as well as :anna :worksFor :finance and
:worksFor dom :Person respectively.
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CHAPTER 3
OBDM Updates: Background

and Desiderata

Suppose that we would like to maintain a set of facts and axioms in a knowledge base, in
order to capture the state of the world. As we observe the world and as the world changes,
we need a means to update the set of facts and axioms in the knowledge base in order to
adjust to the state of the world. A problem arises if we have a knowledge base and we have
to insert, for instance :john a :Manager, and then in order to perform the update we
have to get rid of the old and contradicting facts, such as :john a :Employee, given
that we have an axiom asserted of type :Employee owl:disjointWith :Manager
in the knowledge base already.

The problem of updates has been extensively studied in different communities such as
databases, AI and philosophy. Even though at the highest level of abstraction they are
concerned with similar issues, updating a knowledge base has always been associated
with counter-intuitive results, e.g. as in view updating, view maintenance, description
logic updates, or belief revision. In each of these fields, which tackle the problem from
different perspectives and unique settings, problems occur with “side-effects”, complexity
of computing the update of a materialised view, inexpressibility and non-deterministic
outcome of the knowledge base after an update, non-existence of practical algorithms
for belief revision and so on.

In this dissertation we address the problem of updates in the context of Ontology-Based
Data Management [Len18]. As described in Chapter 2, OBDM is a framework which con-
sists of database schemas S, mappingsM, a common ontology T and concerns answering
queries Q posed over T . In this framework, besides queries Q, updates U are also consid-
ered. We denote the OBDM framework using a triple ⟨S,M, T ⟩S,L (cf. Def. 11) with two
parameters S and L denoting the semantics and languages respectively used for querying
and updating the data. Fig. 31 shows all these components of OBDM, where depending
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Query Q

Update U

translation

Mapping M

Schema STBox T

execution

Instance D

Figure 31: The components of the OBDM framework ⟨S,M, T ⟩S,L with S = ⟨Q,U⟩ and
L = ⟨Q,U⟩, involved in the translation of the queries from Q and updates from U , and
their execution over schema S and instance D.

on the approach or the semantics, given a query or an update, TBox or/and mappings
are taken into account, as well as schema and instances if mappings are applicable, e.g.,
through the unfolding step. Firstly, the translation (aka. rewriting) step takes place that
could involve all the components. After the translation is computed, the execution step
takes place over both schema and instances. Regarding the semantics S for queries, it is
common to consider the certain answer semantics, although this is not the only viable
option [Lib14]. For updates there is no standard semantics as of yet, even in the case of
updates over ontologies in absence of mappings [FMK+08, SL12, CKNZ10].

In the following, we motivate the problem of updates in OBDM by illustrating it via a
set of examples.

3.1 Update Challenges in OBDM: Motivational Examples
So far, we have seen only the behaviour of queries for well-adopted certain answer seman-
tics. On top of that, the SPARQL 1.1 Entailment Regime specification clearly defines
how SPARQL endpoints should treat entailment in the context of queries. In Chapter 2,
we have seen how returning entailed query answers can be achieved either using re-
writing (feasible in the context of RDFS and DL-Lite), or materialisation in the context
of less expressive logics (such as RDFS).

However, regarding updates, there exists no generally accepted standard semantics. First
of all, the SPARQL 1.1 Update specification leaves it open how SPARQL endpoints
should treat entailment regimes other than simple entailment in the context of updates.
As a consequence, different approaches and tools adopt an ad-hoc implementation on
treating updates plus entailment.

Example 21 (Implicit update) Given the ABox and TBox data as in the running
example Ex. 11, the following SPARQL update operation tries to delete implied triples
and to (re-)insert implied triples, based on the instantiations on the WHERE clause that
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might also instantiate implied triples:

DELETE { ?X a :Employee. }
INSERT { ?Y a :Department. }
WHERE { ?X :belongsTo ?Y. }

In the context of instantiations where entailment is taken into account for querying
(WHERE clause), then for µ(?X)=:john, µ(?Y )=:marketing, we get the atomic up-
date:

DELETE { :john a :Employee. }
INSERT { :marketing a :Department. }

Current OBDM systems have no systematic means for deleting and inserting such implied
triples, or for dealing with implicit updates.

Furthermore, an OBDM system that manages a TBox with a more expressive ontology
language beyond RDFS where inconsistencies could occur, first of all, has to take care of
such inconsistencies. An OBDM system should for instance, among other desirable prop-
erties which we are going to discuss, always guarantee that after an update the resulting
state is consistent. Otherwise, querying an inconsistent OBDM yields unexpected and
unsafe results.

What is more challenging for languages such as SPARQL/Update is that inconsistencies
w.r.t. T might occur in the instantiations of the update itself alone. In this dissertation
we will call these intrinsic inconsistencies (see Chapter 5).

Example 22 (Intrinsically inconsistent update) Given an OBDM that maintains
the following triples, i.e., facts asserting two people working for each other:

:john :worksFor :jane . :jane :worksFor :john .

with an ontology T as follows:

:belongsTo rdfs:domain :Employee .
:belongsTo rdfs:range :Manager .
:Employee owl:disjointWith :Manager .

Given the following SPARQL update operation:

INSERT { ?X :belongsTo ?Y. }
WHERE { ?X :worksFor ?Y. }
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we get pairs of instantiations µ(?X, ?Y ) ={(:john, :jane), (:jane, :john)}, when
instantiating the INSERT template, which in turn now due to domain and range con-
straints, both :john and :jane happen to be of type Manager and Employee, a cue
for inconsistency. Note that, as we will see, contrary to Ex. 23, this update clashes w.r.t.
T alone, and not with the old state of the OBDM.

Current OBDM systems have no systematic means of dealing with such intrinsically-
inconsistent updates.

Example 23 (Inconsistent update) Given the ontology and data as in the running
example Ex. 11, the following SPARQL update operation tries to insert a triple which
is inconsistent w.r.t. T and the old state of OBDM:

INSERT { ?X a :Manager. }
WHERE { ?X :belongsTo :finance. ?X :belongsTo :marketing. }

After instantiation µ(?X) =:anna—on an OBDM using query entailment—we have a
clash as :anna is now both an Employee and Manager. Thus, OBDM should resolve
the inconsistency by either inserting :anna a :Manager and deleting the contradict-
ing implied triple :anna a :Employee (meaning also deleting all other triples that
entail this triple), or alternatively by dropping the update altogether and thus preserving
:anna a :Employee.

Current OBDM systems have no systematic means of dealing with such inconsistent
updates.

So far, we considered issues arising from the interplay of update operations with the
ontology and assertions in OBDM. Now, we consider the issues where mappings are also
present, which is typical for OBDM systems:

Example 24 (Ambiguous update) Given an OBDM ⟨S,M, T ⟩S,L system, with the
schema S:

employees[EMPNAME:STRING],
customers[CUSTNAME:STRING],

mappings M (with Skolem functions emp and cus):

Employee(emp(X)) :- employees(X) .
Customer(cus(X)) :- customers(X) .

and TBox T :

:Employee sc :Person .
:Customer sc :Person .

50

:john
:jane
:jane
:john
:john
:jane
:anna
:anna


3.2. Desiderata (Postulates) for Updates in OBDM

Now, consider the following update:

INSERT { :anna a :Person . }

In order for this update to be propagated to the relational layer, it should be first qualified
as either Employee or Customer, and one has also to take into account which one of the
(ambiguous) mappings to choose. This holds because there are no explicit mappings for
class Person to the database schema, whereas there are mappings for classes Employee
and Customer, which both are subclasses of Person. If we would qualify :anna as an
Employee, then the triple :anna a :Employee would be a side-effect, i.e., it would
be considered as an unintended fact and not meant by the original update. Still, despite
having as a side-effect the triple :anna a :Employee or :anna a :Customer, we
have to opt for one of the options in order to propagate the update.

Current OBDM systems have no systematic means of dealing with such ambiguous up-
dates.

3.2 Desiderata (Postulates) for Updates in OBDM
As discussed previously, the goal of OBDM systems is to propagate updates u into the
instance D, such that the knowledge base derived from D, the mapping M and the
TBox T reflects u in some reasonable way. Below, we define this intuition as a number
of desiderata that an OBDM implementation should satisfy.

No matter what semantics you choose for updates, it should adhere to certain desiderata
in order for the semantics to be rational. For instance, in case of deletions it is not
enough for an update semantics to just delete a fact without also deleting all the facts
that entail this fact. Alchourrón, Gärdenfors and Makinson (AGM) provided the most
widely known theoretical framework [AGM85] consisting of a set of desiderata a.k.a.
postulates for update operators in the context of belief revision. These postulates provide
the essence describing a rational belief revision operator.

In AGM theories are represented by Belief Sets B (in some logical language), containing
deductively closed sets of sentences ϕ: B = mat(B) = {ϕ | B ⊢ ϕ}. The process of belief
revision is a function that maps a theory B and a sentence ϕ to a new theory B ∗ ϕ.

According to [Pep08], a guiding intuition in formulating those postulates has been the
principle of minimal change according to which a rational agent changes her belief as
little as possible while incorporating the new update in a consistent manner.

According to the AGM framework, there exist three types of theory-change:

• Expansion (adding consistent information) B + ϕ

• Revision (adding inconsistent information) B ∗ ϕ

• Contraction (deleting information) B − ϕ
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Expansion is defined straightforwardly:

B + ϕ = mat(B ∪ {ϕ})

On the other hand, the definitions of revision and contraction are not clear, thus dif-
ferent approaches are possible that have to satisfy certain postulates. In the following,
AGM postulates are listed that an update operator should satisfy. Postulates 1–6 for
both revision and contraction are the basic postulates, whereas 7–8 are supplementary
postulates that have to do with minimality of change.

Postulates for revision [AGM85]:

(K∗1) If B is a belief set and ϕ is a sentence, then B ∗ ϕ is a belief set (closure)

(K∗2) ϕ ∈ B ∗ ϕ (success)

(K∗3) B ∗ ϕ ⊆ B + ϕ (expansion)

(K∗4) If ¬ϕ ̸∈ B, then B + ϕ ⊆ B ∗ ϕ (preservation)

(K∗5) B ∗ ϕ = ⊥ (the inconsistent belief set) if and only if ⊢ ¬ϕ (consistency)

(K∗6) If ⊢ ϕ1 ↔ ϕ2 then B ∗ ϕ1 = B ∗ ϕ2 (equivalence)

(K∗7) B ∗ (ϕ1 ∧ ϕ2) ⊆ (B ∗ ϕ1) + ϕ2

(K∗8) If ¬ϕ2 ̸∈ B ∗ ϕ1, then (B ∗ ϕ1) + ϕ2 ⊆ B ∗ (ϕ1 ∧ ϕ2)

Postulates for contraction [AGM85]:

(K–1) If B is a belief set and ϕ is a sentence, then B − ϕ is a belief set (closure)

(K–2) B − ϕ ⊆ B (inclusion)

(K–3) If ϕ ̸∈ B, then B − ϕ = B (vacuity)

(K–4) If not ⊢ ϕ, then ϕ ̸∈ B − ϕ (success)

(K–5) B ⊆ (B − ϕ) + ϕ (recovery)

(K–6) If ⊢ ϕ1 ↔ ϕ2 then B − ϕ1 = B − ϕ2 (equivalence)

(K–7) (B − ϕ1) ∩ (B − ϕ2) ⊆ B − (ϕ1 ∧ ϕ2) (conjunctive overlap)

(K–8) If ϕ1 ̸∈ B − (ϕ1 ∧ ϕ2), then B − (ϕ1 ∧ ϕ2) ⊆ B − ϕ2 (conjunctive conclusion)
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Now, let us dissect the rationale of each postulate and “translate” into our setting. Let u
be an update on a triple store G = AG∪TG. Further, let A be an ABox, T a TBox, Sem
an update semantics and J·KG be the SPARQL-semantics as per [PAG09] (or, Def. 19).
In the following we will define different update semantics for SPARQL Update, which we
will denote as Semx where the subscript x denotes a particular semantics. Moreover, we
will use superscripts mat and red to denote semantics defined for materialised, or resp.,
reduced triple stores. In particular, Semmat

naïve stands for the naïve update semantics
applied to a materialised triple store, whereas Semred

naïve stands for naïve update seman-
tics applied to a reduced store. Furthermore, with Semmat

... we assume any semantics
that evaluates J·KG without rewriting, whereas any semantics Semred

... evaluates J·KG with
rewriting. In other words, in the former case, the WHERE clause is evaluated as usual,
whereas in the latter case the WHERE clause is evaluated using the rewriting (i.e., the
equivalent of being a-priori materialised in RDFS). For the definition of Gsem

u refer to
Def. 24.

In the following, we define postulates for SPARQL based on the AGM postulates, by
also grouping the original postulates whenever possible using ‘+’ symbol.

K1 = (K∗1) + (K–1) rationale: the result of an update semantics sem, given an update
u, is either a materialised or a reduced triple store G. Formally, G = mat(G)⇒ Gsem

u =
mat(Gsem

u ), or G = red(G)⇒ Gsem
u = red(Gsem

u ).

K∗2 rationale: insertions should result in the inserted triples being true in the updated
triple store. If u = INSERT{A} then JAKGsem

u
= {∅}1.

K–2 rationale: a deletion should not add triples. If u = DELETE{A} then Gsem
u ⊆ G.

K∗3 rationale: the result of an insertion of any materialise- resp. reduce-preserving
update semantics should be contained by the expansion operator. For our purposes,
we need to distinguish the intended behaviour here, depending on whether we talk
about materialise-preserving or reduce-preserving semantics, i.e., we write Gexpand

u here
short for mat(G ∪ A) for materialised-preserving semantics, and red(G ∪ A) for reduce-
preserving semantics. With this auxiliary notation, we can define K∗3 as follows:

u = INSERT{A}⇒ J?S ?P ?OKGsem
u
⊆ J?S ?P ?OK

Gexpand
u

.

K–3 rationale: the deletion of triples not present in the G should not have an effect. If
u = DELETE{A} and JAKG = ∅1 then Gsem

u = G.

K∗4 rationale: if there are no inconsistencies with respect to the new update, the re-
sult of any materialise- resp. reduce-preserving update semantics should contain the
expansion operator. If u = INSERT{A} and mat(G ∪ A) ̸|= ⊥ ⇒ J?S ?P ?OK

Gexpand
u

⊆J?S ?P ?OKGsem
u

.

1 Note that SPARQL boolean queries in the sense of Def. 2 can be defined in terms of an empty
solution set {} meaning ⊥, whereas—for a ground query without variables—a single empty binding {∅},
means ⊤.
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K–4 rationale: deletions should result in the deleted triples no longer be true in the
updated triple store. If u = DELETE{A} then JAKGsem

u
= ∅.

K∗5 rationale: if the update is inconsistent, then it should have no effect. For K∗5, in
our context as we will see, it makes sense to discuss different variants of K∗5 separately,
depending whether the inserted data A is inconsistent with the terminological data
TG ⊆ G (we will call such updates intrinsically inconsistent) or whether it is inconsistent
with the TBox and the ABox data that is already present in G before the update, i.e.,
we define K∗5 and K∗5′ as follows.

K∗5: if u = INSERT{A} and mat(A ∪ TG) |= ⊥ then Gsem
u = G.

K∗5′: if u = INSERT{A} and mat(A ∪G) |= ⊥ then Gsem
u = G.

K–5 rationale: delete followed by the equivalent insert should not lose triples. Formally,
(Gsem

DELETE{A})sem
INSERT{A} ⊇ G. For K-5, in our context, it makes sense to additionally

discuss different variations of K–5′-K–5′′′. This is due to the order of delete and inserts,
as well as of different semantics, where both as combination might yield different results.

K–5′ rationale: delete followed by the equivalent insert results with no effect. Formally,
if A ⊆ G then (Gsem

DELETE{A})sem
INSERT{A} = G.

K–5′′ rationale: insert followed by the equivalent delete should not lose triples. Formally,
(Gsem

INSERT{A})sem
DELETE{A} ⊇ G.

K–5′′′ rationale: insert of new triples followed by the equivalent delete results with no
effect. Formally, if A ∩mat(G) = ∅ then (Gsem

INSERT{A})sem
DELETE{A} = G.

K6 = (K∗6) + (K–6) rationale: if two ABoxes A1 and A2 entail the same triples w.r.t.
the TBox of G, then their update should have the same effects2. If u1 = INSERT{A1},
u2 = INSERT{A2}, or u1 = DELETE{A1}, u2 = DELETE{A2} and mat(TG ∪ A1) =
mat(TG ∪ A2) (red(TG ∪ A1) = red(TG ∪ A2) resp.) then Gsem

u1 = Gsem
u2 .

In Chapter 4 and Chapter 5, we are going to rely on these postulates in order to check
the rationality of various update semantics for SPARQL.

In order to make postulates applicable for TBox updates as well, we will merely replace
ABox updates A with TBox updates T , namely replace u = INSERT{A} and u =
DELETE{A} with u = INSERT{T } and u = DELETE{T } respectively, where A and T
stand for triples representing ABox or TBox statements, respectively as per Def. 16.

2K6 is known as the syntax irrelevance postulate which in other words states that in the revision
process the syntax does not play a role, but rather the content that is represented by the syntax.
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CHAPTER 4
Updating RDFS ABoxes and

TBoxes in SPARQL

In this chapter we investigate alternative semantics for updates that preserve either ma-
terialised or reduced ABoxes, and discuss how these semantics can—similar to query
answering—be implemented in off-the-shelf SPARQL 1.1 triple stores. Referring to
Fig. 11, we will be talking about materialise- and reduce-preserving semantics for RDFS
in terms of both ABox and TBox updates.

The SPARQL 1.1 Update [GPP13] and SPARQL/Entailment Regime [GOH+13] spec-
ification leaves it open how SPARQL endpoints should treat entailment regimes other
than simple entailment in the context of updates. As a consequence, OBDM systems
can not deal with implicit updates (cf. Ex. 21, reposted here):

Example 25 (Re-posted Ex. 21) Given the ABox and TBox data as in Ex. 3, the
following SPARQL update operation tries to delete implied triples and to (re-)insert
implied triple, based on the instantiations on the WHERE clause that might also instan-
tiate implied triples:

DELETE { ?X a :Employee. }
INSERT { ?Y a :Department. }
WHERE { ?X :belongsTo ?Y. }

As discussed in Sec. 1.3, the main issue of updates under entailments is how updates
shall deal with implied statements:

• What does it mean if an implied triple is explicitly (re-)inserted (or, resp., deleted)?
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4. Updating RDFS ABoxes and TBoxes in SPARQL

• Which (if any) additional triples should be inserted, (or, resp., deleted) upon up-
dates?

In this chapter, we address such questions with the focus on a deliberately minimal
ontology language, namely the minimal RDFS fragment of Muñoz et al. [MPG07] 1.

As it turns out, even in this confined setting, updates as defined in the SPARQL 1.1
Update specification impose non-trivial challenges; in particular, specific issues arise
through the interplay of insert, delete, and where clauses within a single SPARQL
update operation, which—to the best of our knowledge—have not yet been considered in
this combination in previous literature on updates under entailment (such as for instance
[GHV11, CKNZ10]).

Existing triple stores offer different solutions to these problems, ranging from ignoring
entailments in updates altogether, to keeping explicit and implicit (materialised) triples
separate and re-materialising upon updates. In the former case (ignoring entailments)
updates only refer to explicitly asserted triples, which may result in non-intuitive be-
haviours, whereas the latter case (re-materialisation) may be very costly, while still not
eliminating all non-intuitive cases, as we will see. The problem is aggravated by the lack
of a systematic approach to the question of which implied triples to store explicitly in a
triple store and which not.

In this chapter we try to argue for a more systematic approach for dealing with updates
in the context of RDFS entailments. More specifically, we will distinguish between
two kinds of triple stores, that is ( i) materialised RDF stores, which store all entailed
ABox triples explicitly, and ( ii) reduced RDF Stores, that is, redundancy-free RDF
stores that do not store any assertional (ABox) triples already entailed by others. We
propose alternative update semantics that preserve the respective types (i) and (ii) of
triple stores, and discuss possible implementation strategies, partially inspired by query
rewriting techniques from Ontology-Based Data Management (OBDM) [KRMZ13] and
DL-Lite [CDGL+07]. As already shown in [GHV11], erasure of ABox statements is
deterministic in the context of RDFS, but insertion and particularly the interplay of
delete/insert in SPARQL 1.1 Update has not been considered therein. Finally, we
relax the initial assumption that terminological statements (using the RDFS vocabulary)
are static, and discuss the issues that arise when also TBox statements are subject to
updates (see Sec. 4.5).

4.1 DL-Literdfs Setting
In Chapter 2 we have given the necessary definitions about materialised and reduced
triple stores respectively, namely, triple stores that store all implicit triples in an explicit

1We ignore issues like axiomatic triples [Hay04], blank nodes [MAHP11], or, in the context of OWL,
inconsistencies arising through updates (see Chapter 5). Neither do we consider named graphs in
SPARQL, which is why we talk about “triple stores” as opposed to “graph stores” [GPP13].
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way, and triple stores that compute the core, i.e., do not store any implicit (redundant)
triples respectively.

In the following, we provide a more formal definition for both types of triple stores, by
first introducing the materialise and reduce operations respectively.

Definition 27 (Materialisation) Given a triple store G = TG ∪ AG and inference
rules for RDFS as defined in Fig. 23—which can be similarly represented as Datalog
rules in Fig. 24—the materialisation mat(G) is defined by exhaustively applying the four
leftmost inference rules to G until a fix-point is reached, i.e., no new RDF (ABox) triple
can be derived.

We will call a triple store, or an ABox materialised if in each state it is always materi-
alised.

Definition 28 (Materialised triple store) We say that a triple store G or ABox is
materialised if G = mat(G).

In the case of reduced triple stores, we note that this core [PPSW13] is uniquely deter-
mined in our setting whenever T is acyclic (which is usually a safe assumption)2; it could
be naïvely computed by exhaustively “marking” each triple that can be inferred from
applying any of the four leftmost rules in Fig. 23, and subsequently removing all marked
elements of A. An implementation of red(G) using SPARQL/Update and property paths
is provided in Sec. 7.1.

Definition 29 (Reduction) Given a triple store G = TG ∪ AG and inference rules
for RDFS as defined in Fig. 23—which can be similarly represented as Datalog rules
in Fig. 24—the reduction red(G) is defined by exhaustively applying the four leftmost
inference rules to G by subsequently removing the implicit triples until no implicit triple
is left in the triple store.

Similarly, we will call a triple store, or an ABox reduced if in each state it is always
reduced.

Definition 30 (Reduced triple store) We say that a triple store G or ABox is re-
duced if G = red(G).

The following observation follows trivially.
2We note that even in the case when the TBox is cyclic we could define a deterministic way to remove

redundancies, e.g., by preserving within a cycle only the lexicographically smallest ABox statements.
That is, given TBox A ⊑ B ⊑ C ⊑ A and ABox A(x), C(x); we would delete C(x) and retain A(x) only,
to preserve reducedness.
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Proposition 4 Let G = TG ∪AG be a triple store, q a CQ, and A′
G the set of ABox as-

sertions in mat(red(G)). Then, ans(q,G) = ans(rewrite(q, TG), red(AG)) = ans(q,A′
G).

Note that this proposition follows directly from Prop. 2, where instead of G we have
red(G). In other words, it says that query answers (under entailment) can either be
obtained by re-materialisation of a reduced store, or alternatively, by query rewriting
and posing it over a reduced store.

Lastly, we observe that, trivially, a triple store containing no ABox statements is both
reduced and materialised.

Lemma 1 Let G = TG be a triple store with an empty ABox, then G is both reduced
and materialised.

Definition 31 (Mat-preserving and red-preserving semantics) Let G and
u(Pd, Pi, Pw) be as in Def. 24. An update semantics Sem is called mat-preserving,
if GSem

u(Pd,Pi,Pw) = mat(GSem
u(Pd,Pi,Pw)), and it is called red-preserving, if GSem

u(Pd,Pi,Pw) =
red(GSem

u(Pd,Pi,Pw)).

Specifically, we consider the following variants of materialised ABox preserving (or sim-
ply, mat-preserving) semantics and reduced ABox preserving (or simply, red-preserving)
semantics, given an update u(Pd, Pi, Pw):

Semmat
0 : As a baseline for a mat-preserving semantics, we apply the naïve semantics (cf.
Def. 24), followed by (re-)materialisation of the whole triple store.

Semmat
1 : An alternative approach for a mat-preserving semantics is to follow the so-
called “delete and rederive” algorithm [GMS93] for deletions, that is: (i) delete
the instantiations of Pd plus “dangling” effects, i.e., effects of deleted triples that
after deletion are not implied any longer by any non-deleted triples; (ii) insert the
instantiations of Pi plus all their effects.

Semmat
2 : Another mat-preserving semantics could take a different viewpoint with respect
to deletions, following the intention to: (i) delete the instantiations of Pd plus all
their causes; (ii) insert the instantiations of Pi plus all their effects.

Semmat
3 : Finally, a mat-preserving semantics could combine Semmat

1 and Semmat
2 , by

deleting both causes of instantiations of Pd and their “dangling” effects.3
Semred

0 : Again, the baseline for a red-preserving semantics would be to apply the naïve
semantics, followed by (re-)reducing the triple store.

Semred
1 : This red-preserving semantics extends Semred

0 by additionally deleting the
causes of instantiations of Pd.

3Note the difference to the basic “delete and rederive” approach. Semmat
1 in combination with the

intention of Semmat
2 would also mean to recursively delete effects of causes, and so forth. Semmat

3 as we
have defined herein though, does not remove triples recursively.

58



4.2. Alternative Mat-Preserving Semantics

The definitions of semantics Semmat
0 and Semred

0 are straightforward.

Definition 32 (Baseline mat-preserving and red-preserving update semantics)
Let G and u(Pd, Pi, Pw) be as in Def. 24. Then, we define Semmat

0 and Semred
0 as fol-

lows:

G
Semmat

0
u(Pd,Pi,Pw) = mat(Gu(Pd,Pi,Pw)) G

Semred
0

u(Pd,Pi,Pw) = red(Gu(Pd,Pi,Pw))

Let us proceed with a quick “reality-check” on these two baseline semantics by means of
our running example.

Example 26 Consider the update from Ex. 21. It is easy to see that neither under
Semmat

0 executed on the materialised triple store of Ex. 15, nor under Semred
0 executed

on the reduced triple store of Ex. 16, it would have any effect.

This behaviour is quite arguable. Hence, we proceed with discussing the implications of
the proposed alternative update semantics, and how they could be implemented.

4.2 Alternative Mat-Preserving Semantics
We consider now in more detail different alternative mat-preserving semantics. As for
Semmat

1 , we rely on a well-known technique in the area of updates for deductive databases
called “delete and rederive” (DRed) [GMS93, CW94, VSM05, KBB11, UMJ+13] (also
see Sec. 2.3). Informally translated to our setting, when given a logic program Π and its
materialisation Tω

Π , plus a set of facts Ad to be deleted and a set of facts Ai to be inserted,
DRed ( i) first deletes Ad and all its effects (computed via semi-naive evaluation [Ull88])
from Tω

Π , resulting in (Tω
Π)′, ( ii) then, starting from (Tω

Π)′, re-materialises (Tω
Π)′ ∪ Ai

(again using semi-naive evaluation).

The basic intuition behind DRed of deleting effects of deleted triples and then re-
materialising can be expressed in our notation as follows; as we will consider a variant
of this semantics later on, we refer to this semantics as Semmat

1a .

Definition 33 Let G = TG ∪ AG, u(Pd, Pi, Pw), Ad, and Ai be defined as in Def. 24.
Then G

Semmat
1a

u(Pd,Pi,Pw) = mat(TG ∪ (AG \mat(TG ∪ Ad)) ∪ Ai).

As opposed to the classic DRed algorithm, where Datalog distinguishes between view
predicates (IDB) and extensional knowledge in the Database (EDB), in our setting we
do not make this distinction, i.e., we do not distinguish between implicitly and explicitly
inserted triples. This means that Semmat

1a would delete also those effects that had been
inserted explicitly before.

We introduce now a different variant of this semantics, denoted Semmat
1b , that makes a

distinction between explicitly and implicitly inserted triples.
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Definition 34 Let u(Pd, Pi, Pw) be an update operation, and G = TG ∪ Aexpl ∪ Aimpl

a triple store, where Aexpl and Aimpl respectively denote the explicit and implicit ABox
triples. More formally, if we assume Aimpl = Aexpl = ∅ as the original state of an empty
triple store, then the implicit and explicit ABox resulting from an update can be defined
inductively as follows: GSemmat

1b

u(Pd,Pi,Pw) = TG ∪ A′
expl ∪ A′

impl, where Ad and Ai are defined
as in Def. 24, with A′

expl = (Aexpl \ Ad) ∪ Ai, and A′
impl = mat(A′

expl ∪ TG) \ TG.

Note that in Semmat
1b , as opposed to Semmat

1a , we do not explicitly delete effects of Ad

from the materialisation, since the definition just relies on re-materialisation from scratch
from the explicit ABox A′

expl. Nonetheless, the original DRed algorithm can still be used
for computing Semmat

1b as shown by the following proposition.

Proposition 5 Let us interpret the inference rules in Fig. 23 and triples in G respec-
tively as rules and facts of a logic program Π; accordingly, we interpret Ad and Ai from
Def. 34 as facts to be deleted from and inserted into Π, respectively. Then, the materi-
alisation computed by DRed, as defined in [KBB11], computes exactly A′

impl.

None of Semmat
0 , Semmat

1a , and Semmat
1b are equivalent, as shown in Ex. 27 below.

Example 27 Given the triple store G = {:C sc :D . :D sc :E}, on which we
perform the operation INSERT{:x a :C, :D, :E.}, explicitly adding three triples,
and subsequently perform DELETE{:x a :C, :E.}, we obtain, according to the three
semantics discussed so far, the following ABoxes:
Semmat

0 : {:x a :D. :x a :E.} Semmat
1a : {}

Semmat
1b : {:x a :D. :x a :E.}

While after this update Semmat
0 and Semmat

1b deliver the same result, the difference
between these two is shown by the subsequent update DELETE{:x a :D.}
Semmat

0 : {:x a :E.} Semmat
1a : {} Semmat

1b : {}

As for the subtle difference between Semmat
1a and Semmat

1b , we point out that none
of [KBB11, UMJ+13], who both refer to using DRed in the course of RDF updates,
make it clear whether explicit and implicit ABox triples are to be treated differently.

Further, continuing with Ex. 26, the update from Ex. 21 still would not have any effect,
neither using Semmat

1a , nor Semmat
1b . That is, it is not possible in any of these update

semantics to remove implicit information (without explicitly removing all its causes).

Semmat
2 aims at addressing this problem concerning the deletion of implicit information.

As it turns out, while the intention of Semmat
2 to delete causes of deletions cannot be

captured just with the mat operator, it can be achieved fairly straightforwardly, building
upon ideas similar to those used in query rewriting.
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As we have seen (cf. Ex. 14), in the setting of RDFS we can use Alg. 2.1 rewrite to
expand a CQ to a UCQ that incorporates all its “causes”. A slight variation can be used
to compute the set of all causes, that is, in the most naïve fashion by just “flattening”
the set of sets returned by Alg. 2.1 to a simple set; we denote this flattening operation
on a set S of sets as flatten(S). Let us illustrate it via an example.

Example 28 Given q and T as in Ex. 6. The example therein describes Alg. 2.1 applied
to the query in the context of DL-Lite ontology language. As discussed previously,
it can be used to compute the causes, though in the context of the RDFS ontology
language, the “Reduce” step is not applicable. Hence, we have S = rewrite(q, T ):
S = {{worksFor(x, z), belongsTo(y, z)}, {worksFor(x, z), worksFor(y, z)}}. Then, we
compute: flatten(S) = {worksFor(x, z), worksFor(y, z), belongsTo(y, z)}.

Likewise, we can easily define a modified version of mat(G), applied to a BGP P using
a TBox T . This could be viewed as simply applying the first four left-most inference
rules in Fig. 23 exhaustively to P ∪ T , and then removing T . Let us call the resulting
algorithm mateff(P, T )4. Using these considerations, we can thus define both rewritings
that consider all causes, and rewritings that consider all effects of a given (insert or
delete) pattern P :

Definition 35 (Cause/Effect rewriting) Given a BGP P occurring as insert or delete
pattern (i.e., P = Pi or P = Pd) in an update operation over the triple store G = TG∪AG,
we define the all-causes-rewriting of P as P caus = flatten(rewrite(P, TG)); likewise, we
define the all-effects-rewriting of P as P eff = mateff(P, TG).

This leads (almost) straightforwardly to a rewriting-based definition of Semmat
2 .

Definition 36 Let u(Pd, Pi, Pw) be an update operation. Then

G
Semmat

2
u(Pd,Pi,Pw) = G

u(P caus
d

,P eff
i ,{Pw}{P fvars

d
}),

where P fvars
d = {?v a rdfs:Resource. |?v ∈ Var(P caus

d ) \Var(Pd)}.

The only tricky part in this definition is the rewriting of the where clause, where Pw

is joined5 with a new pattern P fvars
d that binds “anonymous” variables (i.e., the “fresh”

variables denoted by ‘_’ in Table 21, introduced by Alg. 2.1) in the rewritten delete
clause, P caus

d . Here, ?v a rdfs:Resource. is a shortcut for a pattern which binds ?v
to any term occurring in G, cf. Sec. 7.1 for further details on how we implement this in
practice.

4Note that the intention is not to provide optimised algorithms here, but just to convey the feasibility
of this rewriting.

5A sequence of ’{}’-delimited patterns in SPARQL corresponds to a join, where such joins can again
be nested with unions, with the obvious semantics, for details cf. Def. 18.

61



4. Updating RDFS ABoxes and TBoxes in SPARQL

Example 29 Getting back to the materialised version of the triple store G from Ex. 15,
the update u from Ex. 21 would, according to Semmat

2 , be rewritten to
DELETE {?X a :Employee. ?X :worksFor ?x1.}
INSERT {?Y a :Department . ?Y a :Organisation . }
WHERE {{?X :belongsTo ?Y.} {?x1 a rdfs:Resource.}}

with G
Semmat

2
u containing G without the triples :john a :Employee;

:worksFor :marketing. :joe a :Employee; :worksFor :finance.

:anna a :Employee; :worksFor :marketing; :worksFor :finance. .

It is easy to show that Semmat
2 is mat-preserving. However, this semantics might still

result in potentially non-intuitive behaviours. For instance, subsequent calls of inserts
and deletes might leave “traces” in the form of “dangling” effects that remain after
deletions, as shown by the following example.

Example 30 Assume G from Ex. 3 with an empty ABox. Under Semmat
2 , the following

sequence of updates would leave as a trace :joe a :Employee; :Person; :belongsTo

:marketing . :marketing a :Department; :Organisation . , which would not
be the case under the naïve semantics.
DELETE{} INSERT {:joe :worksFor :marketing.} WHERE{};
DELETE {:joe :worksFor :marketing.} INSERT{} WHERE{}

Semmat
3 tries to address the issue of such “traces”, but can no longer be formulated by

a relatively straightforward rewriting. As regards the definition/implementation captur-
ing the intention of Semmat

3 , there are two possible starting points, namely combining
Semmat

1a + Semmat
2 , or Semmat

1b + Semmat
2 , respectively. In the following definition we

intuitively build upon Semmat
1a + Semmat

2 .

Definition 37 Given G = TG ∪ AG, u(Pd, Pi, Pw), let Ad, and Ai be defined as in
Def. 24. Then, let Acaus

d be the instantiated ABox triples to be deleted plus their causes,
and let Aeff

i be the instantiated ABox triples to be inserted plus their effects.

Now we can define Semmat
3 :

G
Semmat

3
u(Pd,Pi,Pw) = mat(TG ∪ (AG \ Acaus

d \mat(TG ∪ Acaus
d )) ∪ Aeff

i .

Let us illustrate Semmat
3 via an example.

Example 31 Assume G and the sequence of updates from the previous example. Un-
der Semmat

3 , the sequence of updates would not leave any trace, i.e., triples :joe a

:Employee; :Person; :belongsTo :marketing . :marketing a :Department;

:Organisation . would be removed by the subsequent delete operation.
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We emphasise though, that Semmat
3 would still potentially run into arguable cases, since

it might run into removing seemingly “disconnected” implicit assertions, whenever re-
moved assertions cause these, as shown by the following example.

Example 32 Assume a materialised triple store G consisting only of the TBox triples
:Father sc :Person, :Male . The behaviour of the following update sequence under
a semantics implementing the intention of Semmat

3 is arguable:
DELETE {} INSERT {:x a :Father.} WHERE {};
DELETE {:x a :Male.} INSERT {} WHERE {}

The result of the update sequence results with an empty ABox. We leave it open for now
whether “recursive deletion of dangling effects” is intuitive: in this case, should upon
deletion of x being Male, also the fact be deleted that x is a Person?

In a strict reading of Semmat
3 ’s intention, :x a :Person. would count as a dangling

effect of the cause for :x a :Male., since it is an effect of the inserted triple with no
other causes in the store, and thus should be removed upon the delete operation.

Lastly, we point out that while implementations of (materialised) triple stores may make
a distinction between implicit and explicitly inserted triples (e.g., by storing explicit and
implicit triples separately, as sketched in Semmat

1b already), we consider the distinc-
tion between implicit triples and explicitly inserted ones non-trivial in the context of
SPARQL 1.1 Update: for instance, is a triple inserted based upon implicit bindings in
the where clause of an insert statement to be considered “explicitly inserted” or not?
We tend towards avoiding such distinction, and such philosophical aspects of possible
SPARQL update semantics are left beyond the scope of this dissertation. For now, we
turn our attention to the potential alternatives for red-preserving semantics.

4.3 Alternative Red-Preserving Semantics

Again, similar to Semmat
3 , for both baseline semantics Semred

0 and Semred
1 we leave

it open whether they can be implemented by rewriting to SPARQL update operations
following the naïve semantics, i.e., without the need to apply red(G) over the whole
triple store after each update; a strategy to avoid calling red(G) would roughly include
the following steps:

• delete the instantiations Pd plus all the effects of instantiations of Pi, which will
be implied anyway upon the new insertion, thus preserving reduced;
• insert instantiations of Pi only if they are not implied, that is, they are not already

implied by the current state of G or all their causes in G were to be deleted.

We leave further investigation of whether these steps can be cast into update requests
directly by rewriting techniques to future work. Rather, we show that we can capture
the intention of Semred

1 by a straightforward extension of the baseline semantics.
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Definition 38 (Semred
1 ) Let u(Pd, Pi, Pw) be an update operation. Then

G
Semred

1
u(Pd,Pi,Pw) = red(G

u(P caus
d

,Pi,{rewrite(Pw)}{P fvars
d

})),

where P caus
d and P fvars

d are as before.

Example 33 Getting back to the reduced version of the triple store G from Ex. 16, the
update u from Ex. 21 would, according to Semred

1 , be rewritten to
DELETE { ?X a :Employee. ?X :worksFor ?x1. }
INSERT { ?Y a :Department. }
WHERE {

{
{ ?X :belongsTo ?Y. }
UNION
{ ?X :worksFor ?Y. }

}
{ ?x1 a rdfs:Resource.}

}

with G
Semred

1
u containing the triples:

:finance a :Department. :marketing a :Department. .

Observe here that the triple :john :belongsTo :marketing. cannot be entailed any-
more because its causes are deleted, which some might view it as non-intuitive.

In a reduced store effects of Pd need not be deleted, which makes the considerations that
led us to Semmat

3 irrelevant for a red-preserving semantics, as shown next.

Example 34 Under Semred
1 , as opposed to Semmat

2 , the update sequence of Ex. 30
would leave no traces. However, the update sequence of Ex. 32 would likewise result in
an empty ABox, again losing idempotence of single triple insertion followed by deletion.

Note that, while the rewriting for Semred
1 is similar to that for Semmat

2 , post-processing
for preserving reducedness is not available in off-the-shelf triple stores. Instead, Semmat

2
could be readily executed by rewriting on existing triple stores, preserving materialisa-
tion. Again we refer to more details on possible implementations routes to Chapter 7.

4.4 Postulates for Mat-/Red-Preserving Semantics
For all the various semantics discussed, we check them against the postulates K1-K6
provided in Sec. 3.2, in order to see the rationality of the respective semantics. Table 41
gives a summary on all the semantics versus postulates. Speaking in general, Semmat

1b

fulfils the highest number of postulates, whereas Semmat
3 fulfils the least number of
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K1 K∗2 K–2 K∗3 K–3 K∗4 K–4 K∗5 K∗5′ K–5 K–5′ K–5′′ K–5′′′ K6 Total /14
Semmat

naïve X ✓ ✓ ✓ ✓ X ✓ ✓ ✓ ✓ ✓ ✓ ✓ X 11
Semred

naïve X ✓ ✓ ✓ ✓ ✓ X ✓ ✓ ✓ ✓ ✓ ✓ X 11
Semmat

0 ✓ ✓ ✓ ✓ ✓ ✓ X ✓ ✓ ✓ X ✓ X X 10
Semmat

1a ✓ ✓ ✓ ✓ X ✓ X ✓ ✓ ✓ ✓ X ✓ ✓ 11
Semmat

1b ✓ ✓ ✓ ✓ ✓ ✓ X ✓ ✓ ✓ ✓ ✓ ✓ X 12
Semmat

2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X X X X X 9
Semmat

3 ✓ ✓ ✓ ✓ X ✓ ✓ ✓ ✓ X X X X X 8
Semred

0 ✓ ✓ ✓ ✓ ✓ ✓ X ✓ ✓ ✓ ✓ X X ✓ 11
Semred

1 ✓ ✓ ✓ ✓ X ✓ ✓ ✓ ✓ X ✓ X X X 9

Table 41: Checking postulates K1-K6 against Semmat
x and Semred

x

postulates. In the following, for each one of them we give more explanation on why they
are fulfilled or not fulfilled.

Semmat
naïve does not satisfy K1 due to lack of the materialise operator. It satisfies K∗2

because insertion of triples via the semantics of SPARQL/Update results with the triples
being inserted. In fact, we note that for the same argument K∗2 holds in all the discussed
semantics. It satisfies K–2 because a deletion of triples via the baseline SPARQL/Update
semantics does not add new triples, and neither does it for any of the extensions/update
semantics defined in this dissertation, so again this postulate holds for all the discussed
update semantics6. It satisfies K∗3 because Gnaive

u = G ∪ A ⊆ mat(G ∪ A) = Gexpand
u ,

thereforeGnaive
u ⊆ Gexpand

u . It satisfies K–3 because deletion of a triple that does not exist
in the triple store results with no changes. K∗4 is not satisfied, a trivial counter-example
would be to INSERT {:john a :Employee} for G ={:Employee sc :Person}.
It satisfies K–4 because deletion of any non-empty set of triples A via the semantics of
SPARQL/Update results with the triples being deleted, and thus querying such triples
results with an empty set. K∗5 and K∗5′ are trivially satisfied (again in all semantics
mentioned in this chapter) because we only consider RDFS ontology language which
does not have inconsistencies. K–5′ is satisfied because deletion and insertion of the
same triples negates each other via SPARQL/update semantics. K–5 holds because K–
5′ holds. K–5′′′ is satisfied because insertion and deletion of the same triples negates
each other via SPARQL/update semantics. K–5′′ holds because K–5′′′ holds. It does
not satisfy K6 because if u1 = DELETE{A1}, u2 = DELETE{A2} such that A1 ⊂ A2
and mat(TG ∪ A1) = mat(TG ∪ A2), then Gsem

u1 ̸= Gsem
u2 ; same holds for inserts. This is

illustrated via an example.

Example 35 (K6 is not satisfied in Semmat
naïve)

Let G = TG ∪ AG = {:Employee sc :Person}, A1 = {:john a :Employee} and A2 =
{:john a :Employee . :john a :Person .}, such that A1 ⊂ A2 and mat(TG ∪A1) =

6Note that if we considered OPTIONAL patterns in Pw this might change, due to the non-monotonic
flavour; however, we leave the consideration of such complex patterns beyond BGPs to future work.
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mat(TG∪A2). Given u1 = DELETE{A1}, u2 = DELETE{A2}, then we conclude that GSemmat
naïve

u1 ̸=
G

Semmat
naïve

u2 holds.

Semred
naïve does not satisfy K1 due to lack of the reduce operator. Note though, that

in case of DELETE only (i.e., if the INSERT is empty), K1 is satisfied. K∗2 and K–
2 hold for the same reasons as for Semmat

naïve. K∗3 is satisfied as Gnaive
u = G ∪ A ⊇

red(G ∪ A) = Gexpand
u , thus we have J?S ?P ?OKGnaive

u
= J?S ?P ?OK

Gexpand
u

, i.e., the
query answering using query rewriting in this case amounts to same results. It satisfies
K–3 because deletion of a triple that does not exist in the triple store results with no
changes. K∗4 is satisfied because in K∗3 equality ("=") holds, and thus the other side
follows (⇒). K–4 is not satisfied because if an implicit triple is deleted, then querying
the triple with rewriting results with a non-empty set. K∗5, K∗5′, K–5, K–5′, K–5′′ and
K–5′′′ hold for the same reasons as for Semmat

naïve. It does not satisfy K6 because if u1 =
INSERT{A1}, u2 = INSERT{A2} such that A1 ⊂ A2 and red(TG∪A1) = red(TG∪A2),
then GSemred

naïve
u1 ̸= G

Semred
naïve

u2 ; this is due to lack of reduce operator. Same as with Ex. 35,
an analogous example can be constructed.

Semmat
0 satisfies K1 because it relies upon the materialise operator. K∗2 and K–2 hold

for the same reasons as for Semmat
naïve. K∗3 is satisfied because equality ("=") holds, i.e.,

the semantics coincide by definition. K–3 is satisfied because deletion of a non-existing
triple has no effect, consequently as well as materialise operator applied on that state.
K∗4 is satisfied because equality ("=") holds, same as it holds in K∗3. It does not
satisfy K–4 because deletion of triples does not guarantee that they are not going to
be re-inserted after the materialise operator. K∗5 and K∗5′ are satisfied for the same
reasons as for Semmat

naïve. K–5′ and K–5′′′ are not satisfied since deletions and insertions
are not invertible due to the materialise operator, and thus consequently more triples
could be added. Analogously, K–5 and K–5′′ are satisfied. This semantics does not
satisfy K6 because if u1 = DELETE{A1}, u2 = DELETE{A2} such that A1 ⊂ A2 and
mat(TG ∪ A1) = mat(TG ∪ A2), then G

Semmat
0

u1 ̸= G
Semmat

0
u2 (see Ex. 35); note that for

insertions it holds though.

Semmat
1a satisfies K1 for the same reason as Semmat

0 . K∗2 and K–2 hold for the same
reasons as for Semmat

naïve. K∗3 is satisfied because for u = INSERT{A} the semantics
coincides with Semmat

0 . It does not satisfy K–3 because deletion of a non-existing
triple may still result with deletion of other triples, namely triples having no alternative
derivation. This is clarified by the following example:

Example 36 (K–3 is not satisfied in Semmat
1a )

Assume G = TG ∪ AG, such that TG is given as in Ex. 3 and AG = {:john :belongsTo
:finance}. Given the following update u:

DELETE {:john :worksFor :finance . }

according to Semmat
1a , we get:
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DELETE {:john :worksFor :finance . :john :belongsTo :finance .}

thus resulting with the triple :john :belongsTo :finance to be deleted as well.

Though, one could circumvent the issue by using the rewriting given in sequel.

Example 37 (cont’d)
Assume G = TG ∪ AG and u defined as in Ex. 36. Then, the following rewriting, pushes the
triples in the DELETE template as “join” in the WHERE clause:

DELETE { ?x :worksFor :finance . ?x :belongsTo :finance . }
WHERE { ?x :worksFor :finance . ?x :belongsTo :finance .

FILTER (?x = :john)
}

With this rewriting, if the triple :john :worksFor :finance is not present in AG, the
update is not going to delete :john :belongsTo :finance.

Fixing this issue seems non-trivial, but we leave it for future work to adapt the definition
of the semantics accordingly.

K∗4 is satisfied for the same reason as in Semmat
0 . K–4 is not satisfied because despite

deleting the triple and its effects, still it could be derived by the (re-)materialisation.
K∗5 and K∗5′ hold for the same reasons as for Semmat

naïve. K–5′ is satisfied, due to being
the inverse of K–5′′′, thus triples can at least be implicitly recovered.

Example 38 (K–5′ is satisfied in Semmat
1a )

Assume G = TG ∪ AG, such that TG is given as in Ex. 3 and AG is empty. Given the following
sequence of updates:

DELETE {} INSERT {:joe a :Person; a :Employee.} WHERE {};
DELETE {:joe a :Employee.} INSERT {} WHERE {};
DELETE {} INSERT {:joe a :Employee.} WHERE {};

According to Semmat
1a , the last two operations negate each other, thus the triple :joe a :Person

is recovered.

K–5 is satisfied because K–5′ is satisfied (and also the semantics is invertible for delete/in-
sert). K–5′′ is not satisfied because triples that are explicitly added could be potentially
removed, and this is further clarified by the following example.

Example 39 (K–5′′ is not satisfied in Semmat
1a )

Assume G = TG ∪ AG, such that TG is given as in Ex. 3 and AG is empty. Given the following
sequence of updates:

DELETE {} INSERT {:joe a :Person.} WHERE {};
DELETE {} INSERT {:joe a :Employee.} WHERE {};
DELETE {:joe a :Employee.} INSERT {} WHERE {};
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According to Semmat
1a , the update results with the triple :joe a :Person additionally to be

deleted.

K–5′′′ is satisfied because given the restriction if A ∩ mat(G) = ∅ then we first insert
new triples (that can’t be inferred from other triples) plus the effects. Then, deletion
removes all of them. Thus, for this semantics INS/DEL is invertible.

Finally, Semmat
1a satisfies K∗6 because for both deletes and inserts it relies upon the

materialise operator, i.e., if u1 = DELETE{A1}, u2 = DELETE{A2} such that A1 ⊂ A2

and mat(TG ∪A1) = mat(TG ∪A2), then GSemmat
1a

u1 = G
Semmat

1a
u2 ; same holds for insertions

as well.

Semmat
1b is similar to Semmat

1a with the difference that it satisfies K–3 and K–5′′, but
does not satisfy K6. It satisfies K–3 because the deletion of a triple that does not
exist makes no difference in the explicit triple store (Aexpl), therefore resulting with
no changes in the implicit store (Aimpl). It does not satisfy K–4: suppose Aexpl =
{:x a :Employee; a :Person.}, then given u = DELETE{:x a :Person} posed
over Aexpl, it will be re-derived by the materialisation. It satisfies K–5′′′ since up-
dates are first executed over the explicit store, thus insertion followed by deletion of
the same triples negates each other via SPARQL/Update semantics. K–5′′ is satisfied
because K–5′′′ is satisfied. Semmat

1b does not satisfy K∗6 because if u1 = INSERT{A1},
u2 = INSERT{A2} such that A1 ⊂ A2 and mat(T ∪ A1) = mat(T ∪ A2), then
G

Semmat
1b

u1 ̸= G
Semmat

1b
u2 , in this context means that the respective explicit stores would

be different; the same holds for deletes.

Semmat
2 satisfies K1 for the same reason as Semmat

0 . K∗2 and K–2 hold for the same
reasons as for Semmat

naïve. K∗3 and K∗4 are satisfied for the same reasons as for Semmat
1a .

It satisfies K–3 because deletion of a non-existing triple, plus its causes results with no
changes. That is, if causes would exist in mat(G) then also the triple would exist in
mat(G). It satisfies K–4 because according to the definition, triples plus their causes are
deleted from the materialised triple store. K∗5 and K∗5′ are satisfied for the same reason
as for Semmat

naïve. K–5, K–5′, K–5′′, K–5′′′ are not satisfied because insertion would result
with triples ought to be inserted plus effects, whereas deletion would result with triples
ought to be deleted plus the causes, where the causes are disjoint from effects, see Ex. 30.
Semmat

2 does not satisfy K6 because if A1 ⊂ A2 and mat(TG ∪ A1) = mat(TG ∪ A2),
then G

Semmat
2

u1 ̸= G
Semmat

2
u2 . This is clarified by the following example.

Example 40 (K6 is not satisfied in Semmat
2 )

Consider G = TG ∪ AG, such that TG is given as in Ex. 3 and AG is empty. Given ABoxes
A1 = {:john a :Employee.}, A2 = {:john a :Employee; a :Person .}, and the
corresponding updates u1 = DELETE{A1} u2 = DELETE{A2}, such that A1 ⊂ A2 and mat(TG∪
A1) = mat(TG ∪ A2), then clearly GSemmat

2
u1 ̸= G

Semmat
2

u2 . Nonetheless, for inserts it holds though,
for mat(TG ∪A1) = mat(TG ∪A2) then GSemmat

2
u1 = G

Semmat
2

u2 , since it relies upon “effects”, which
have the same outcome as the materialise operator.
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Semmat
3 is similar to Semmat

2 with the difference that it does not satisfy K–3. It does
not satisfy K–3 because the deletion of a triple that does not exist in the triple store,
plus its causes, and effects of causes results with more triples being deleted.

Example 41 (K–3 not satisfied in Semmat
3 )

Assume G = TG∪AG, such that TG is given as in Ex. 3 and AG = {:john a :Person}. Given
the following update:

DELETE {:john :belongsTo :finance . }

according to Semmat
3 , we get:

DELETE {:john :belongsTo :finance ; :worksFor :finance; a :Employee ;
a :Person . :finance a :Department; a :Organization .}

The final update results with the triple :john a :Person to be deleted.

Now let us continue the discussion on postulate satisfiability with the reduce-preserving
semantics.

Semred
0 satisfies K1 because relies upon the reduce operator. It satisfies K∗2 because the

insertion of triples via the semantics of SPARQL/Update results with the triples being
inserted. Even if removed by the reduce operator, querying for the triples would take the
rewriting into account. It satisfies K–2 because the deletion of triples via the semantics
of SPARQL/Update, plus reduce operator, do not add new triples. K∗3 and K∗4 are
satisfied for the same reasons as for Semmat

1a . It satisfies K–3 because the deletion of a
non-existing triple in a reduced triple store results with no changes. K–4 is not satisfied
because triples plus their causes are not deleted. K∗5 and K∗5′ are satisfied for the
same reasons as in Semmat

naïve. K–5′ is satisfied because in a reduced state, the deletion
and insertion of the same triples negate each other via SPARQL/update semantics. K–5
holds because K–5′ holds. K–5′′ and K–5′′′ are not satisfied, because inserts followed by
deletes could lose triples, this is further explained by the following example.

Example 42 (K–5′′ and K–5′′′ are not satisfied in Semred
0 )

Assume G = TG ∪AG, such that TG is given as in Ex. 3 and AG = {:joe a :Person}. Given
the following update:

DELETE {} INSERT {:joe a :Employee .} WHERE {};
DELETE {:joe a :Employee .} INSERT {} WHERE {};

The updates would result with the triple :joe a :Person being deleted.

It satisfies K6 because for either deletes or inserts u1 and u2, we have red(TG ∪ A1) =
red(TG ∪A2) then directly holds GSemred

0
u1 = G

Semred
0

u2 ; this is due to the semantics relying
upon the reduce operator.
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Semred
1 different from Semred

0 , it does not satisfy K–3, K–5, K6, whereas it satisfies K–4.
K–3 is not satisfied because deleting a triple that does not exist in the reduced triple
store might still delete as it also removes the causes; note that this does not occur in
Semmat

2 because of materialisation. K–4 is satisfied because according to the definition,
triples plus their causes are removed from the reduced triple store. It does not satisfy
K–5, further explained by the example.

Example 43 (K–5 is not satisfied in Semred
1 )

Assume G = TG ∪ AG, such that TG is given as in Ex. 3 and AG = {:joe a :Employee}.
Given the following sequence of updates:

DELETE {:joe a :Person .} INSERT {} WHERE {};
DELETE {} INSERT {:joe a :Person .} WHERE {};

Then, we would also lose :joe a :Employee . due to deleting triples plus their causes.

Similar to Semred
0 , K–5′ is satisfied because in a reduced state and also given the con-

straint for the update if A ⊆ G (otherwise Ex. 43 would apply and thus consequently
would not be satisfied), then the deletion and insertion of the same triples negate each
other via SPARQL/update semantics.

It does not satisfy K6, and this is clarified in the following example.

Example 44 (K6 is not satisfied in Semred
1 )

Assume G = TG ∪ AG, which is already in the reduced state red(G) = {:joe a :Employee
.:joe a :Father . :Father sc :Person . :Employee sc :Person .}, and the
deletions consist of the ABox-es:
A1 = {:joe a :Employee; a :Person .} and A2 = {:joe a :Employee .} such that
red(TG ∪ A1) = red(TG ∪ A2), then we get G

Semred
1

u1 ̸= G
Semred

1
u2 . This is because deleting

:joe a :Person . would also delete :joe a :Father ..

4.5 TBox Updates

So far, we have considered the TBox as static. As already noted in [GHV11], additionally
allowing TBox updates considerably complicates issues and opens additional degrees of
freedom for possible semantics. While in this dissertation we do not explore all of these,
we limit ourselves to sketch these different degrees of freedom and suggest one pragmatic
approach to extend updates expressed in SPARQL to RDFS TBoxes.

In order to allow for TBox updates, we have to extend the update language: in the
following, we will assume general BGPs, extending Def. 17.

Definition 39 (general BGP) A general BGP is a set of triples of any of the forms
from Table 22, where x, y,A,A′, P, P ′ ∈ Γ ∪ V.
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Note that we need to restrict the use of general BGPs in updates if we want to avoid
meta-reasoning or resulting with non-standard RDF(S). To this end, we define a general
update operation as follows:

Definition 40 (general update) A general update is an update u(Pd, Pi, Pw) where
we add the following additional restrictions: each variable in Pd, Pi, Pw is used either
in only class positions, only property positions or only individual positions.

We observe that with this relaxation for BGPs, updates as per Def. 23 can query TBox
data, since they admit TBox triples in Pw. In order to address this issue we need to also
generalise the definition of query answers.7

Definition 41 Let Q be a union of general BGPs and [[Q]]G the simple SPARQL se-
mantics as per [PAG09](or, Def. 19), i.e., essentially the set of query answers obtained
as the union of answers from simple pattern matching of the general BGPs in Q over
the graph G. Then we define ansRDFS(Q,G) = [[Q]]mat(G).

In fact, Def. 41 does not affect ABox inferences, that is, the following corollary follows
immediately from Prop. 2 for non-general UCQs as per Def. 17.

Corollary 1 Let Q be a UCQ as per Def. 17. Then ansRDFS(Q,G) = ansrdfs(Q,G).

As opposed to the setting discussed so far, where the right-most two rules in Fig. 23 used
for TBox materialisation were ignored, we now focus on the discussion of terminological
updates under the standard “intensional” semantics, cf. [FGM+13] (essentially defined
by the inference rules in Fig. 23) and attempt to define a reasonable (that means com-
putable) semantics under this setting. Note that upon terminological queries, the RDFS
semantics and DL semantics differ, since this “intensional” semantics does not cover all
terminological inferences derivable in DL, the details of this aspect are beyond the scope
of the dissertation.

Observation 1. TBox updates potentially affect both materialisation and reducedness
of the ABox, that is, ( i) upon TBox insertions a materialised ABox might need to be
re-materialised in order to preserve materialisation, and, respectively, a reduced ABox
might no longer be reduced; ( ii) upon TBox deletions in a materialised setting, we have
a similar issue to what we called “dangling” effects earlier, whereas in a reduced setting
indirect deletions of implied triples could cause unintuitive behaviour.

Let us illustrate the last point of reduced setting via an example, for the materialised
setting see Ex. 49; the other points are rather self-explanatory.

7As mentioned in Fn. 9, elements of Γ may act as individuals, concept, or roles names in parallel.
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Example 45 If we are given the graph G = {:A sc :B. :B sc :C.}. If we pose the
following insert u = INSERT { :x a :A . :x a :C}, which then followed by reduce operation
we get G = {:x a :A . :A sc :B. :B sc :C.}. If we pose u = DELETE {:x a
:A}, we lose the triple :x a :C., which was previously added explicitly. Likewise, we
lose the triple if we pose u = DELETE {:A sc :C} instead of previous update. For some
use cases this might be viewed as non-intuitive.

Observation 2. Whereas deletions of implicit ABox triples can be achieved determinis-
tically by deleting all single causes, TBox deletions involving sc and sp chains can be
achieved in several distinct ways, as already observed by [GHV11].

Example 46 Consider the graph G = {:A sc :B. :B sc :C. :B sc :D. :C
sc :E. :D sc :E. :E sc :F.} with the update DELETE{:A sc :F.}

Independent of whether we assume a materialised TBox, we would have various choices
here to remove triples, to delete all the causes for :A sc :F.

In order to define a deterministic semantics for TBox updates, we need a canonical way
to delete implicit and explicit TBox triples. Minimal cuts are suggested in [GHV11] in
the sc (or sp, resp.) graphs as candidates for deletions of sc (or sp, resp.) triples. The
problem of minimal multicut in graph theory is to find a minimal set of edges in a graph,
such that their removal disconnects the pairs of vertices provided as input to a given
graph. However, as easily verified by Ex. 46, minimal multicuts are still ambiguous.

Here, we suggest two update semantics using rewritings to SPARQL 1.1 property path
patterns [HS13] that yield canonical minimal cuts.

Definition 42 Let u(Pd, Pi, Pw) be an update operation as per Def. 40 where Pd, Pi, Pw

are general BGPs. Then

G
Semmat

outcut
u(Pd,Pi,Pw) = mat(Gu(P ′

d
,Pi,P ′

w)),

where each triple {A1 sp A2} ∈ Pd such that sp ∈ {sc, sp} is replaced within P ′
d by {A1 sp

?x.}, and we add to P ′
w the property path pattern {A1 sp ?x. ?x sp∗ A2}. Analogously,

Semmat
incut is defined by replacing {?x sp A2} within P ′

d, and adding {A1 sp
∗ ?x. ?x sp A2}

within P ′
w instead.

Both Semmat
outcut and Semmat

incut may be viewed as straightforward extensions of Semmat
0 ,

i.e., both are mat-preserving and equivalent to the baseline semantics for non-general
BGPs (i.e., on ABox updates):
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Proposition 6 Let u(Pd, Pi, Pw) be an update operation, where Pd, Pi, Pw are (non-
general) BGPs. Then

G
Semmat

outcut
u(Pd,Pi,Pw) = G

Semmat
incut

u(Pd,Pi,Pw) = G
Semmat

0
u(Pd,Pi,Pw).

The intuition behind the rewriting in Semmat
outcut is to delete for every deleted A sp B.

triple, all directly outgoing sp edges from A that lead into paths to B, or, resp., in
Semmat

incut all directly incoming edges to B. The intuition to choose these canonical
minimal cuts is motivated by the following proposition.

Proposition 7 Let u = DELETE {A sp B}, and G a triple store with materialised TBox
TG. Then, the TBox statements deleted by GSemmat

outcut
u(Pd,Pi,Pw) (or, GSemmat

incut
u(Pd,Pi,Pw), resp.) form a

minimal cut [GHV11] of TG disconnecting A and B.

Proof 1 (Sketch) In a materialised TBox, one can reach B from A either directly or
via n direct neighbours Ci ̸= B, which (in)directly connect to B. So, a minimal cut
contains either the multicut between A and the Cis, or between the Cis and B; the latter
multicut requires at least the same amount of edges to be deleted as the former, which
in turn corresponds to the outbound cut. This proves the claim for Semmat

outcut. We can
proceed analogously for Semmat

incut.

The following example illustrates that the generalisation of Prop. 7 to updates involving
the deletion of several TBox statements at once does not hold.

Example 47 Assume the materialised triple store G = {:A sp :B,:C,:D. :B sp
:C, :D.} and u = DELETE{:A sp :C. :A sp :D.}. Here, Semmat

incut does not yield
a minimal multicut in G w.r.t. disconnecting (:A,:C) and (:A,:D), as it deletes more
triples {:A sp :C, :D. :B sp :C, :D.} whereas minimal multicut would yield
{:A sp :B, :C, :D.}

Now, let us construct a similar example for Semmat
outcut .

Example 48 Assume the materialised triple store G = {:B sp :A,:C,:D. :C sp
:A,:D. :D sp :A.} and u = DELETE{:B sp :A. :C sp :A.}. Here, Semmat

outcut
does not yield a minimal multicut in G w.r.t. disconnecting (:B,:A) and (:C,:A),
as it deletes more triples {:B sp :A, :C, :D. :C sp :A, :D.} whereas minimal
multicut would yield {:B sp :A, :C sp :A, :D sp :A.}
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We can combine ABox + TBox semantics independently within a single update by just
combining the respective rewritings from both ABox and TBox semantics. For instance,
if we combine Semmat

2 for ABox updates with Semmat
incut for TBox updates, which would

be a viable option given that both delete implicit triples and insert effects. Let us
illustrate this via an example.

Example 49 Getting back to the materialised version of the triple store G from Ex. 15,
plus including the TBox materialisation, and the following update u:

DELETE { ?X a :Employee. :worksFor sp :belongsTo .}
INSERT { ?Y a :Department . }
WHERE { ?X :belongsTo ?Y . }

according to Semmat
2 and Semmat

incut would be rewritten to:

DELETE {?X a :Employee. ?X :worksFor ?x1. ?Z sp :belongsTo.}
INSERT {?Y a :Department . ?Y a :Organisation . }
WHERE {{ {?X :belongsTo ?Y.} {?x1 a rdfs:Resource.}}

UNION { :worksFor sp* ?Z . ?Z sp :belongsTo . }}

followed by a mat operation as required by Semmat
incut . Observe that we have separated

ABox and TBox rewritings by using a UNION in the WHERE clause. This is due to the
fact that in-existence of the TBox triple ought to be deleted should not affect the ABox
triples (if it were to be “join” using ‘.’) and vice versa. Note that deleting :worksFor
sp :belongsTo. would leave as “dangling” effects all resources having :belongsTo
properties, which are derived from resources having worksFor properties (this general
update removes such resources as seen from its ABox part). This behavior of resulting
with dangling effects after TBox update is also earlier stressed in Observation 1.

Note that in the previous example we are dealing with ABox+TBox updates in separa-
tion without any interleaving, i.e., TBox semantics does not affect the ABox semantics
and vice versa.

As the examples show, the extension of the baseline ABox update semantics to TBox
updates already yields new degrees of freedom. We leave a more in-depth discussion of
TBox updates also extending the other semantics from Sec. 4.2 for future work.

4.6 Postulates for Mat-Preserving TBox Semantics
Same as with ABox semantics, we check the postulates against the TBox semantics
Semmat

incut and Semmat
outcut . As mentioned in Sec. 3.2, the same postulates apply by merely

replacing the ABox update A with the TBox update T .

In Table 42 is given an overview of the TBox semantics we defined versus the postulates.
Both semantics fulfill the same postulates, not surprisingly, given that they are very
similar. They both delete an implicit TBox triple albeit with a different outcome –
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as regards to the triples being deleted. We also provide in Table 42 the postulate
satisfiability for ( i) non-general BGPs, i.e., ABox updates, ( ii) general BGPs, but in
case of TBox updates only, and ( iii) general BGPs in case of both ABox and TBox
updates. We can see that based on this order, i.e., if we use the semantics for ABox
updates we have the most postulates satisfied (10), for TBox updates only we have one
less (9), and if we use the semantics for both ABox + TBox updates then we have the
least number of postulates satisfied (8).

In the following we give more explanation on why the semantics fulfill or not fulfill the
postulates.

Semmat
incut and Semmat

outcut satisfy K1 because they rely upon the materialise operator.
They satisfy K∗2 because the insertion of triples via the semantics of SPARQL/Update
results with the triples being inserted, and in this case it boils down to the merge of
graphs followed by the materialise operator. They satisfy K–2 because the deletion
of triples via the semantics of SPARQL/Update does not add new triples, also both
semantics in the case of deletions do not trigger insertions. K∗3 is satisfied because for
u = INSERT{A} the semantics coincide with Semmat

expand. They satisfy K–3 because
deletion of a non-existing triple results with no changes. That is, if we delete a non-
existing triple :A sc :B it means that there is no path from the starting node :A to
the ending node :B, consequently according to the definitions of both semantics there
will be no other triples to be deleted. K∗4 is satisfied because equality ("=") holds as
in K∗3. They satisfy K–4 because according to the definition, the triple ought to be
deleted and all other triples that entail this triple are removed from the materialised
triple store. K∗5 and K∗5′ are trivially satisfied because we only consider RDFS which
does not have inconsistencies. K–5, K–5′, K–5′′ and K–5′′′ are not satisfied because
insertion may result with triples to be inserted plus effects, whereas deletion may result
with triples to be deleted plus other triples (as provided in Def. 42), which are disjoint
from the effects. In the following we give examples using Semmat

incut , but in analogous
way we can construct examples for Semmat

outcut .

Example 50 (K–5 and K–5′ are not satisfied in Semmat
incut)

Consider G = TG = mat(G) = { :A sc :B . :B sc :C . :A sc :C .}, T = { :A sc :C},
u1 = DELETE{T } and u2 = INSERT{T }. Then,

(GSemmat
incut

u1 )Semmat
incut

u2 = {:A sc :B . :A sc :C .} ⊉ G

This proves that K–5 and K–5′ are not satisfied.

Next, we also prove why K–5′′ is not satisfied via an example.

Example 51 (K–5′′ is not satisfied in Semmat
incut)

Consider G = TG = mat(G) = { :A sc :B . :B sc :C . :A sc :C .}.

Now, consider T = {:A sc :C}, u1 = DELETE{T } and u2 = INSERT{T }. Then,
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(GSemmat
incut

u2 )Semmat
incut

u1 = {:A sc :B} ⊉ G

Now, we prove why K-5′′′ is not satisfied. Note that the restriction T ∩ mat(G) = ∅
means that we will be inserting and removing an explicit triple. According to the defi-
nitions of the semantics, after insert (of an explicit triple) we have mat operator which
might add new implicit triples, followed by delete (of an explicit triple) that removes
the explicit triple. As side-effect we have implicit triples residing as “dangling” effects
in the triple store. This proves that we are nonetheless adding more triples in the triple
store, and this holds for both TBox semantics.

Example 52 (K–5′′′ is not satisfied in Semmat
incut)

Consider G = TG = mat(G) = {:A sc :B . :B sc :C . :A sc :C .}.

Now, consider T = {:B sc :D} (note that T ∩ mat(G) = ∅), u1 = DELETE{T } and u2 =
INSERT{T }. Then,

(GSemmat
incut

u2 )Semmat
incut

u1 = {:A sc :B . :B sc :C . :A sc :C . :A sc :D } ⊃ G

Hence, (GSemmat
incut

u2 )Semmat
incut

u1 ̸= G.

For Semmat
outcut we get the very same result.

They do not satisfy K6, this is further explained by the following example.

Example 53 (K6 is not satisfied in Semmat
incut)

Consider G = TG = ∅. Let TBoxes T1 = { :A sc :B, :B sc :C, :B sc :D, :C sc :E,
:D sc :E} and T2 = T1 ∪ { :A sc :C, :A sc :D } with the corresponding updates u1 =
DELETE{T1}, u2 = DELETE{T2}, such that T1 ⊂ T2 and mat(TG ∪ T1) = mat(TG ∪ T2). Then
clearly GSemmat

incut
u1 ̸= G

Semmat
incut

u2 holds.

Note that when deleting the implicit triple :A sc :E in T2, Semmat
incut would also delete, in

addition, the triple :A sc :D, which is not in T1.

In analogous way, we can construct an example for Semmat
outcut .

Note that from Table 42, the difference between both Semmat
incut and Semmat

outcut (TBox up-
dates) versus Semmat

0 is that in the former ones K–5 and K–5′′ are not satisfied, whereas
K–4 is satisfied. This is because (Gsem

DELETE{A})sem
INSERT{A} ⊉ G and (Gsem

INSERT{A})sem
DELETE{A} ⊉

G hold for both Semmat
incut and Semmat

outcut , given that we have a rewriting for Pd which
is not the case in Semmat

0 . In other words, Semmat
0 does not remove more triples than

provided in the original template Pd. But, this is the reason why it does not satisfy
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K–4, as opposed to Semmat
incut and Semmat

outcut that both satisfy it. On the other hand,
for non-general BGPs as outlined in Prop. 6 the semantics coincide, thus the postulate
satisfaction of Semmat

0 apply, cf. first and second row (ABox) in Table 42. In case
of general BGPs where both ABox plus TBox is taken into account, then both seman-
tics distinguish and process separately ABox and TBox updates. In other words, for
ABox updates they perform same as Semmat

0 , whereas for TBox updates they do as pro-
vided in Def. 42. For that reason, for ABox+TBox updates the intersection of postulate
satisfiability for ABox and TBox is computed in Table 42.

In the next chapter, we are going to see the challenges when we extend the expressivity
of ontology with owl:disjointWith axioms. Such axioms can lead to inconsistencies
in knowledge bases, and for that reason we devise other semantics tailored to deal with
inconsistencies inspired by belief revision.
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CHAPTER 5
Resolving Inconsistencies using

SPARQL

In the previous Chapter 4, we discussed several semantics of SPARQL updates in the
context of RDFS ontologies and data, which altogether are stored in a triple store. We
also distinguished the cases in which the triple store is fully materialised or to the
contrary, is reduced to its minimal core so that all other triples can be derived using
TBox axioms. In the case of materialised triple stores, we discussed both ABox and
TBox updates, whereas for reduced resp. ABox updates only.

As a stepping stone, this chapter continues the study of SPARQL updates focusing
on the role of inconsistency in supporting SPARQL ABox updates over materialised
stores. As a minimalistic ontology language allowing for inconsistencies, we consider
RDFS¬, an extension of RDFS [HPS14] with class disjointness axioms of the form {P
disjointWith Q} from OWL [MGH+12].

In the approaches proposed so far, either the update language is restricted to sets of
ground atoms (see Sec. 8.1.1) or, where the full SPARQL update language is allowed,
the TBox language is restricted so that no inconsistencies can arise (see Chapter 4). In
this chapter we discuss directions to overcome these limitations based on ideas from
belief revision.

Starting from a DL-Lite fragment covering RDFS and concept disjointness axioms, we
define three semantics for SPARQL instance-level (ABox) update: under cautious seman-
tics, inconsistencies are resolved by rejecting updates potentially introducing conflicts;
under brave semantics, instead, conflicts are overridden in favor of new information
where possible; finally, the fainthearted semantics is a compromise between the former
two approaches, designed to accommodate as much of the new information as possible,
as long as consistency with the prior knowledge is not violated (cf. Fig. 11). We show
how these semantics can be implemented in SPARQL via rewritings of polynomial size
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and draw first conclusions from their practical evaluation, which we discuss in a separate
chapter (see Sec. 7.2).

The aim is to adapt the basic belief revision operators for efficient implementation of
ABox updates expressed in SPARQL 1.1, in the presence of RDFS¬ TBox axioms.

Let us see challenges that arise in the new setting using an example.

Example 54 (Re-posted Ex. 22 and Ex. 23) Let TBox TG consists of the following
axioms:

:belongsTo rdfs:domain :Employee .
:belongsTo rdfs:range :Manager .
:Employee owl:disjointWith :Manager .

Consider the following SPARQL update request u in the context of the TBox TG:
INSERT {?X :belongsTo ?Y} WHERE {?X :worksFor ?Y}

Consider an ABox with data on people that happen to work for each other, i.e., both be-
ing employee and employer: A1 = {:john :worksFor :anna. :anna :worksFor
:john}.

Here, u would create two assertions :john :belongsTo :anna and :anna
:belongsTo :john. Due to the range and domain constraints in T , these assertions
result in clashes both for John and for Anna. Note that all inconsistencies are in the
new data, and thus we say that u is intrinsically inconsistent for the particular ABox
A1. We discuss how such updates can be fixed using SPARQL rewritings.

Now, let A2 be the ABox {:john :worksFor :anna. :john a :Manager}. It
is clear that after the update u, the ABox will become inconsistent with respect to TG

due to the property assertion :john :belongsTo :anna, implying that John is both
a Employee and a Manager which contradicts the disjointness axiom. In contrast to the
previous case, the clash here is between the prior knowledge and the new data.

Based on a semantics from Chapter 4, we propose three update semantics for this case,
and provide efficient SPARQL rewriting algorithms for implementing them in the RDFS¬
setting.

Before we go into further detail, we initially define the problem setting and other neces-
sary definitions that are relevant for the DL-Literdfs¬ fragment.

5.1 DL-Literdfs¬ Setting
We first introduce the DL-Literdfs¬ ontology language, given that this the fragment we
are going to use in this chapter.

80



5.1. DL-Literdfs¬ Setting

TBox RDFS¬

1. A′ ⊑ A A′ sc A.
2. P ′ ⊑ P P ′ sp P .

TBox RDFS¬

3. ∃P ⊑ A P dom A.
4. ∃P− ⊑ A P rng A.

TBox RDFS¬

5. A′ ⊑ ¬A A′ dw A.

ABox RDFS¬

6. A(x) x a A.
7. P (x, y) x P y.

Table 51: DL-Literdfs¬ assertions vs. RDF(S), where A, A′ denote concept (or, class)
names, P , P ′ denote role (or, property) names, Γ is the set of IRI constants (excl. the
OWL/RDF(S) vocabulary) and x, y ∈ Γ. For RDF(S), we use abbreviations (rsc, sp,
dom, rng, a) as introduced in [MPG07].

Definition 43 (RDFS¬ ABox, TBox, triple store) We call a set TG of inclusion
assertions of the forms 1–5 in Table 51 an (RDFS¬) TBox, a set AG of assertions of
the forms 6–7 in Table 51 an (RDF) ABox, and the union G = TG ∪ AG an (RDFS¬)
triple store.

As this fragment allows for inconsistencies, we need a definition for that.

Definition 44 (Consistency) A triple store G is called consistent, if mat(G) does not
contain both C(x) and ¬C(x) for any concept C and constant x ∈ Γ.

As already elaborated in Chapter 2, query answering in the presence of ontologies is
done either by rule-based pre-materialisation of the ABox or by query rewriting. In
the RDFS¬ case, materialisation in polynomial time is feasible. Let mat(G) be the
triple store obtained from exhaustive application of the inference rules in Fig. 51 on a
consistent triple store G, and—analogously—let chase(q, TG) refer to “materialisation”
w.r.t. TG applied to a CQ q. We call a triple store G (resp. the ABox of G) materialised
if the equality G \ TG = mat(G) \ TG holds. In this chapter, we will always focus on
“materialisation preserving” semantics for SPARQL update operations, which we dubbed
Semmat

2 in Chapter 4 and which preserves a materialised triple store. We recall the

?C sc ?D. ?S a ?C.
?S a ?D.

?P sp ?Q. ?S ?P ?O.
?S ?Q ?O.

?P dom ?C. ?S ?P ?O.
?S a ?C.

?P rng ?C. ?S ?P ?O.
?O a ?C.

?S a ?C,?D. ?C dW ?D.
⊥

Figure 51: Minimal RDFS rules from [MPG07] plus class disjointness “clash” rule from
OWL2 RL [MGH+12].

81



5. Resolving Inconsistencies using SPARQL

intuition behind Semmat
2 , given an update u = (Pd, Pi, Pw): ( i) delete the instantiations

of Pd plus all their causes; ( ii) insert the instantiations of Pi plus all their effects.

Given an ABox assertion E , Ecaus = {E ′ | E ∈ mat({E ′}∪TG)}. In the definition of Ecaus,
if E is a class membership assertion (x a C), then E ′ is one of (x a C’), (x P ?Y),
(?Y P x) for some fresh variable ?Y , class C’ and role P. If E is a role participation
assertion (x R z), E ′ is of the form (x P z), for some role P.

Let us recall the definition of Semmat
2 , which we re-formulate using the notation elabo-

rated above:

Definition 45 (Semmat
2 ) Let u(Pd, Pi, Pw) be an update operation. Then

G
Semmat

2
u(Pd,Pi,Pw) = G

u(P caus
d

, P eff
i , {Pw}{P fvars

d
})

Here, P caus
d =

∪
E∈atoms(Pd) Ecaus; P eff

i = chase(Pi, TG) and P fvars
d is a pattern that binds

variables occurring in P caus
d but not in Pd to the constants from Γ occurring in G.

We refer to Chapter 4 for further details, but stress that as such, Semmat
2 is not able

to detect or deal with inconsistencies arising from extending G with instantiations of Pi.
In what follows, we will discuss how this can be remedied.

Remark 1 Note that although the DELETE clause Pd is syntactically a BGP, its seman-
tics is different. Namely, triples occurring in Pd are mutually independent (cf. Def. 23),
so that for every θ ∈ ans(Pw, G), each atom in Pdθ ∩ G is deleted from G no matter
which other atoms of Pdθ occur in G. Therefore, P caus

d is computed atom-wise, unlike
CQ rewriting [CDGL+07]. Note that |Ecaus| = O(||TG||) where ||TG|| denotes the vocabu-
lary size of TG: in each RDFS¬ derivation, i.e., derivation according to one of the rules
in Fig. 51, a class membership assertion can occur at most once for each class in TG,
and a role membership assertion can occur at most twice for every role in TG. Thus,
|P caus

d | ≤ 2|Pd| · ||TG|| and |P eff
i | ≤ |Pi| · ||TG||, so both can be computed in poly-time.

This underpins the polynomial complexity of our rewritings.

5.2 Checking Consistency of a SPARQL Update
In the literature on the evolution of DL-Lite knowledge bases [CKNZ10, FKAC13], up-
dates represented by pairs of ABoxes Ad,Ai have been studied. However, whereas such
update might be viewed to fit straightforwardly to the corresponding Ad,Ai in Def. 23,
it is typically assumed that Ai is consistent with the TBox, and thus one only needs
to consider how to deal with inconsistencies between the update and the old state of
the knowledge base. However, this a priori assumption may be insufficient for SPARQL
updates, where concrete values for inserted triples are obtained from variable bindings
in the WHERE clause, and depending on the bindings, the update can be either con-
sistent or not. This is demonstrated by the update u from Ex. 54 which, when applied
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Algorithm 5.1: Constructing a SPARQL ASK query to check intrinsic incon-
sistency (for the definition of P eff

i , cf. Def. 36)
Input: RDFS¬ TBox TG, SPARQL update u(Pd, Pi, Pw)
Output: A SPARQL ASK query returning True if u is intrinsically inconsistent

1 if ⊥ ∈ P eff
i then

2 return ASK {} //u contains clashes in itself, i.e., is inconsistent for any
triple store

3 end
4 else
5 W := {FILTER(False)}; //neutral element w.r.t. union
6 foreach pair of triple patterns (?X a A), (?Y a A′) in P eff

i do
7 if A ⊑ ¬A′ ∈ TG then
8 W := W UNION {{Pwθ1[?X 7→?Z]} . {Pwθ2[?Y 7→?Z]}} for a fresh ?Z
9 end

10 end
11 return ASK WHERE {W}
12 end

to the ABox A1, results in an inconsistent set Ai of insertions. We call this intrinsic
inconsistency of an update relative to a triple store G = TG ∪ AG.

Definition 46 Let G be a triple store. The update u is said to be intrinsically consistent
w.r.t. G if the set of new assertions Ai from Def. 23 generated by applying u to G, taken
in isolation from the ABox of G, does not contradict the TBox of G. Otherwise, the
update is said to be intrinsically inconsistent w.r.t. G.

Intrinsic inconsistency of the update differs crucially from the inconsistency w.r.t. the
old state of the knowledge base, illustrated by the ABox A2 from Ex. 54. This latter
case can be addressed by adopting an update policy that prefers newer assertions in case
of conflicts, as studied in the context of DL-Lite KB evolutions [CKNZ10], which we will
discuss in Sec. 5.3 below. Intrinsic inconsistencies however are harder to deal with, since
there is no cue which assertion should be discarded in order to avoid the inconsistency.
Our proposal here is thus to discard all mutually inconsistent pairs of insertions.

We first present an algorithm for checking intrinsic inconsistency by means of SPARQL
ASK queries and then a safe rewriting algorithm. This rewriting is based on the ob-
servation that clashing triples can be introduced by a combination of two bindings of
variables in the WHERE clause, as the Ex. 54 (the ABox A1) illustrates. To handle such
cases, two copies of the WHERE clause Pw are created by the rewriting in Algorithms
5.1 and 5.2, for each pair of disjoint concepts according to the TBox of the triple store.
These algorithms use the notation described in Rem. 2 below.
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Algorithm 5.2: Safe rewriting safe(u)
Input: RDFS¬ TBox TG, SPARQL update u(Pd, Pi, Pw)
Output: SPARQL update safe(u)

1 if ⊥ ∈ P eff
i then

2 return u(Pd, Pi, FILTER(False))
3 end
4 W := {FILTER(False)}; //neutral element w.r.t. union
5 foreach pair of triple patterns (?X a A), (?Y a A′) in P eff

i do
6 if A ⊑ ¬A′ ∈ TG then
7 //cf. Rem. 2 for notation θ[. . . ]
8 W := W UNION {Pwθ1[?X 7→?Y ]}UNION {Pwθ2[?Y 7→?X]}}
9 end

10 end
11 return u(Pd, Pi, Pw MINUS {W})

Remark 2 Our rewriting algorithms rely on producing fresh copies of the WHERE
clause. Assume θ, θ1, θ2, . . . to be substitutions replacing each variable in a given
formula with a distinct fresh one. For a substitution σ, we also define θ[σ] resp. θi[σ] to
be an extension of σ, renaming each variable at positions not affected by σ with a distinct
fresh one. For instance, let F be the triple (?Z :belongsTo ?Y ). Now, Fθ makes a
variable disjoint copy of F : ?Z1 :belongsTo ?Y1 for fresh ?Z1, ?Y1. F [?Z 7→?X] is
just a substitution of ?Z by ?X in F . Finally, Fθ[?Z 7→?X] results in ?X :belongsTo
?Y2 for fresh ?Y2. We assume that all occurrences of Fθ[σ] stand for syntactically the
same query, but that Fθ[σ1] and Fθ[σ2], for distinct σ1 and σ2, can only have variables
in range(σ1) ∩ range(σ2) in common.

Using this notation, the possibility of unifying two variables ?X and ?Y in Pw on a given
triple store can be tested with the query {Pwθ1[?X 7→?Z]}{Pwθ2[?Y 7→?Z]} where θ1
and θ2 are variable renamings as in Rem. 2 and ?Z is a fresh variable.

In order to check the intrinsic consistency of an update, this condition should be eval-
uated for every pair of variables of Pw, the unification of which leads to a clash. A
SPARQL ASK query based on this idea is produced by Alg. 5.1. Lines 1-3 of Alg. 5.1
check if the inserted data are inconsistent, i.e., if insert contains {?X a A. ?X a A′.}
such that A dw A′ is in TBox TG, where in this case we drop the update. Note that it
suffices to check only triples of the form {?X a ?C} at line 5 of Alg. 5.1, since disjoint-
ness conditions can only be formulated for concepts, according to the syntax in Table 51.
Furthermore, since we are taking the facts in P eff

i extended by all facts implied by TG,
at line 6 of Alg. 5.1 it suffices to check the disjointness conditions explicitly mentioned
in TG and not all those which are implied by TG. Note also that the DELETE clause Pd

plays no role in this case, since we only consider clashes within inserted facts.
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Example 55 Consider the update u from Ex. 54, in which the INSERT clause Pi can cre-
ate clashing triples. To identify potential clashes, Alg. 5.1 first applies the inference rule
for the range axiom, and computes P eff

i = {?X a :Employee . ?Y a :Manager}.
Now both variables ?X, ?Y occur in the triples of type (6) from Table 51 with clashing
concept names. The following ASK query is produced by Alg. 5.1.

ASK WHERE { ?X :worksFor ?Y . ?Y :worksFor ?X1 }

(In this and subsequent examples we omit the trivial FILTER(False) union branch used
in rewritings to initialize variables with disjunctive conditions, such as W in Alg. 5.1)

Suppose that an insert is not intrinsically consistent for a given triple store. One solution
would be to discard it completely, should the above ASK query return True. Another
option which we consider here is to only discard those variable bindings from the WHERE
clause, which make the INSERT clause Pi inconsistent. This is the task of the safe
rewriting safe(·) in Alg. 5.2, which removes all variable bindings that participate in a
clash between different triples of Pi. Let Pw be a WHERE clause, in which the variables
?X and ?Y should not be unified to avoid clashes. With θ1, θ2 being “fresh” variable
renamings as in Rem. 2, Alg. 5.2 uses the union of Pwθ1[?X 7→?Y ] and Pwθ2[?Y 7→?X]
to eliminate unsafe bindings that send ?X and ?Y to the same value.

Example 56 Alg. 5.2 extends the WHERE clause of the update u from Ex. 54 as
follows:
INSERT{?X :belongsTo ?Y} WHERE{?X :worksFor ?Y
MINUS{{?X1 :worksFor ?X} UNION {?Y :worksFor ?Y2}}}

Note that the safe rewriting can make the update void. For instance, safe(u) has no
effect on the ABox A1 from Ex. 54, since there is no cue, which of :john :worksFor
:anna, :anna :worksFor :john needs to be dismissed to avoid the clash. However,
if we extend this ABox with assertions both satisfying the WHERE clause of u and not
causing undesirable variable unifications, safe(u) would make insertions based on such
bindings. For instance, adding the fact :bob :worksFor :alice to A1 would assert
:bob :belongsTo :alice as a result of safe(u).

A rationale for using MINUS rather than FILTER NOT EXISTS in Alg. 5.2 (and also in
a rewriting in forthcoming Sec. 5.3) can be illustrated by an update in which variables
in the INSERT and DELETE clauses are bound in different branches of a UNION:
DELETE {?V a :Manager} INSERT {?X :belongsTo ?Y}
WHERE {{?X :worksFor ?Y} UNION {?V :worksFor ?W}}

A safe rewriting of this update is
DELETE {?V a :Manager} INSERT {?X :belongsTo ?Y}
WHERE { {{?X :worksFor ?Y} UNION {?V :worksFor ?W}}

MINUS{ {{?X1 :worksFor ?X} UNION {?V1 :worksFor ?W1}}
UNION {{?Y :worksFor ?Y2} UNION {?V2 :worksFor ?W2}} } }
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It can be verified that with FILTER NOT EXISTS in place of MINUS this update makes
no insertions on all triple stores: the branches {?V1 :worksFor ?W1} and {?V2
:worksFor ?W2} are satisfied whenever {?X :worksFor ?Y} is, making
FILTER NOT EXISTS evaluate to False whenever {?X :worksFor ?Y} holds.

We conclude this section by formalizing the intuition of update safety. For a triple
store G and an update u = (Pd, Pi, Pw), let JPwKu

G denote the set of variable bindings
computed by the query “ SELECT?X1, . . . , ?Xk WHERE Pw” over G, where ?X1, . . . , ?Xk

are the variables occurring in Pi or in Pd.

Theorem 1 Let TG be a TBox, let u be a SPARQL update (Pi, Pd, Pw), and let query qu

and update safe(u) = (Pd, Pi, P
′
w) result from applying Alg. 5.1 resp. Alg. 5.2 to u and TG.

Then, the following properties hold for an arbitrary RDFS¬ triple store G = TG ∪ AG:

(1) qu(G) = True iff ∃µ, µ′ ∈ JPwKu
G s.t. µ(Pi) ∧ µ′(Pi) ∧ TG |= ⊥;

(2) JPwKu
G \ JP ′

wKu
G = {µ ∈ JPwKu

G | ∃µ′ ∈ JPwKu
G s.t. µ(Pi) ∧ µ′(Pi) ∧ TG |= ⊥}.

5.3 Materialisation Preserving Update Semantics
In this section we discuss resolution of inconsistencies between triples already in the triple
store and newly inserted triples. Our baseline requirement for each update semantics is
formulated as the following property.

Definition 47 (Consistency-preserving) Let G be a triple store and u(Pd, Pi, Pw)
an update. A materialisation preserving update semantics Sem is called consistency pre-
serving in RDFS¬ if the evaluation of update u, i.e., GSem

u(Pd,Pi,Pw), results in a consistent
triple store.

Our consistency preserving semantics are respectively called brave, cautious and faint-
hearted. The brave semantics always gives priority to newly inserted triples by discarding
all pre-existing information that contradicts the update. The cautious semantics is ex-
actly the opposite, discarding inserts that are inconsistent with facts already present in
the triple store; i.e., the cautious semantics never deletes facts unless explicitly required
by the DELETE clause of the SPARQL update. Finally, the fainthearted semantics exe-
cutes the update partially, only performing insertions for those variable bindings which
do not contradict existing knowledge (again, taking into account deletions).

All semantics rely upon incremental update semantics Semmat
2 , introduced in Chapter 4,

which we aim to extend to take into account class disjointness. Note that for the present
section we assume updates to be intrinsically consistent, which can be checked or enforced
beforehand in a preprocessing step by the safe rewriting discussed in Sec. 5.2. In this
section, we lift our definition of update operation to include also updates (Pd, Pi, Pw)
with Pw produced by the safe rewriting Alg. 5.2 from some update satisfying Def. 23.
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What remains to be defined is the handling of clashes between newly inserted triples and
triples already present in the triple store.

The intuitions of our semantics for a SPARQL update u(Pd, Pi, Pw) in the context of an
RDFS¬ TBox are as follows:

• brave semantics Semmat
brave: ( i) delete all instantiations of Pd and their causes, plus

all the non-deleted triples in G clashing with instantiations of triples in Pi to be in-
serted, again also including the causes of these triples; ( ii) insert the instantiations
of Pi plus all their effects.

• cautious semantics Semmat
caut: ( i) delete all instantiations of Pd and their causes;

( ii) insert all instantiations of Pi plus all their effects, unless they clash with some
non-deleted triples in G: in this latter case, do not perform the update.

• fainthearted semantics Semmat
faint: ( i) delete all instantiations of Pd and their causes;

( ii) insert those instantiations of Pi (plus all their effects) which do not clash with
non-deleted triples in G.

Remark 3 Note that Semmat
2 is not able to cope with so called “dangling” effects –

that is, triples inserted at some point for the sake of materialisation, whose causes have
been subsequently deleted. As pointed out in Chapter 4, one way to deal with this issue
is to combine Semmat

2 with marking of explicitly inserted triples. This approach was
implemented as a semantics Semmat

1b in Chapter 4, splitting the ABox A into the explicit
part Aexpl and the implicit part Aimpl = A \ Aexpl. Aexpl can be maintained, e.g., in a
separate RDF graph using a straightforward update rewriting. Now, deleting Pd would not
only retract P caus

d from A, but also the triples in chase(P caus
d , TG)\chase(Aexpl\P caus

d , TG).
That is, the effects of P caus

d are removed unless they can be derived from facts remaining
in A after enforcing the deletion Pd. Such an aggressive removal of dangling triples can
lead to counterintuitive behavior (cf. Ex. 32), and requires maintaining the explicit ABox
Aexpl, which is why we opted to preserve dangling effects in our rewritings.

We will now describe implementations of the three semantics above via SPARQL rewrit-
ings, which can be shown to be materialisation preserving and consistency preserving.

5.3.1 Brave Semantics

The rewriting in Alg. 5.3 implements the brave update semantics Semmat
brave; it can be

viewed as combining the idea of FastEvol[CKNZ10] with Semmat
2 to handle inconsisten-

cies by giving priority to triples that ought to be inserted, and deleting all those triples
from the store that clash with the new ones.

Example 57 Ex. 56 in Sec. 5.2 provided a safe rewriting safe(u) of the update u from
Ex. 54. According to Alg. 5.3, this safe update is rewritten to:
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Algorithm 5.3: Brave semantics Semmat
brave

Input: Materialised triple store G = TG ∪ AG, SPARQL update u(Pd, Pi, Pw)
Output: GSemmat

brave
u(Pd,Pi,Pw)

1 P ′
d := P caus

d ;
2 foreach triple pattern (?X a C) in P eff

i do
3 foreach C ′ s.t. C ⊑ ¬C ′ ∈ TG or C ′ ⊑ ¬C ∈ TG do
4 if (?X a C ′) /∈ P ′

d then
5 P ′

d := P ′
d . {?X a C ′}caus

6 end
7 end
8 end
9 return G

u(P ′
d
,P eff

i ,{Pw}P fvars
d

)

DELETE {?X a :Manager . ?X1 :belongsTo ?X .
?Y a :Employee . ?Y :belongsTo ?Y1}

INSERT {?X :belongsTo ?Y . ?X a :Employee . ?Y a :Manager}
WHERE {{?X :worksFor ?Y
MINUS{{?X2 :worksFor ?X} UNION {?Y :worksFor ?Y2}}}
OPTIONAL {?X1 :worksFor ?X} OPTIONAL {?Y :worksFor ?Y1} }

The DELETE clause removes potential clashes for the inserted triples. Note that also
property assertions implying clashes need to be deleted, which introduces fresh variables
?X1 and ?Y 1. These variables have to be bound in the WHERE clause, and therefore
P fvars

d adds two optional clauses to the WHERE clause, which is a computationally
reasonable implementation of the concept P fvars from Def. 45.

The DELETE clause P ′
d of the rewritten update is initialized in Alg. 5.3 with the set Pd of

triples from the input update. Rewriting ensures that also all “causes” of deleted facts are
removed from the store, since otherwise the materialisation will re-insert deleted triples.
To this end, line 1 of Alg. 5.3 adds to P ′

d all facts from which Pd can be derived. Then,
for each triple implied by Pi (that is, for each triple in P eff

i ) the algorithm computes the
patterns of clashing triples and adds them to the DELETE clause P ′

d, along with their
causes. Note that it suffices to only consider disjointness assertions that are syntactically
contained in TG (and not those implied by TG), since we assume that the store G is
materialised. Finally, the WHERE clause of the rewritten update is extended to satisfy
the syntactic restriction that all variables in P ′

d must be bound: bindings of “fresh”
variables introduced to P ′

d due to the domain or range axioms in TG are provided by the
part P fvars

d , cf. Def. 45 and Ex. 57. The rewritten update is evaluated over the triple
store, computing its new materialised and consistent state.

In the RDFS¬ ontology language and under the restriction that only ABox updates are
allowed, the brave semantics is a belief revision operator [Han99, Win05], performing
a minimal change of the RDF graph (which due to materialisation can be seen both
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Algorithm 5.4: Cautious semantics Semmat
caut

Input: Materialised triple store G = TG ∪ AG, SPARQL update u(Pd, Pi, Pw)
Output: GSemmat

caut
u(Pd,Pi,Pw)

1 W := {FILTER(False)} // neutral element w.r.t. union
2 foreach (?X a C) ∈ P eff

i do
3 foreach C ′ s.t. C ⊑ ¬C ′ ∈ TG or C ′ ⊑ ¬C ∈ TG do
4 Θ−

C′ := {FILTER(False)}
5 foreach (?Y a C ′) ∈ P caus

d do
6 Θ−

C′ := Θ−
C′ UNION {Pwθ[?Y 7→?X]}

7 end
8 W := W UNION {{?X a C ′}MINUS {Θ−

C′}}
9 end

10 end
11 Q := ASK WHERE {{Pw}.{W}};
12 if Q(G) then
13 return G
14 end
15 else
16 return G

Semmat
brave

u(Pd,Pi,Pw)
17 end

as a deductive closure of the formula representing the ABox as well as the minimal
model of this formula). There is a unique way of resolving inconsistencies since the
only deduction rule with more than one ABox assertion in the premise, is the clash due
to class disjointness (Fig. 51): assuming intrinsic consistency, the choice of which class
membership assertion to remove in order to avoid clash is univocal (new knowledge is
always preferred).

Theorem 2 Alg. 5.3, given a SPARQL update u and a consistent materialised triple
store G = TG ∪ AG, computes a new consistent and materialised state w.r.t. brave
semantics. The rewriting in lines 1–6 takes time polynomial in the size of u and TG.

5.3.2 Cautious Semantics

Unlike Semmat
brave, its cautious version Semmat

caut always gives priority to triples that are
already present in the triple store, and dismisses any inserts that are inconsistent with it.
We implement this semantics as follows: ( i) the DELETE command does not generate
inconsistencies and thus is assumed to be always possible; ( ii) the update is actually
executed only if the triples introduced by the INSERT clause do not clash with state of
the triple graph after all deletions have been applied.
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Cautious semantics thus treats insertions and deletions asymmetrically: the former de-
pend on the latter but not the other way round. The rationale is that deletions never
cause inconsistencies and can remove clashes between the old and the new data.

As in the case of brave semantics, cautious semantics is implemented using rewriting,
presented in Alg. 5.4. First, the algorithm issues an ASK query to check that no clashes
will be generated by the INSERT clause, provided that the DELETE part of the update
is executed. If no clashes are expected, in which case the ASK query returns False, the
brave update from the previous section is applied.

For a safe update u = (Pd, Pi, Pw), the ASK query is generated as follows. For each triple
pattern {?X a C} among the effects of Pi, at line 3 Alg. 5.4 enumerates all concepts C ′

that are explicitly mentioned as disjoint with C in TG. As in the case of brave semantics,
this syntactic check is sufficient due to the assumption that the update is applied to a
materialised store; by the same reason also no property assertions need to be taken into
account.

For each concept C ′ disjoint with C, we need to check that a triple matching the pattern
{?X a C ′} is in the store G and will not be deleted by u. Deletion happens if there is
a pattern {?Y a C ′} ∈ P caus

d such that the variable ?Y can be bound to the same value
as ?X in the WHERE clause Pw. Line 6 of Alg. 5.4 produces such a check, using a copy
of Pw, in which the variable ?Y is replaced by ?X and all other variables are replaced
with distinct fresh ones. Since there can be several such triple patterns in P caus

d , testing
for clash elimination via the DELETE clause requires a disjunctive graph pattern Θ−

C′

constructed at line 6 and combined with {?X aC ′} using MINUS at line 7.

Finally, the resulting pattern is appended to the list W of clash checks using UNION .
As a result, {Pw}.{W} queries for triples that are not deleted by u and clash with an
instantiation of some class membership assertion {?X a C} ∈ P eff

i .

Theorem 3 Alg. 5.4, given a SPARQL update u and a consistent materialised triple
store G = TG ∪ AG, computes a new consistent and materialised state w.r.t. cautious
semantics. The rewriting in lines 1–8 takes time polynomial in the size of u and TG.

Example 58 Alg. 5.4 rewrites the safe update safe(u) from Ex. 56 as follows:
ASK WHERE{{?X :worksFor ?Y
MINUS{{?X1 :worksFor ?X} UNION {?Y :worksFor ?Y2}}}
.{{?Y a :Employee} UNION {?X a :Manager}}}

Now, consider an update u′ having both INSERT and DELETE clauses:
DELETE {?Y a :Manager} INSERT{?X a :Employee}
WHERE {?X :worksFor ?Y}

The update u′ inserts a single class membership fact and thus is always intrinsically
consistent1. The ASK query in Alg. 5.4 takes the DELETE clause of u′ into account:

1That is, under the assumption that we do not have A dw A in TBox TG.
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Algorithm 5.5: Fainthearted semantics Semmat
faint

Input: Materialised triple store G = TG ∪ AG, SPARQL update u(Pd, Pi, Pw)
Output: G

Semmat
faint

u(Pd,Pi,Pw)
1 W := Pw

2 foreach triple pattern (?X a C) in P eff
i do

3 foreach C ′ s.t. C ⊑ ¬C ′ ∈ TG or C ′ ⊑ ¬C ∈ TG do
4 Θ−

C′ := {FILTER(False)};
5 foreach (?Z a C ′) ∈ P caus

d do
6 Θ−

C′ := Θ−
C′ UNION {Pwθ[?Z 7→?X]};

7 end
8 W := {W}MINUS {?X a C ′ MINUS {Θ−

C′}};
9 end

10 end

11 W := {W}UNION {Pwθ1 . P
fvars
d θ1} ;

12 return Gu(P caus
d

θ1, P eff
i , W )

ASK WHERE {{?X :worksFor ?Y}
.{{?X a :Manager} MINUS {?Z :worksFor ?X }}}

5.3.3 Fainthearted Semantics

Our third, fainthearted semantics is meant to take an intermediate position between
the cautious semantics and the brave one. A shortcoming of the cautious semantics is
that massive update can be retracted because of only a few clashing triples. Not to
discard an update completely in such a case, the user can decide either to override the
existing knowledge—that is, opt for the brave semantics—or to apply insertions only for
those variable bindings which are not clashing with the existing state, which is what the
fainthearted semantics does.

Our realization of the idea of accommodating non-clashing inserts is based on decoupling
the insert and the delete part of an update: whereas the delete is executed for all variable
bindings satisfying the WHERE clause, one dismisses the inserts for variable bindings
that yield clashes with the state of the store after the delete. That is, we deviate from
the notion of update as an atomic operation in a different way than in the safe rewriting
where both deletions and insertions are dismissed for variable bindings leading to clashes.
Our motivation for such a design decision is explained next.

Assume that for each variable binding µ returned by the WHERE pattern, we want to
either insert ground(Piµ)—i.e., the set of ground triples in pattern Pi, see Def. 24—
along with deleting ground(Pdµ), or dismiss µ altogether. As an example, consider
the update u′ from Ex. 58 and the ABox {:john :worksFor :anna. :john a
:Manager. :bob :worksFor :john}. With the variable binding µ1 = [?X 7→
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:john, ?Y 7→ :anna] we insert :john a :Employee knowing that the clashing fact
:john a :Manager will be deleted by the binding µ2 = [?X 7→ :bob, ?Y 7→ :john].
However, if the update is atomic, this anticipated deletion will only happen if gr(Piµ2)
does not introduce clashes. Assume this is the case (i.e. also {:bob a :Manager}
is in the ABox): we have to look one more step ahead and check if this triple will be
deleted by some variable binding µ3, and so on. This behaviour could be realized with
SPARQL path expressions, which would however stipulate severe syntactic restrictions
on the WHERE clause Pw of the original update.

As mentioned above, our interpretation of fainthearted semantics assumes independence
between the INSERT and DELETE parts of the update. To implement this, we rely
on SPARQL’s flexible handling of variable bindings. Namely, we rename the variables
in the DELETE clause apart from the rest of the update, and put this renamed apart
copy of the WHERE clause in a new UNION branch. The original WHERE clause is
then rewritten (using MINUS operator, similarly to the case of cautious semantics) to
ensure that insertions are only done for variable bindings where clashes are removed by
the DELETE clause with some variable binding. The implementation can be found in
Alg. 5.5.

Example 59 The update u′ from Example 58 is rewritten as follows by Alg. 5.5:
DELETE {?Y1 a :Manager } INSERT {?X a :Employee}
WHERE {{?X2 :worksFor ?Y1} UNION {?X :worksFor ?Y.

{MINUS {?X a :Manager MINUS {?X3 :worksFor ?X}}}}}

The first union branch binds the variables in the DELETE clause (both using fresh
variables). The second branch binds the variable ?X in the INSERT clause, using MINUS
to remove variable bindings for which a non-deleted clash exists. The test that a clash
will not be deleted is expressed using the inner MINUS operator.

We conclude with a claim of correctness and polynomial complexity of the rewriting,
similar to those made for the brave and cautious semantics.

Theorem 4 Alg. 5.5, given a SPARQL update u and a materialised triple store G =
TG∪AG w.r.t. fainthearted semantics, computes a new consistent and materialised state.
The rewriting in lines 1–9 takes time polynomial in the size of u and TG.

5.4 Postulates for Mat-Preserving Semantics

In the previous sections, we have defined three materialised- and consistency-preserving
semantics for SPARQL updates, namely Semmat

brave, Semmat
caut and Semmat

faint. In this section
we consider the rationality of these update semantics by checking them against the
postulates we defined in Sec. 3.2. A summary of the semantics and the postulates they
satisfy is given in Table 52. One can see that Semmat

brave fulfills the most number of
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K1 K∗2 K–2 K∗3 K–3 K∗4 K–4 K∗5 K∗5′ K–5 K–5′ K–5′′ K–5′′′ K6 Total /14
Semmat

brave ✓ ✓ ✓ ✓ ✓ ✓ ✓ (✓) (✓) X X X X X 9
Semmat

caut ✓ X ✓ ✓ ✓ ✓ ✓ (✓) (✓) X X X X X 8
Semmat

faint ✓ X ✓ ✓ ✓ ✓ ✓ (✓) (✓) X X X X X 8

Table 52: Checking postulates K1-K6 against Semmat
brave, Semmat

caut and Semmat
faint

postulates, precisely one postulate more than Semmat
caut and Semmat

faint. In the following
we give more explanation on the fulfillment of each semantics vs. postulates.

Semmat
brave satisfies K1 because it relies upon Semmat

2 , which in turn is a materialise-
preserving semantics. It satisfies K∗2 because the semantics gives priority to triples ought
to be inserted, consequently resulting with these triples being added in the triple store.
It satisfies K–2 because the deletion of triples via the semantics of SPARQL/Update does
not add new triples, and this holds for other semantics as well. K∗3 is satisfied because for
u = INSERT{A} the semantics is subsumed by Semmat

expand, given that u could potentially
trigger additional deletions as defined in Alg. 5.3. It satisfies K–3 because the deletion of
a designated triple that does not exist in the triple store, plus its causes results with no
changes; the same holds for the other semantics. That is, if causes would exist in mat(G),
then also the designated triple would exist in mat(G). K∗4 is satisfied because in the case
where inserts cause no inconsistency, then the semantics coincides with Semmat

expand; the
same holds for the other semantics. It satisfies K–4 because according to the definition,
triples plus their causes are removed from the materialised triple store. K∗5 holds
because we have two options: (i) we refuse intrinsic inconsistencies in which case it
holds, or (ii) we apply safe rewriting which tries to find a maximal consistent subset
of the update and therefore could be interpreted as a kind of para-consistent approach.
We thus denote it in brackets (✓), and this likewise holds for the other semantics. Its
variant K∗5′ also holds in the same way because we apply the semantics to resolve
inconsistencies; likewise holds for the other semantics. K–5, K–5′, K–5′′, K–5′′′ are not
satisfied because insertion might result with triples ought to be inserted plus effects,
whereas deletion might result with triples ought to be deleted plus the causes, where
the causes are disjoint from effects, see Ex. 30 in the context of Semmat

2 . It does not
satisfy K6 because given u1 = DELETE{A1}, u2 = DELETE{A2} such that A1 ⊂ A2
and mat(TG ∪ A1) = mat(TG ∪ A2), then Gsem

u1 ̸= Gsem
u2 ; same holds for inserts, as well

as for the other semantics.

Semmat
caut satisfies K1 because it uses Semmat

brave, and thus relies upon Semmat
2 which is

materialise-preserving semantics. It does not satisfy K∗2 because it gives no priority to
triples ought to be inserted. It satisfies K–2 as with Semmat

brave. K∗3 is satisfied because
for u = INSERT{A} the semantics is subsumed by Semmat

expand, as it relies upon Semmat
brave.

Likewise, as with Semmat
brave, it satisfies K–3, K∗4, K–4, K∗5, K∗5′ and likewise, it does

not satisfy K–5, K–5′, K–5′′, K–5′′′ and K6.

Semmat
faint is same as Semmat

caut.
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In the next chapter we are going to investigate updating Wikipedia via DBpedia map-
pings and SPARQL. In this case not only the ontology is more expressive than RDFS¬
but also the mappings are present. This makes the problem even more challenging, for
which user input is very important and crucial in resolving (disambiguating) updates.
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CHAPTER 6
Updating Wikipedia via DBpedia

Mappings and SPARQL

In the previous Chapter 5 we discussed updates over RDFS¬ ontologies, and how different
semantics inspired by belief revision can be adopted and implemented using SPARQL
rewritings in order to deal with inconsistencies. In this chapter, we are going to see
how we can re-use these update semantics and lift them in more expressive ontology
language (DBpedia ontology) and physical (DBpedia) mappings, concretely, in the case
of updating Wikipedia using DBpedia mappings and SPARQL. Referring to Fig. 11 the
focus is in the update semantics that are materialise preserving in the context of ABox
updates for the DBpedia OWL fragment.

In this chapter, we present an approach to allow ontology-based updates of wiki content.
Starting from DBpedia-like mappings converting infoboxes to a fragment of OWL 2 RL
ontology, we discuss various issues associated with translating SPARQL updates on
top of semantic data to the underlying Wiki content. On the one hand, we provide a
formalization of DBpedia as an Ontology-Based Data Management framework. On the
other hand, we provide a novel approach to the inherently intractable update translation
problem, leveraging the pre-existent data for disambiguating updates.

DBpedia [LIJ+15] is a community effort that has created the most important cross-
domain dataset in RDF [BGe04] in the focal point of the Linked Open Data (LOD)
cloud [ABK+07]. At its core is a set of declarative mappings extracting data from
Wikipedia infoboxes and tables into RDF. However, DBpedia makes knowledge machine
readable only, rather than also machine writable. This not only restricts the possibilities
of automatic curation of the DBpedia data that could be semi-automatically propagated
back to Wikipedia, but also prevents maintainers from evaluating the impact of their
edits on the consistency of knowledge (across infoboxes); indeed, previous work confirms
that there are such inconsistencies discoverable in DBpedia [BKPR14, DKF+15] arising
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most likely from inconsistent content in Wikipedia itself with respect to the mappings
and the DBpedia ontology. Excluding the DBpedia taxonomy from the editing cycle
is thus a—as we will show, unnecessary—drawback, but rather can be turned into an
advantage for helping editors to create and maintain consistent content inside infoboxes,
which we aim to address.

To this end, in this chapter we want to make a case for DBpedia as a practical, real-
world benchmark for Ontology-Based Data Management (OBDM) [Len18]. Although
based on fairly restricted mappings—which we cast as a variant of so-called nested
tuple-generating dependencies (tgds) herein—and minimalistic TBox language, accom-
modating DBpedia updates is intricate from different perspectives. The challenges are
both:

• conceptual: What is an adequate semantics for DBpedia SPARQL updates? and

• practical: How to cope with high ambiguity of update resolutions?

While general updates in OBDM remain largely infeasible, we still arrive at reasons to
believe, that for certain use cases within DBpedia updates, reasonable and practically
usable conflict resolution policies could be defined; we present the first serious attempt
with DBpedia as a potential benchmark use case in this area.

Pushing towards the vision of a “Read/Write” Semantic Web, the unifying capabilities
of SPARQL extend beyond the mere querying of heterogeneous data. Indeed, the stan-
dardization of update functionality introduced in SPARQL 1.1 renders SPARQL as a
strong candidate for the role of web data manipulation language. For a concrete motiva-
tion example consider Listing 1, where a simple SPARQL Update request would reflect
a recent merger of French administrative regions: for each settlement belonging to either
Upper or Lower Normandy, we set the corresponding administrative attribution property
to be just Normandy. In our scenario, the user should have means to write this update
in SPARQL and let it be reflected in the underlying Wikipedia data.

Despite clear motivation, updates in the information integration setting abound with
all sorts of challenges, starting from obvious data security concerns, to performance,
data quality issues and, last but not least the technical issues of side effects and lack of
unique semantics, demonstrated already in the classical scenarios such as database views
and deductive databases [BS81, CFG+12]. Although based on a very special join-free
mapping language, the DBpedia setting is not different in this respect. With a high-
quality curated data source at the backend, we set our goal not at ultimate transparency
and automatic translation of updates, but rather at maximally support users in choosing
the most economic and typical way of accommodating an update while maintaining (or
at least, not degrading) consistency and not losing information inadvertently. As for
DBpedia, if such RDF frontend systems have their own taxonomy (TBox) with also
class and property disjointness assertions as well as functionality of properties, updates
can result in inconsistencies with the data already present. In particular, in the next
sections our focus will be on:
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DELETE { ?X :region :Upper_Normandy . ?Y :region :Lower_Normandy .}
INSERT { ?X :region :Normandy . ?Y :region :Normandy}
WHERE { {?X :region :Upper_Normandy} UNION {?Y :region :Lower_Normandy} }

Listing 1: SPARQL 1.1. Update that merges two regions in France.

• we formalize the actual ontology language used by DBpedia as an OWL 2 RL
fragment, and DBpedia mappings as a variant of so-called nested tuple-generating
dependencies (tgds); based on this formalization

• we propose a semantics of OBDM updates for DBpedia and its Wikipedia mappings

• we discuss how such updates can be practically accommodated by suitable conflict
resolution policies: the number of consistent revisions are in the worst case expo-
nential in the size of the mappings and the TBox, so we investigate policies for
choosing the “most reasonable” ones, e.g. following existing patterns in the data,
that is choosing most popular fields in the present data to be filled upon inserts.

Note that, since neither the SPARQL Update language [GPP13] nor the SPARQL En-
tailment regimes [GOH+13] specification covers the behaviour of updates in the presence
of TBox axioms, the choice of semantics in such cases remains up to application design-
ers. In Chapter 4 and Chapter 5 we have discussed how SPARQL updates relating to
the ABox can be implemented with TBoxes allowing no or limited form of inconsistency
(class disjointness), a work we partially build upon herein: as a requirement from this
prior work (as a consequence of the common postulates for updates in belief revision),
such an update semantics needs to ensure that no mutually inconsistent pairs of triples
are inserted in the ABox. In order to achieve this, a policy of conflict resolution between
the new and the old knowledge is needed.

To this end, in Chapter 5 we defined brave, cautious and fainthearted semantics of
updates. Brave semantics removes from the knowledge base all facts clashing with
the inserted data. Cautious semantics discards entirely an update if it is inconsistent
w.r.t. knowledge base, otherwise brave semantics is applied. Fainthearted semantics
is in-between the two, amounts to adding an additional filter to the WHERE clause
of SPARQL update in order to discard variable bindings which make inserted facts
contradict prior knowledge. In this chapter, we stick to these three basic cases, extending
them to the OWL fragment used by DBpedia. However, since our goal is to accommodate
updates as Wiki infobox revisions for which no batch update language exists, we restrict
our considerations to ground updates (u+, u−) of triples over URIs and literals that are to
be inserted or, respectively, deleted (instead of considering the whole general SPARQL
Update language).1

We now formalise the DBpedia setting in the context of OBDM.
1We emphasize though that such an extension is a fairly straightforward extension of the discussions

in Chapter 5, since general SPARQL Updates can be viewed as templates which are instantiated into
exactly such sets of INSERTed and DELETed triples.
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6.1 (OWL) DBpedia Setting
We define the declarative WikiDBpedia framework (WDF) F as a triple (W,M, T )
where W is a relational schema equipped with integrity constraints (described later)
encoding the infoboxes,M is a set of rules transforming it into RDF triples (the DBpedia
ABox), and T is a TBox. The rules in M are given by a custom-designed declarative
DBpedia mapping language [JSIB10]. This language can be captured by the language
of nested tuple generating dependences (nested tgds) [FHH+06, KPSS14], enhanced with
negation in the rule bodies and interpreted functions for arithmetics, date, string and
geocoordinate processing.

A WDF instance of a WDF (W,M, T ) is an infobox instance I satisfying W. We now
specify the language used to formalize the TBox T , the tgds language of M and the
infobox schema W.

DBpedia ontology language (DBP). DBpedia uses a fragment of OWL 2 RL profile,
which we call DBP. It includes the RDF keywords subClassOf (which we abbreviate
as sc), subPropertyOf (sp), domain (dom) and range (rng), disjointWith (dw),
propertyDisjointWith (pdw), inversePropertyOf (inv), differentFrom (df)
as well as functionalProperty (func). At present, functional properties in DBpedia
are limited to data properties, and inverse functional roles are not used. Inference rules
for the ontology language DBP are summarized in Figure 61.

Many concepts in the actual DBpedia are copied from external ontologies like Yago
[SKW07] and UMBEL2. All DBpedia resources also instantiate the concepts in DBpedia
ontology, with the namespace http://dbpedia.org/ontology. They can be listed
by the following SPARQL query:
SELECT DISTINCT ?x WHERE {{?x a owl:Class}

UNION {?x a owl:ObjectProperty}
UNION {?x a owl:DatatypeProperty}
FILTER(strstarts(str(?x), "http://dbpedia.org/"))}

As of October 2017, this query retrieves 761 concepts, 1125 object and 1780 datatype
properties for the English Live DBpedia3. Herewith, we only consider the facts from

?C sc ?D. ?S a ?C.
?S a ?D.

?P sp ?Q. ?S ?P ?O.
?S ?Q ?O.

?S a ?C,?D. ?C dW ?D.
⊥

?P dom ?C. ?S ?P ?O.
?S a ?C.

?P rng ?C. ?S ?P ?O.
?O a ?C.

?S ?P ?O. ?S ?Q ?O. ?P pdw ?Q.
⊥

?S ?P ?O. ?P inv ?Q.
?O ?Q ?S.

?S?P ?O,?O2.?O df ?O2. ?P a func
⊥

Figure 61: DBpedia RDFS plus OWL rules comprising a fragment of OWL 2 RL.

2http://techwiki.umbel.org/index.php/UMBEL_Vocabulary
3http://live.dbpedia.org/sparql
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Type of Mappings Declared Description
Template 958 Map Wiki (infobox) templates to DBpedia classes.
Property 19,972 Map Wiki (infobox) template properties to DBpedia properties.
IntermediateNode 107 Generate a blank node with a URI.
Conditional 31 Depend on (infobox) template properties and their values.
Calculate 23 Compute a function over two properties.
Date 106 Mappings that generate a starting and ending date.

Table 61: Description of DBpedia (English) mappings.

this core vocabulary set instantiated with the set of DBpedia mappingsM, and not the
imported assertions from the external ontologies. We denote this vocabulary by T and,
analogously to the infobox part of the system, call it “schema”.

Infobox schema W. Each Wiki page is identified by a URI which translates to a subject
IRI in DBpedia. We model this semistructured data store using a relational schema W
with two ternary relationsWi = UTI andWd = IPV, attribute I storing infobox identifiers,
U page URI, T infobox type, and P and V being respectively property names and values.
That is, unlike the real Wiki where infoboxes may belong to different pages or be separate
tables of distinct types, we use an auxiliary surrogate key I to horizontally partition the
single key-value store Wd. Our schema W assumes key constraints UT→ I, IP→ V and
the inclusion dependency Wd[I] ⊆Wi[I] which we encode as the set of rules W:

W = {∀i∀p∀v
(
Wd(i, p, v)→ ∃u∃t Wi(u, t, i)

)
,

∀u∀t∀i1∀i2
(
Wi(u, t, i1) ∧Wi(u, t, i2) ∧ i1 ̸= i2 → ⊥

)
,

∀i∀p∀v1∀v2
(
Wd(i, p, v1) ∧Wd(i, p, v2) ∧ v1 ̸= v2 → ⊥

)
}.

Mapping constraints M. The specification [JSIB10] distinguishes several types of
DBpedia mappings summarized in Table 61 along with their figures in the English DBpe-
dia. All these mappings can be represented as nested tgds [FHH+06, KPSS14] extended
with negation and constraints in the antecedents for capturing the conditional mappings
and interpreted functions in the conclusions of implications, in the case of calculated
mappings handling, e.g., dates or geo-coordinates. A crucial limitation of the mapping
language (which we call DBpedia tgds) is the impossibility of comparisons between in-
fobox property values. Infobox type Wi.T and property names Wd.P must be specified
explicitly.

Definition 48 (Nested tgds [KPSS14]) Fix a partition of the set of first-order vari-
ables into two disjoint infinite sets, X and Y . A nested tgd is a first-order formula that
can be generated by the following recursive definition:

χ ::= α | ∀x⃗ (β1 ∧ . . . ∧ βk → ∃y⃗ (χ1 ∧ . . . ∧ χl))

where each xi ∈ X, each yi ∈ Y , α is an atomic formula over the target schema, and
each βj is an atomic formula over the source schema containing only variables from X,
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6. Updating Wikipedia via DBpedia Mappings and SPARQL

Figure 62: (a) DBpedia mappings, (b) the RDF graph, and the Infobox as an instance
of the schema W (c) and in the native format (d).

such that each xi occurs in some βj. In our case, the source schema is an infobox schema,
and the target schema is an ontology.

Example 60 The following formula is an example of a nested tgd ([KPSS14]):

∀x1∀x2(P (x1, x2)→ ∃y(P ′(y, x2) ∧ ∀x3(P (x1, x3)→ P ′(y, x3))))

Example 61 Fig. 62(a) shows a conditional mapping transferring the information
about clerics from French wiki pages with an infobox Prélat catholique (d). Under these
conditions, the excerpt shown in Fig. 62(c) as an instance over the schema W gives rise
to the triples depicted in Fig. 62(b). A tgd formalizing a French DBpedia mapping for
clergy is given below:

∀U∀I
(
Wi(U, ’fr:Prélat catholique’, I)→(

Wd(I, ’titre’, ’Pape’)→
∃Y

(
Pope(U) ∧ occupation(U, Y ) ∧ PersonFunction(Y )
∧ title(Y, ’Pape’)) // “Intermediate node mapping”
∧ ...
∧ ∀X(Wd(I, ’prédécesseur pape’, X)→ predecessor(Y,X))

)
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...
∧ (Wd(I, ’titre’, ’Prêtre’)→ Priest(U))

// The “otherwise” branch:
∧ (¬Wd(I, ’titre’, ’Pape’) ∧ . . . ∧ ¬Wd(I, ’titre’, ’Prêtre’)→ Cleric(U))
∧ ∀X(Wd(I, ’nom’, X)→ foaf:name(U,X))
...
∧ ∀X(Wd(I, ’nom naissance’, X)→ birthName(U,X))

))
The specification stipulates that conditions are evaluated in the natural order, and thus
every next condition has to include the negation of all preceding conditions. In our case,
this is only illustrated by the last, default (“otherwise”) case, since the conditions are
mutually exclusive. Note also that no universally quantified variable besides the page
URI U and the technical infobox identifier I)—i.e., no X variable representing an infobox
property—can occur more than once on the left-hand side of an implication, due to the
lack of support for comparisons between infobox properties.

One further particularity of the chase with tgds is the handling of existentially quantified
variables that represent so-called “intermediate nodes” (e.g., Y in Ex. 61). A usual ap-
proach is to instantiate such variables by null values, which could become blank nodes on
the RDF storage side. The strategy currently followed by DBpedia is different: instead
of blank nodes, the chase produces fresh IRIs. By appending an incremented number to
the Wiki page address it avoids clashes with existing page URIs. We name it constant
inventing chase.

Updates. We consider updates that can be specified on both the infobox and the
DBpedia sides. Since DBpedia is a materialised extension constructed based on the
contents of infoboxes, persistent modifications must be represented as infobox updates.
We consider updates based on ground facts to be inserted or deleted, each update being
limited to exactly one schema, the infobox W or DBpedia T.

Definition 49 Let S be a schema and J an instance of S. An update u of J is a pair
(u−, u+) of sets of ground atoms over S in which u+ signifies facts to be inserted to J
and u− facts to be removed from J . Deletions are applied prior to insertions.

Since WDF includes the mapping and TBox rules, special care is needed to make update
effective and enforce or maintain the consistency of the affected WDF instance apply a
minimal necessary modifications. Our formalization is close to the usual definition of
formula based belief revision operators. A WDF instance I is identified with a conjunc-
tive formula over W that satisfies integrity constraints W of the infobox schema. The
notation u(I) is understood as (I \ u−) ∪ u+ where I \ u− denotes the removal of all
conjuncts occurring in u− from I, and I ∪ u+ is the same as the conjunction I ∧ u+.

We define a partial order ⪯ relation between updates as follows u ⪯ e iff u− ⊆ e− and
u+ ⊆ e+. One can as well consider other, e.g. cardinality based, partial orders.
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Definition 50 Let F be a WDF (W,M, T ), such that W is equipped with the integrity
constraints W, I be an F-instance and let u be an update over T . The consistency-
oblivious semantics {[uW]} of u is the set of smallest (w.r.t. ⪯) updates [uW] over the
infobox schema W such that the conditions [uW](I)∪W ∪M∪T ̸|= u−, [uW](I)∪W ∪
M∪ T |= u+ and I ∪W ̸|= ⊥ hold.

The former two conditions ensure the effectiveness of the update, that is, that all desired
insertions and deletions are performed. The conformance with W ensures that the up-
date can be accommodated in the physical infobox storage model, which the constraints
W simulate. The following definition of the semantics {JuWK} restricts the semantics
{[uW]} in order to ensure that the DBpedia instance can be used under entailment w.r.t.
T , denoted as closure cl(I,M). Note that both semantics {[uW]}, {JuWK} depend on ⪯,
F and on I—which is not explicit in our notation for the sake of readability.

Definition 51 Let F be a WDF (W,M, T ), such that W is equipped with the integrity
constraints W, I be an F-instance and let u be an update over T . The consistency-
aware semantics {JuWK} of u is the set of smallest (w.r.t. ⪯) updates JuWK such thatJuWK ∈ {[uW]} and JuWK(I) ∪W ∪M∪ T ̸|= ⊥.

6.2 Challenges of DBpedia OBDM
We consider the Existence of solutions problem and show that it is in general
intractable even for the consistency-oblivious semantics.

Problem ExSol-Obl. Parameter: WDF F = (W,M, T ). Input: F -instance I,
update u. Test if {[uW]} ̸= ∅.

Proposition 8 ExSol-Obl is NP-complete.

Proof 2 (Sketch) Consider a DBpedia update u, and the WDF instance I. For the
membership in NP, observe that enforcing the constraints inM and in T (e.g., via chase)
terminates in polynomial time for every fixed WDF F , which gives a bound on the size
of the infobox instance witnessing {[uW]} ̸= ∅ for an instance I. For each condition in
the mapping M (limited to comparing a single infobox value with a fixed constant), we
can define a canonical way of satisfying it, and thus defining canonical witnesses, whose
size and active domain is determined by u, I and F . As a result, the test comes down
to guessing a canonical witness and checking it by the chase with constraints, that u+

is inserted and u− deleted, which is feasible in poly time for the constraints in DBP.

For the hardness, consider the following reduction from the 3-Colorability problem.
Let I be empty and let the set of atoms A that the DBpedia update u = (∅, A) inserts
represents an undirected graph G = (V,E) of degree at most 4 (for which 3Col is
intractable [GJS76]). A represents the vertices V as IRIs and each edge (x, y) ∈ E for
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Figure 63: Concepts of the proof of Prop. 8

the IRIs x, y is represented by a collection of 8 atoms of the form a(x, y), a(y, x), b(x, y),
b(y, x), c(x, y), c(y, x), d(x, y), and d(y, x), for which the assertions a = a−1, b = b−1,
c = c−1 and d = d−1 are defined in T .

Each infobox encodes a single vertex of the graph, together with all its adjacent vertices
(at most four direct neighbors). Together these 1-neighborhoods cover the graph. The
encoding ensures that the only way to obtain the regular DBpedia representation of the
graph, with exactly eight property assertions for each pair of vertices, is only possible if
every vertex is assigned the same color in each infobox. This is achieved by distributing
the a, b, c and d between each pair of adjacent nodes depending on the node color. The
rules for that are given in Fig. 2(c). For instance, an edge between a red I and a green
vertex II is composed from the properties a(I,II) b(I,II) whose creation is triggered by
the infobox of page I, and the other two properties b, c are created by chasing the infobox
I: c(II,I), d(II,I). Due to symmetry, this results in the eight property assertions.

The excerpt of the mapping for the neighborhood types ’r_ggb’, ’b_rgg’, ’g_rb’ illustrated
by a graph in Figure 2 (b) is shown below.

∀U∀I
(

Wi(U, ’vertex’, I) →(
Wd(I, ’n-type’, ’r_ggb’) →

(
Node(U) ∧ ∀X (Wd(I, ’n1’, X) → a(U, X) ∧ b(U, X))

∧ ∀X (Wd(I, ’n2’, X) → a(U, X) ∧ b(U, X)) ∧ ∀X (Wd(I, ’n3’, X) → a(U, X) ∧ c(U, X))
)

∧
(

Wd(I, ’n-type’, ’b_rgg’) →
(

Node(U) ∧ ∀X (Wd(I, ’n1’, X) → b(U, X) ∧ d(U, X))
∧ ∀X (Wd(I, ’n2’, X) → b(U, X) ∧ b(U, X)) ∧ ∀X (Wd(I, ’n3’, X) → b(U, X) ∧ c(U, X))

)
∧

(
Wd(I, ’n-type’, ’g_rb’) →

(
Node(U) ∧ ∀X (Wd(I, ’n1’, X) → c(U, X) ∧ d(U, X))

∧ ∀X (Wd(I, ’n2’, X) → a(U, X) ∧ d(U, X))
)

∧ . . . etc for other 1-neighborhood types . . .)

103



6. Updating Wikipedia via DBpedia Mappings and SPARQL

In the above proof, the whole graph is encoded in the update, which limits the severity
of the challenge: one can argue that this is irrelevant if updates are small (and this
is actually the case in our pragmatic approach). The construction can be modified to
illustrate the complexity of the OBDM problem even for updates of fixed size. Consider
a DBpedia instance representing a graph, and an DBpedia update u adding a single
vertex (with up to four edges) to it. The extended graph must not be 3-colorable even
if the original graph was, and thus checking u ∈ {[uW]}, for a fixed size u, takes checking
the 3 colorability of an extended graph of size n + 1, which is NP-complete in n. We
thus obtain

Proposition 9 The Decision OBDM problem under the consistency-oblivious se-
mantics is NP-complete even for updates of fixed size.

If we bring the TBox and infobox schema constraints along with non-monotonicity of
mapping rules into the picture, the potential challenges of accommodating updates start
piling up quickly. An interplay of the following features of the framework can make
update translation unwieldy: (i) inconsistencies due to the TBox assertions, namely the
class and role disjointness and functional properties; (ii) many-to-many relationships
between infobox and ontology properties defined by the mappings, and (iii) infobox
schema constraints.

Example 62 Deletions due to infobox constraints. Consider the update u1 in-
serting an alternative foaf:name value for an existing cleric (cf. the mapping in Ex. 61).
The infobox key IP → V would deprecate this, since there is only one infobox property
matching foaf:name. Therefore, all updates in {[uW

1 ]} will extend u1 with the deletion of
the old name.

Insertions and many-to-many property matches. Several Wiki properties are
mapped to the same DBpedia property and the insertion cannot be uniquely resolved.
E.g., infoboxes of football players in the English Wikipedia have the properties ’full name’,
’name’ and ’short name’ all mapped to foaf:name.

Deletions with conditional mappings. Triples generated by a conditional mapping
can be deleted either by removing the corresponding Wiki property or by modifying the
Infobox property so that the condition is no longer satisfied. E.g., in Ex. 61, deleting the
triple predecessor (Nicholas_II,Alexander_II) can be done either by unsetting the infobox
property ’prédécesseur pape’ or the property ’titre’ used in the condition.

The above considerations suggest that despite the syntactic restrictions of the DBpedia
mappings, the problem of update translation is hard in the worst case. Furthermore,
numerous translations of an ABox update often exist (exponentially many in the size
of the mapping: e.g., each n-to-m property match increases the total size of possible
translations by the factor of mn). Due to the interplay between the mapping conditions
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and TBox axioms a complete solution of the OBDM problem, presenting and explaining
to the user all possible ways of accommodating an arbitrary update is not practical. Our
pragmatic approach to the problem is described next.

6.3 Pragmatic DBpedia OBDM
Updates in the presence of constraints and mappings over a curated data source such as
DBpedia are not likely to happen in a fully atomatic mode. Thus, rather than striving to
define a set of formal principles to compare particular update implementations (akin, e.g.
belief revision postulates) we focus on another aspect of update translation, especially
important in collaborative and community-oriented settings, where adhering to standard
practices and rules is crucial. Namely, we look for most customary ways to accommodate
a change. For insertions, data evidence can be obtained from the actual data, whereas
for deletions, additional logs are typically required. For all kinds of updates, we use
a special kind of log, which we call update resolution pattern, recording the “shape” of
each update command (e.g. inserting a birthPlace DBpedia property of a Pope instance,
where the Infobox property ’lieu de naissance’ is already present. Delete the existing property
and add the property ’lieu naissance’ with the new value).

To decide on the update pattern, when several alternatives are possible, we try to de-
rive most customary ways of mapping objects of same classes from the existing data,
rather than applying some principled belief revision semantics. E.g., when updating the
birth place, we look at the usage statistics of the Infobox properties ’lieu naissance’ and
’lieu de naissance’ and choose the one used most often. If most infoboxes have both, we will
not delete the already existing property but just add a second one. This way, we might
resolve a DBpedia’s foaf:name as two infobox properties (e.g., ’name’ and ’full name’) at once
if most existing records of a given type follow this pattern, even if it would contradict
the minimal change principle which typically governs belief revision.

A translation procedure we discuss next proceeds essentially on the best effort basis,
exploring the most likely update accommodations and facilitating reuse of standard
practices through update resolution patterns. It takes a SPARQL update and transforms
it into a set of Infobox updates for the user to apply and save as an update resolution
pattern. The source code of the system is openly available4.

6.3.1 Update Translation Steps

From the very beginning, we turn our SPARQL update into a set of ground atoms,
which are then grouped by subject (corresponding to the Wikipedia page). The idea of
our update translation procedure is to create or to re-use existing update patterns for
each grouped update extracted from the user input. A user update request related to a
particular Wikipedia page (DBpedia entries grouped by a common subject) becomes a
core pattern, which gives rise to a number of possible translations as a wiki insert.

4https://github.com/aahmeti/DBpedia-SUE, a screencast is available at https://goo.gl/BQhDYf
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For each translation, the mapping and the TBox constraints are applied, in order to
see which further atoms have to be added and if there are inconsistencies with the pre-
existing facts. All such inconsistencies are removed, resulting in a further update, giving
rise to an update resolution pattern nested within the root one, and the translation
process proceeds recursively.

Pruning is essential in this process, since resolution patterns can sprout actively (e.g.,
some DBpedia properties are mapped to tens of Wikipedia ones). Potentially non-
terminating, with the current DBpedia mappings inconsistencies can typically be re-
solved within the scope of one or two subjects (Wikipedia pages), and thus pattern trees
resulting from this process are not deep. The reason is that functionality is currently
only used for data properties, and only very few properties are declared disjoint.

The update translation algorithm, explained in more detail below, proceeds on a best
effort basis, only following a single top ambiguity resolution option. If not terminated
within some predefined number of steps, the translation aborts (not shown in the pseu-
docode).

The translation steps are outlined in Alg. 6.1. We keep a queue of pending and a list of
already processed updates (line 1). First, we check if the update is inconsistent (line 2).
In such case, we apply the brave5 (cf. Chapter 5) semantics on the ABox side (line 3),
which comes down to the principle “add all consequences and remove all causes”, which
may result in new triples to be added and deleted to resolve the inconsistency: these
become pending updates (line 5), otherwise we initialize the list of pending elements
with the initial update. For each triple in the list of such pending updates, we mark it as
processed (line 8), get the Wiki page related to its subject (line 9) and its wikipedia tem-
plates (line 10). Next, we proceed to invert the wikipedia mappings (lines 11 and 12), as
follows. The function getCandidateWikiUpdate_def(triple,templates,e) first applies the
wikipedia updates e (produced in the previous iteration) to the wikipedia templates,
in order to maintain a consistent view of the Wiki information. Then, we start with pro-
cessing unconditional mappings and, for each one, checks if its deletion (resp. insertion)
effectively deletes (resp. insert) the given triple. Note that, due to the mentioned
n-to-1 correspondences, several alternatives could be present, hence the result opt may
be a set of alternative candidates.

We repeat the procedure for the conditional mappings (line 12) noting that, in this case,
the alternative are related to different branches whose conditions could be set/unset
to satisfy the given triple. Then, the purpose of the operation is inspected. If the
operation is delete (line 13), the n-to-1 alternatives can be disambiguated, given that we
delete all of them whose resultant value matches the object of the triple to be deleted.
As for the conditional branches, we define a function chooseBranch to decide which
branch is set/unset. Given that the conditions highly depends on text constrains (e.g.
they condition checks if one property contains certain text), we leave the decision to the
user. In future work, we consider to apply additional heuristics to alleviate user decisions

5In a similar manner, we could also apply cautious or fainthearted semantics.
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Algorithm 6.1: DBpedia update translation algorithm
Input: DBpedia update u = (u−, u+)
Output: Wiki update e = (e−, e+)

1 Pending := {}, Processed := {}
2 if (M(I) \ u− ∪ u+) |= ⊥ then
3 // use mapping-agnostic ABox conflict resolution semantics (Chapter 5) to

u := Sembrave(M(I) ∪ u+)
4 end
5 Pending.push(u+, “add”), Pending.push(u−, “del”)
6 while (!Pending.isEmpty()) do
7 (triple, operation) = Pending.pop()
8 Processed.add(triple, operation)
9 wiki = getWikiPage(triple.getSubject())

10 templates[] = getTemplates(wiki)
11 opt := getCandidateWikiUpdate_def(triple, templates, e)
12 cond := getCandidateWikiUpdate_conditions(triple, templates, e)
13 if (operation = “del”) then
14 // choose between conditional options

(r−, r+) := opt ∪ chooseBranch(cond)
15 else
16 // choose property mapping resp. condition branch

(r−, r+) := policyResolution(opt) ∪ chooseBranch(cond)
17 end
18 (e−, e+) := (e− ∪ r−, e+ ∪ r+) // add to Wiki update results
19 if (M(I \ e− ∪ e+) ∪ T ) |= ⊥ then
20 (u−

1 , u
+
1 ) := Sembrave(M(I ∪ r+))

21 Pending.push(u+
1 , “add”), Pending.push(u−

1 , “del”)
22 Pending.removeDuplicates()
23 Pending := Pending \ Procesed // disregard already processed

updates
24 end
25 end

on conditional branches. In turn, if the operation is insert (line 16), we maintain the
same policy for the conditions, but the apply a policy resolution translation to try to
disambiguate the n-to-1 alternatives to insert. This policy is further explained below, in
Section 6.3.2. Finally, the Wiki updates are added to the previous considered updates
(line 18) and we check if the resultant update up to now is inconsistent (line 19). In such
case, we apply the brave semantics (cf. Chapter 5) (line 20), and add its recommended
insertions and deletions to the pending query (line 21), removing potential duplicates
(line 22) and disregarding already processed updates (line 23).

Finally, the resulting Wiki revisions are output to the user. Future work also considers to
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Infobox Subjects ambiguous n-1 mapping
Wikipedia prop. dbpedia prop.

Settlement 369,024

area_total_km2

dbp:areaTotalarea_total_sq_mi
area_total
TotalArea_sq_mi

Taxobox 293,715

species

dbp:species

subspecies
variety
species_group
species_subgroup
species_complex

Person 168,372 website foaf:homepagehomepage

Football biography 128,602
name

foaf:namefullname
playername

Film 106,254 screenplay dbp:writerwriter

Table 62: Examples of n-to-1 alternatives in DBpedia (English) mappings.

group triples by subject. This allows the updates to be accommodated on page-by-page
basis, and try to accommodate several properties at the same time.

6.3.2 Update Resolution Policies

Given the large number of possible translations of an update, potentially resulting in
different clash patterns, an update can be translated in various ways, from which the
user must select one. The crucial issue here is that the number of choices can be too
large even for a very simple update, and that updates can cause side effects outlined in
the previous section.

Here, we consider update resolution policies aimed at reducing the number of options
for the user in the specific case of n-to-1 alternatives to insert. We currently consider
two different alternatives in accordance with some concise principles, namely infobox-
frequency-first and similar-subject-first.

We exemplify the application of such policies looking at the ambiguities in the top 10 most
used Infoboxes6. In particular, we find and inspect the ambiguities in ’Settlement’, ’Taxobox’,
’Person’, ’Football biography’ and ’Film’. For the sake of clarity, we show a selection of the most
representative ambiguities in Table 62, while other ambiguities in the infoboxes follow
the same patterns. For instance, all ’name’, ’fullname’ and ’player name’ in a ’football biography’
infobox map to a foaf:name property. Table 62 also reports the number of subjects (i.e.,
wikipedia pages) of each infobox type, converted from the English Wikipedia.

Infobox-frequency-first. This policy considers that, for an insertion in a subject with
an infobox W , resulting in a n-to-1 alternatives, we infer that the most likely accom-
modation would be the most frequent property in all the subjects with such infobox W ,

6http://mappings.dbpedia.org/server/statistics/en/.
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among all the alternatives not fulfilled in the subject we are currently updating. Statis-
tics on frequent properties can be computed seamlessly, concurrently to the DBpedia
conversion. Overall, this approximation could help users to inspect frequent properties
for the update, so that rare or infrequent properties can be quickly discarded. In con-
trast, the approach may fail to guess the concrete purpose or real users, who may choose
to accommodate different alternatives.

Similar-subject-first. The objective of this strategy is to refine the previous Infobox-
frequency-first policy by delimiting a set of similar subjects for which the frequent proper-
ties are inspected. The reason of this strategy is that most of the properties in infoboxes
are optional, so that different Wikipedia resources can, and often are, described with
different levels of detail. Thus, finding “similar” subjects could effectively recommend
more frequent patterns. For finding similar entities, we focus for the moment on a sim-
ple approach on sampling m subjects described with the same target infobox W and
described with the same DBpedia property as the update u.

Recently Wikipedia partially shifted to another, structured datasource than infoboxes,
namely, Wikidata. We note that the data model of Wikidata is different to DBpedia,
nevertheless our approach that we will discuss in the following could potentially help
in bridging between the two. In fact, we have developed a method to calculate similar
entities in Wikidata, with the ultimate aim of providing a completeness measure for the
Wikidata entities.

6.3.3 Assessing the Completeness of Wikidata Entities

Knowledge bases (KBs) such as Wikidata [VK14] or DBpedia [ABK+07] are becoming
increasingly popular as structured sources of data, and are used in a variety of tasks
such as structured search, question answering, or entity recognition, even though they
are generally highly incomplete [RSN16]. In Wikidata, for instance, only 48% of politi-
cians are member of a party, or only 0.02% of people do have a child. In particular,
when incomplete KBs are combined with query languages that contain negation such as
SPARQL, the result easily yields unsound answers [PFH06].

Understanding how complete KBs are on different aspects is important for KB curators
so they know where to focus their efforts, and for consumers to know to which extent
they can rely on a KB.

In this dissertation we propose to assess the relative completeness of entities in knowledge
bases, based on comparing the extent of information with other similar entities. It is
difficult to talk about the completeness of KBs because completeness can be investigated
on various levels and with varying semantics. While it is relatively easy to understand
when a knowledge base is complete for children of Obama (when Malia and Sasha are
there), it is not clear what completeness of Obama himself, or of US politicians as a
whole, could mean. Previous work on knowledge base completeness has focused on the
lowest level, i.e., finding out when a subject is complete for a predicate (like Obama
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for child) [GRAS17, MRN16, PDRN16], whereas more abstract levels have not been
investigated so far.

In more detail, previous work on assessing KB completeness has focused on the level
of subject-predicate pairs. [PDRN16] provides a plugin for Wikidata that allows to
assert completeness for such pairs directly on the Wikidata website. [GRAS17] has
used association rule mining for automatically determining complete pairs. [MRN16]
used Wikipedia texts to mine the cardinalities of such pairs, using these cardinalities in
turn to assess completeness. A recent survey paper, [Pau17], provides a comprehensive
overview on the state-of-the-art KB refinement approaches aimed at improving the KB
completeness. For more holistic descriptions of quality, Wikipedia has so-called status
indicators (like “Featured article”, “Good article”). For Wikidata, such indicators do
not yet exist, but their introduction is planned.7

For basic granularities, such as children of Obama, as discussed in [GRAS17, MRN16,
PDRN16], boolean completeness annotations generally suffice. In contrast, on the en-
tity level, given that Wikidata contains over 2700 properties, of which 101 are used at
least 1000 times for the class human, containing further ill-defined properties such as
medical condition, notable work and participant of, it is clear that boolean statements
such as “Data about Obama is complete”, or “Data about Trump is incomplete”, are
not meaningful.

To allow statements for entities, we thus propose to define a relative completeness mea-
sure. More specifically, we propose to compare the extent of information about an entity
with the extent of information that is available for other, similar entities. Elaborating it
further, for a designated entity we check its coverage of frequent properties, computed
among similar entities. For instance, in assessing the completeness of Obama, we would
compare the information available about him with that available for other politicians,
while when assessing the completeness of Austria, we would compare with other coun-
tries.

There are three crucial components to this approach, (i) the definition of similar entities,
(ii) the way how the extent of information is compared among similar entities, and (iii)
the way how explanations are provided.

(i) For similarity, classes are a natural baseline, and class-like properties such as oc-
cupation allow a further refinement. Semantic similarity measures [RE03] could
provide even better way to find similar entities.

(ii) Baselines for comparison could be counts of facts or properties, while better results
can be expected if the relevance or importance of properties and facts is taken into
account [DA16].

7https://en.wikipedia.org/wiki/Wikipedia:Wikidata#Article_status_
indicators
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(iii) The way explanations are generated depends highly on the choices made for (i)
and (ii), and will in turn impact usability for knowledge base authors and users.
We may expect a tradeoff between accuracy and complexity, i.e., more complex
choices may lead to more accurate assertions, which however are harder to explain,
thus not necessarily increasing usability.

In the next chapter, we discuss the implementation and experiments for the update
semantics discussed in Chapter 4, Chapter 5 and the present one (Chapter 6).
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CHAPTER 7
Implementation and Experiments

In this chapter, following “from theory to practice” methodology (as discussed in Sec. 1.2),
we show the feasibility of the ABox update semantics discussed in Chapters 4-6 by imple-
menting them in practice, starting from the least expressive towards the most expressive
fragment. For each one of them, we also provide experimental evaluations. Note that we
do not discuss the implementation of TBox update semantics elaborated in Chapter 4.

7.1 Prototype and Experiments – DL-Literdfs

We have implemented all of the DL-Literdfs update semantics discussed (cf. Chap-
ter 4) except Semmat

3 , in Jena TDB1 as a triple store that both implements the latest
SPARQL 1.1 specification and supports rule based materialisation: our focus here was to
use an existing store that allows us to implement the different semantics with its on-board
features; that is, for computing mat(G) we use the on-board, forward-chaining material-
isation in Jena.2 For each one of the semantics where fresh variables are introduced, we
implemented them with two concrete variants of P fvars

d . In the first variant, we replace
?v a rdfs:Resource by {{?v ?vp ?vo} UNION {?vs ?v ?vo} UNION {?vs ?vp ?v}},
to achieve a pattern that binds ?v to every possible term in G. This is not very efficient.
In fact, note that P fvars

d is needed just to bind fresh variables ?v (corresponding to ‘_’
in Table 21) in patterns P?v of the form P (x, ?v) or P (?v, x) in the rewritten delete
clause. Thus, we can equally use P fvars′

d = {OPTIONAL{
∪

?v∈Var(P caus
d

)\Var(Pd)} P?v}. We
denote implementations using the latter variant Semmat

2′ and Semred
1′ , respectively.

As for reduced semantics, remarkably, for the restricted set of ABox rules in Fig. 23
and assuming an acyclic TBox, we can actually compute red(G) also by “on-board”
means of SPARQL 1.1 compliant triple stores, namely by using SPARQL 1.1 Update

1http://jena.apache.org/documentation/tdb/
2http://jena.apache.org/documentation/inference/
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in combination with SPARQL 1.1 property paths [HS13, Section 9] with the following
update:
DELETE { ?S1 a ?D1. ?S2 a ?C2. ?S3 ?Q3 ?O3. ?O4 a ?C4. }
WHERE {{ ?C1 sc+ ?D1. ?S1 a ?C1. }

UNION { ?P2 dom/sc* ?C2. ?S2 ?P2 ?O2. }
UNION { ?P3 sp+ ?Q3. ?S3 ?P3 ?O3. }
UNION { ?P4 rng/sc* ?C4. ?S4 ?P4 ?O4. }}

We emphasise that performance results should be understood as providing a general
indication of feasibility of implementing these semantics in existing stores rather than
actual benchmarking: on the one hand, the different semantics are not comparable in
terms of performance benchmarking, since they provide different results; on the other
hand, for instance, we only use naive re-materialisation provided by the triple store in
our prototype, instead of optimised versions of DRed, such as [UMJ+13].

For initial experiments we have used data generated by the LUBM [GPH05] generator
for 5, 10 and 15 Universities, which correspond to different ABox sizes merged together
with an RDFS version of the LUBM ontology as TBox; this version of LUBM has
no complex restrictions on roles, no transitive roles, no inverse roles, and no equality
axioms, and axioms of type A ⊑ B ⊓ C are split into two axioms A ⊑ B and A ⊑ C.
For instance, axioms Chair ≡ Person ⊓ ∃headOf.Department, Chair ⊑ Person and
Chair ≡ Person ⊓ ∃worksFor.Organization are stripped-down to the following RDFS
axioms – as generic as possible and this is because properties are used with different
ranges in restrictions (mandatory participation axioms):

prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
prefix ub: <http://swat.cse.lehigh.edu/onto/univ-bench.owl#>
prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

ub:Chair a rdfs:Class;
rdfs:subClassOf ub:Person .

ub:headOf a rdf:Property;
rdfs:domain ub:Person;
rdfs:range ub:Organization;
rdfs:subPropertyOf ub:worksFor.

ub:worksFor a rdf:Property;
rdfs:domain ub:Person;
rdfs:range ub:Organization;
rdfs:subPropertyOf ub:memberOf.

Here it is an excerpt from the resulting ontology showing some of the main concepts:

prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
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prefix ub: <http://swat.cse.lehigh.edu/onto/univ-bench.owl#>
prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

ub:Employee a rdfs:Class;
rdfs:label "Employee";
rdfs:subClassOf ub:Person.

ub:Department a rdfs:Class;
rdfs:label "university department";
rdfs:subClassOf ub:Organization.

ub:Student a rdfs:Class;
rdfs:label "student";
rdfs:subClassOf ub:Person.

ub:UndergraduateStudent a rdfs:Class;
rdfs:label "undergraduate student";
rdfs:subClassOf ub:Student.

ub:GraduateCourse a rdfs:Class;
rdfs:label "Graduate Level Courses";
rdfs:subClassOf ub:Course.

ub:GraduateStudent a rdfs:Class;
rdfs:label "graduate student";
rdfs:subClassOf ub:Student.

ub:Book a rdfs:Class;
rdfs:label "book";
rdfs:subClassOf ub:Publication.

ub:Article a rdfs:Class;
rdfs:label "article";
rdfs:subClassOf ub:Publication.

ub:FullProfessor a rdfs:Class;
rdfs:label "full professor";
rdfs:subClassOf ub:Professor.

ub:undergraduateDegreeFrom a rdf:Property;
rdfs:domain ub:Person;
rdfs:label "has an undergraduate degree from";
rdfs:range ub:University;
rdfs:subPropertyOf ub:degreeFrom.

ub:worksFor a rdf:Property;
rdfs:domain ub:Person;
rdfs:label "Works For";
rdfs:range ub:Organization;
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rdfs:subPropertyOf ub:memberOf.

ub:takesCourse a rdf:Property;
rdfs:domain ub:Student;
rdfs:label "is taking";
rdfs:range ub:Course.

ub:publicationAuthor a rdf:Property;
rdfs:domain ub:Publication;
rdfs:label "was written by";
rdfs:range ub:Person.

ub:headOf a rdf:Property;
rdfs:domain ub:Person;
rdfs:label "is the head of";
rdfs:range ub:Organization;
rdfs:subPropertyOf ub:worksFor.

ub:memberOf a rdf:Property;
rdfs:domain ub:Person;
rdfs:label "member of";
rdfs:range ub:Organization.

ub:member a rdf:Property;
rdfs:domain ub:Organization;
rdfs:label "has as a member";
rdfs:range ub:Person.

ub:mastersDegreeFrom a rdf:Property;
rdfs:domain ub:Person;
rdfs:label "has a masters degree from";
rdfs:range ub:University;
rdfs:subPropertyOf ub:degreeFrom.

ub:degreeFrom a rdf:Property;
rdfs:domain ub:Person;
rdfs:label "has a degree from";
rdfs:range ub:University.

ub:doctoralDegreeFrom a rdf:Property;
rdfs:domain ub:Person;
rdfs:label "has a doctoral degree from";
rdfs:range ub:University;
rdfs:subPropertyOf ub:degreeFrom.

ub:teacherOf a rdf:Property;
rdfs:domain ub:Faculty;
rdfs:label "teaches";
rdfs:range ub:Course.
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ub:advisor a rdf:Property;
rdfs:domain ub:Person;
rdfs:label "is being advised by";
rdfs:range ub:Professor.

ub:hasAlumnus a rdf:Property;
rdfs:domain ub:University;
rdfs:label "has as an alumnus";
rdfs:range ub:Person.

...

Besides, we have designed a set of 7 different ABox updates in order to compare the
proposed mat-preserving and red-preserving semantics.

Update #1. Transfer all students of course 0 from undergraduate students to graduate
students.

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
prefix ub: <http://swat.cse.lehigh.edu/onto/univ-bench.owl#>

DELETE {?X rdf:type ub:UndergraduateStudent .}
INSERT {?X rdf:type ub:GraduateStudent . }
WHERE
{

?X ub:takesCourse <http://www.Department0.University0.edu/Course0> .
}

Update #2. Slight variation of #1: Transfer all students of course 0 to graduate stu-
dents.

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
prefix ub: <http://swat.cse.lehigh.edu/onto/univ-bench.owl#>

DELETE {?X rdf:type ub:Student .}
INSERT {?X rdf:type ub:GraduateStudent . }
WHERE
{

?X ub:takesCourse <http://www.Department0.University0.edu/Course0> .
}

Update #3. Professor 11 moves to department 1 of university 1 and takes along all of
her students. (Note that worksFor is a subproperty of memberOf, so also the memberOf
relation for Professor 11 should be deleted for semantics where the effects are removed).

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
prefix ub: <http://swat.cse.lehigh.edu/onto/univ-bench.owl#>
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DELETE {<http://www.Department0.University0.edu/AssociateProfessor11>
ub:worksFor ?Y . ?Z ub:memberOf ?Y . }

INSERT {<http://www.Department1.University1.edu/AssociateProfessor11>
ub:headOf <http://www.Department1.University1.edu> .

?Z ub:memberOf <http://www.Department1.University1.edu> . }
WHERE
{

<http://www.Department0.University0.edu/AssociateProfessor11>
ub:worksFor ?Y .

?Y rdf:type ub:Department .
?Z ub:advisor <http://www.Department0.University0.edu/AssociateProfessor11>

.
?Z rdf:type ub:GraduateStudent .
?Z ub:memberOf ?Y .

}

Update #4. Auto-register all graduate students to all of the courses taught by their
advisor.

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
prefix ub: <http://swat.cse.lehigh.edu/onto/univ-bench.owl#>

INSERT {?X ub:takesCourse ?W .}
WHERE
{

?X rdf:type ub:GraduateStudent .
?Z ub:teacherOf ?W .
?X ub:advisor ?Z .

}

Update #5. Enforce the policy that a student can only have one undergraduate degree
per university and may not re-register as an undergrad student if she already has any
degree from that university. Additionally, mark all the students with a degree as alumni.

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
prefix ub: <http://swat.cse.lehigh.edu/onto/univ-bench.owl#>

DELETE {?X rdf:type ub:UndergraduateStudent .}
INSERT {?Y ub:hasAlumnus ?X.}
WHERE
{

OPTIONAL {?X ub:undergraduateDegreeFrom ?Y . }
OPTIONAL {?X ub:mastersDegreeFrom ?Y . }
OPTIONAL {?X ub:doctoralDegreeFrom ?Y . }

}

Update #6. Variant of #5 which uses UNION instead of OPTIONAL. Enforce the
policy that a student can only have one undergraduate degree per University and may
not re-register as an undergrad student if she already has any degree from that university.
Additionally, mark all the students with a degree as alumni.

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
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prefix ub: <http://swat.cse.lehigh.edu/onto/univ-bench.owl#>

DELETE {?X rdf:type ub:UndergraduateStudent .}
INSERT {?Y ub:hasAlumnus ?X.}
WHERE
{

{?X ub:undergraduateDegreeFrom ?Y . }
UNION
{?X ub:mastersDegreeFrom ?Y . }
UNION
{?X ub:doctoralDegreeFrom ?Y . }

}

Update #7. Assistant Professor 0 got some funding and wants to employ all her not-
already employed undergraduate co-authors as graduate students.

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
prefix ub: <http://swat.cse.lehigh.edu/onto/univ-bench.owl#>

DELETE {?Y rdf:type ub:UndergraduateStudent . }
INSERT {?Y rdf:type ub:GraduateStudent . ?Y ub:advisor

<http://www.Department0.University0.edu/AssistantProfessor0> .
?Y ub:worksFor ?Z .}

WHERE
{
?X ub:publicationAuthor

<http://www.Department0.University0.edu/AssistantProfessor0> .
?X ub:publicationAuthor ?Y .
FILTER NOT EXISTS {?Y rdf:type ub:Employee . }
<http://www.Department0.University0.edu/AssistantProfessor0> ub:worksFor ?Z .
}

Both the prototype, as well as files containing the data, ontology, and the updates used
for experiments are available on a dedicated Web page.3

We first compared, for each update semantics, the time elapsed for rewriting and ex-
ecuting the update. Secondly, in order to compare mat-preserving and red-preserving
semantics, we also need to take into account that red-preserving semantics imply addi-
tional effort on subsequent querying, since rewriting is required (cf. Prop. 4). In order
to reflect this, we also measured the aggregated times for executing an update and
subsequently processing the standard 14 LUBM benchmark queries in sequence. The
evaluation of the respective update plus 14 queries merged together for different dataset
sizes are reported in Table 71, Table 72 and Table 73 respectively.

In general, among the mat-preserving semantics, the semantics implementable in terms
of rewriting (Semmat

2 ) perform better than those that need rematerialisation (Semmat
1a,b),

as could be expected. There might be potential for improvement here on the latter, when
using tailored implementations of DRed. Also, for both mat-preserving (Semmat

2′ ) and
red-preserving (Semred

1′ ) semantics that rely on rewritings for deleting causes, the optimi-

3http://dbai.tuwien.ac.at/user/ahmeti/sparqlupdate-rewriter/
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Update #1 Update #2 Update #3 Update #4 Update #5 Update #6 Update #7
Semmat

0 26,7 23,2 23,1 223,7 29,0 24,9 24,0
Semmat

1a 30,2 29,9 30,6 56,7 39,8 41,3 30,9
Semmat

1b 22,4 23,8 28,7 35,5 42,0 35,4 33,2
Semmat

2 0,1 1454,1 0,1 271,2 1,1 0,9 0,1
Semmat

2′ 0,1 0,1 0,1 278,5 1,3 0,9 0,1
Semred

0 17,8 9,8 10,0 179,2 12,1 13,6 11,0
Semred

1 17,8 10,0 179,2 12,1 13,6 11,0
Semred

1′ 17,8 16,3 10,0 179,2 12,1 13,6 11,0

Table 71: Evaluation results in seconds (s) for LUBM 5 in the context of DL-Literdfs

(an empty cell represents a run-time exception).

sation of using variant P fvars′

d instead of P fvars
d paid off for our queries. This can be seen

especially in Update #2 where the performance gain is significant for both Semmat
2′ and

Semred
1′ , especially for bigger LUBM datasets where results without optimisation ended

with run-time exceptions. The same observation, albeit to a lesser degree, can be also
drawn for Update #4. For the other updates, the improvement is not significant due to
the nature of the update, i.e., these updates do not have causes to be computed. As for a
comparison between mat-preserving vs. red-preserving, in our experiments re-reduction
upon updates seems quite affordable, whereas the additionally needed query rewriting
for subsequent query answering does not add dramatic costs. Thus, we believe that,
depending on the use case, keeping reduced stores upon updates is a feasible and poten-
tially useful strategy, particularly since—as shown above—red(G) can be implemented
with off-the-shelf features of SPARQL 1.1.

While further optimisations, and implementations in different triple stores are beyond
the scope of this dissertation, the experiments confirm our expectations so far.

7.2 Prototype and Experiments – DL-Literdfs¬

For each of the three semantics discussed in Chapter 5, we provided a preliminary im-
plementation using the Jena API (http://jena.apache.org) and evaluated them

Update #1 Update #2 Update #3 Update #4 Update #5 Update #6 Update #7
Semmat

0 51,6 56,4 46,4 844,7 49 49,8 48,5
Semmat

1a 67,4 68,7 66 125,2 92,7 104,4 74,5
Semmat

1b 60,1 56,2 65,1 63,5 71 57,7 57,8
Semmat

2 0,1 0,2 753,7 1,7 1,5 0,2
Semmat

2′ 0,1 0,2 0,2 725,1 1,7 1,5 0,1
Semred

0 27,6 29 29,3 30,7 30 30,9
Semred

1 27,6 29,3 30,7 30 30,9
Semred

1′ 27,6 24,1 29,3 30,7 30 30,9

Table 72: Evaluation results in seconds (s) for LUBM 10 in the context of DL-Literdfs

(an empty cell represents a run-time exception).
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Update #1 Update #2 Update #3 Update #4 Update #5 Update #6 Update #7
Semmat

0 83,7 86,1 89 2045,6 88,4 89,6 86,7
Semmat

1a 110,9 116,4 108,6 284,9 187,1 197,9 122,1
Semmat

1b 95,2 105,7 89 108,4 104,6 105,9 86,1
Semmat

2 0,1 0,1 2231,3 2,5 2,3 0,2
Semmat

2′ 0,1 0,2 0,2 1669 2,3 2,3 0,2
Semred

0 49,5 48,2 46,9 47,6 48,6 48,6
Semred

1 49,5 46,9 47,6 48,6 48,6
Semred

1′ 49,5 53,1 46,9 47,6 48,6 48,6

Table 73: Evaluation results in seconds (s) for LUBM 15 in the context of DL-Literdfs

(an empty cell represents a run-time exception).

against Jena TDB triple store which implements the latest SPARQL 1.1 specification.
As before, for computing the initial materialisation of a triple store mat(G) we rely on
on-board, forward-chaining materialisation in Jena TDB using the minimal RDFS rules
as in Fig. 23.

For our experiments, we used the data generated by the EUGen generator [LSTW13] of
the size range of 5 to 50 Universities. We opted for using this generator as it extends the
LUBM ontology [GPH05] with chains of subclasses, making the rewritings more challeng-
ing. In our case we have used the default of i = 20 subclasses for each LUBM concept
(e.g., SubjiStudents) and made such subclasses pairwise disjoint. Moreover, we have
added more disjointness axioms where appropriate, e.g., :AssociateProfessor dw
:FullProfessor. All these TBox axioms are merged with the reduced RDFS version
of LUBM (cf. Sec. 7.1). Here it is an excerpt from the ontology that emphasises the
new concepts:

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
prefix owl: <http://www.w3.org/2002/07/owl#>
prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
prefix ub: <http://swat.cse.lehigh.edu/onto/univ-bench.owl#>

ub:Subj1Course a rdfs:Class ;
rdfs:subClassOf ub:Course ;
owl:disjointWith ub:Subj2Course .

ub:Subj5Department a rdfs:Class ;
rdfs:subClassOf ub:Department ;
owl:disjointWith ub:Subj2Department .

ub:Subj3Professor a rdfs:Class ;
rdfs:subClassOf ub:Professor ;
owl:disjointWith ub:Subj4Professor .

ub:Subj10Student a rdfs:Class ;
rdfs:subClassOf ub:Student ;
owl:disjointWith ub:Subj2Student .
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ub:Alumnus owl:disjointWith ub:UndergraduateStudent .
ub:Employee owl:disjointWith ub:Student .
ub:UndergraduateStudent owl:disjointWith ub:GraduateStudent .
ub:AssistantProfessor owl:disjointWith ub:AssociateProfessor .
ub:AssistantProfessor owl:disjointWith ub:FullProfessor .
ub:AssociateProfessor owl:disjointWith ub:FullProfessor .
ub:PostDoc owl:disjointWith ub:Professor .
ub:Lecturer owl:disjointWith ub:Professor .

ub:ConferencePaper owl:disjointWith ub:Book .
ub:ConferencePaper owl:disjointWith ub:Article .
ub:ConferencePaper owl:disjointWith ub:Manual .
ub:ConferencePaper owl:disjointWith ub:JournalArticle .
ub:ConferencePaper owl:disjointWith ub:Software .
ub:ConferencePaper owl:disjointWith ub:UnofficialPublication .
ub:ConferencePaper owl:disjointWith ub:TechnicalReport .

ub:Article owl:disjointWith ub:Book .
ub:Article owl:disjointWith ub:Manual .
...

To compare the experimental results with Sec. 7.1, for our experiments we adapted the
seven updates from Sec. 7.1.

Update #1. Transfer all students of course 0 to graduate students.

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
prefix ub: <http://swat.cse.lehigh.edu/onto/univ-bench.owl#>

INSERT {?X rdf:type ub:GraduateStudent . }
WHERE
{

?X ub:takesCourse <http://www.Department1.University0.edu/Course0> .
}

Update #2. Variant of #1, transfer all students of course 43 to subject18 students.

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
prefix ub: <http://swat.cse.lehigh.edu/onto/univ-bench.owl#>

INSERT {?X rdf:type ub:Subj18Student .}
WHERE
{

?X ub:takesCourse <http://www.Department1.University0.edu/Course43> .
}

Update #3. Transfer all publications of Associate Professor 1 from books to articles.

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
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prefix ub: <http://swat.cse.lehigh.edu/onto/univ-bench.owl#>

DELETE {?X rdf:type ub:Book . }
INSERT {?X rdf:type ub:Article .}
WHERE
{

?X ub:publicationAuthor
<http://www.Department0.University0.edu/AssociateProfessor1> .

}

Update #4. Variant of #3, transfer all publications of graduate students from books
to articles.

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
prefix ub: <http://swat.cse.lehigh.edu/onto/univ-bench.owl#>

DELETE {?X rdf:type ub:Book . }
INSERT {?X rdf:type ub:Article .}
WHERE
{

?X ub:publicationAuthor ?Y .
?Y a ub:GraduateStudent .

}

Update #5. Insert all personnel working for university 0 as full professors.

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
prefix ub: <http://swat.cse.lehigh.edu/onto/univ-bench.owl#>

INSERT {?X rdf:type ub:FullProfessor .}
WHERE
{

?X ub:worksFor <http://www.Department0.University0.edu> .
}

Update #6. Insert all students who have finished a degree as alumni.

prefix ub: <http://swat.cse.lehigh.edu/onto/univ-bench.owl#>

INSERT {?Y ub:hasAlumnus ?X.}
WHERE
{

OPTIONAL {?X ub:undergraduateDegreeFrom ?Y . }
OPTIONAL {?X ub:mastersDegreeFrom ?Y . }
OPTIONAL {?X ub:doctoralDegreeFrom ?Y . }

}

Update #7. Variant of #6 with UNIONs instead of OPTIONALs, insert all students
who have finished a degree as alumni.

prefix ub: <http://swat.cse.lehigh.edu/onto/univ-bench.owl#>

INSERT {?Y ub:hasAlumnus ?X.}
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WHERE
{

{?X ub:undergraduateDegreeFrom ?Y . }
UNION
{?X ub:mastersDegreeFrom ?Y . }
UNION
{?X ub:doctoralDegreeFrom ?Y . }

}

The prototype, as well as files containing the data, ontology, and the updates used for
experiments, are made available on a dedicated Web page4.

The results summarized in Table 74 (cf. on smaller datasets Table 75 and Table 76) show
that the LUBM 50 dataset (507MB uncompressed, 8.7M triples after materialisation)
can be handled in seconds on a quad-core Intel i7 3.20 GHz machine with 16 GB RAM.
For each of the three semantics, we have compared the time elapsed for rewriting and for
the evaluation of the resulting update. The last line in Table 74 is the evaluation time
for the original, non-rewritten update. One can notice that brave semantics Semmat

brave is
often the most expensive one, since it performs most modifications. When the number
of inconsistent inserts is low though, the situation is different, and the brave semantics
slightly outperforms the fainthearted semantics Semmat

faint (Update #6 and #7), due
to the more complex checks in the WHERE clause produced by Alg. 5.5. For the
cautious semantics Semmat

caut, the numbers in the table are construction and evaluation
time of the ASK query checking for the feasibility of update (cf. Alg. 5.4). In case
this ASK query returns False, the runtime of brave semantics should be added in order
to obtain the total runtime of the update. Update #4 demonstrates that Semmat

caut can
perform significantly worse than Semmat

faint when the number of instantiations in the
original WHERE clause is high. This is because the ASK query in Semmat

caut looks for
instantiations of the WHERE clause which can lead to clashes with the existing tuples
(using a conjunctive condition), whereas Semmat

faint reduces the set of solutions of the
original WHERE clause using MINUS, which is apparently more efficient in the Apache
TDB.

Update #1 Update #2 Update #3 Update #4 Update #5 Update #6 Update #7
Semmat

brave 12,4 14,8 0,1 22,1 46,0 15,3 13,6
Semmat

caut 0,3 0,2 0,2 44,0 0,2 3,9 2,3
Semmat

faint 2,2 2,8 0,01 17,4 3,3 16,7 15,3
Original 0,2 0,2 0,2 10,2 0,2 6,6 5,4

Table 74: Evaluation results in seconds for LUBM 50 in the context of DL-Literdfs¬

4http://dbai.tuwien.ac.at/user/ahmeti/sparqlupdate-inconsistency-resolver/
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Update #1 Update #2 Update #3 Update #4 Update #5 Update #6 Update #7
Semmat

brave 2,6 1,9 0,1 2,2 4,9 1,8 1,4
Semmat

caut 0,2 0,2 0,3 5,1 0,2 1,0 0,4
Semmat

faint 0,3 0,3 0,1 1,6 0,3 1,8 1,6
Original 0,2 0,2 0,2 1,2 0,2 1,5 0,8

Table 75: Evaluation results in seconds for LUBM 5 in the context of DL-Literdfs¬

7.3 Prototype and Experiments – (OWL) DBpedia
We have developed a proof of concept implementation that was designed to address
the challenge of updating Wikipedia infoboxes via SPARQL 1.1 updates on DBpedia as
discussed in Chapter 6. The current prototype, referred to as the DBpedia SPARQL
Update Endpoint (DBpedia-SUE), provides a high-level façade to resolve the SPARQL
updates and accommodate them in Wikipedia. The framework is developed in Scala5

and makes use of the general components of the DBpedia Extraction Framework.

The architecture of our system is depicted in Fig. 71 and consists of several modules and
services, explained in the following.

Restful API: This component is responsible for the interaction with the user. DBpedia-
SUE can be accessed by the Web User Interface (UI) or querying via RESTful operations
so that third-party applications can be built on top of our proposal, translating SPARQL
Updates on DBpedia to the underlying Wiki content.

Fig. 72 shows an example on the Web UI of DBpedia-SUE. First, the user poses a
SPARQL update query on DBpedia and selects the update semantics to be applied in
case of inconsistencies (brave, cautious or fainthearted). Then, the user runs the query
to get the potential Wikipedia results, i.e., the wikipedia properties to be added and
deleted, and the resultant infobox text to be directly used within Wikipedia. When
several alternatives are available to accommodate the update in wikipedia, these are
presented to the user (OPT tabs in Fig. 72). The UI also provides the concrete DBpedia
triples (added and inserted) after applying the user query and resolving the potential
inconsistencies.

Consistency Checker Once the user runs the SPARQL update query, this component
is aimed at checking its consistency. As a first step, if variables are present in the user

Update #1 Update #2 Update #3 Update #4 Update #5 Update #6 Update #7
Semmat

brave 3,3 2,9 0,1 4,2 9,5 2,6 2,8
Semmat

caut 0,2 0,3 0,2 8,4 0,2 1,2 0,5
Semmat

faint 0,4 0,4 0,1 3,1 0,3 3,4 2,4
Original 0,2 0,2 0,2 2,5 0,2 1,6 1,4

Table 76: Evaluation results in seconds for LUBM 10 in the context of DL-Literdfs¬

5http://www.scala-lang.org/
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Figure 71: DBpedia-SUE architecture.

query, this component evaluates it against the DBpedia Live instance in order to produce
a set of ground updates (triples with no variables). Then, it makes use of the most recent
DBpedia ontology6, whose formalization is provided in Sec. 6.1.

Rewriter. If the previous consistency checker reveals potential inconsistencies in the
user query, then this component applies the SPARQL update brave semantics—cf.
Chapter 5 for details—to solve potential clashes w.r.t. the DBpedia data.

Resolver. This component takes as input a set of grounded updates from the previous
steps and translates them to Wiki updates. The details of update translation have been
discussed in Sec. 6.3.1.

Triples Extractor. A user can validate Wikipedia revisions to check and resolve po-
tential inconsistencies arising after the application of the revisions7. In this case, our
framework—via the DBpedia Extraction Framework—first extracts the DBpedia triples
emerging from the revisions. Then, these triples are treated as a user update query,
following the aforementioned workflow.

6http://wiki.dbpedia.org/Downloads
7For instance, the application of a Wikipedia revision can activate/deactivate conditional mappings,

whose extraction (i.e. the translation to DBpedia) may introduce novel inconsistencies.
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For experimental evaluations we have used the two update resolution policies Infobox-
frequency-first and Similar-subject-first, which are used to reduce the number of options
in case of INSERT alternatives.

Infobox-frequency-first. Fig. 73 evaluates the distribution of frequencies of the
Wikipedia properties involved in n-1 mappings from Table 62, considering all the subjects
in the infobox (series Infobox-frequency-first). Results show that the application of this
policy can certainly filter out infrequent property candidates, but it may require further
elaboration for a more informed recommendation, specially in those cases in which the
property is not extensively used in the infoboxes. For instance, all properties with no
or marginal presence can be discarded, such as ’area_total’ and ’TotalArea_sq_mi’ in ’Settlement’
(Fig. 73 (a)), ’variety’, ’species_group’, ’species_subgroup’ and ’species_complex’ in ’Taxobox’ (Fig. 73
(b)), ’homepage’ in ’Person’ and ’playername’ in ’Football biography’ (Fig. 73 (d)). In turn, some prop-
erties are much more represented than others, and shall be the first ranked suggestion
when inserting an ambiguous mapping. This is the case of most of the infoboxes, such
as the frequent ’area_total_km2’ property in ’Settlement’, ’species’ in ’Taxobox’, ’website’ in ’Person’,
and ’writer’ in ’Film’. In contrast, only one case, ’Football biography’, showed two properties
that are almost equally distributed, with ’name’ slightly more used than ’fullname’.

Similar-subject-first. Fig. 73 evaluates the distribution of property frequencies in
such scenario (series Similar-subject-first), sampling m = 1, 000 subjects of each infobox
described the DBpedia property to be inserted (dbp:areaTotal, dbp:species, foaf:homepage,
foaf:name or dbp:writer respectively). Results show that this policy allows the system
to perform more informed decisions. For instance, in the ’Person’ use case (Fig. 73 (d)),
the ’homepage’ property cannot be discarded (as suggested by the Infobox-frequency-first
approach), given that a particular type of persons are more frequently associated with
homepage instead of websites (e.g., those who are not related to a company). Similarly,
in ’Taxobox’ (Fig. 73 (b)), some particular species also include ’subspecies’ and ’species_group’,
hence they should be included and ranked as potential accommodations for the user
query.

7.3.1 Recoin (Relative Completeness Indicator)

As discussed in Sec. 6.3.3, in the same spirit as ‘similar-subject-first’ policy elaborated
in the previous section, a similar measure has been implemented for Wikidata. We have
implemented a relative completeness indicator called Recoin in Wikidata.8 It is provided
as user script, i.e., logged in Wikimedia users can enable it in a user configuration file.
It consists of two components. The core component, which adds a relative completeness
indicator to the status indicator section of Wikidata articles, is shown in Fig. 74. The
indicator is a color-coded progress bar, which can show 5 levels of completeness, ranging
from “very detailed” to “very basic”. An explanation module adds information about the
relevant missing properties, based on which the completeness level is calculated. Further
details about the architecture are on the tools website. It is currently available on the

8https://www.wikidata.org/wiki/User:Ls1g/Recoin
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Figure 73: Statistics obtained by infobox-frequency-first and similar-subject-first policies
on four different infoboxes.

Wikidata pages of all humans that have a profession. Internally, the completeness level
is computed as follows:

1. Each entity is compared with the set of all entities that have at least one profession
in common.

2. For that set, the 50 most frequent properties are computed. The completeness
level is then computed using fixed thresholds, i.e., if the entity has more than 40
out of these 50 properties, completeness is on the highest level, if it has between
30 and 40 of these properties, second highest level, and so on.

3. As explanation, the properties absent w.r.t. the comparison set are shown along
with their frequency in the comparison set.
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Figure 74: Recoin core module on the Wikidata page of Jimmy Wales.

The tool was made available to the Wikidata community on 15th of November, 2016.
An expansion to all humans and other classes of entities are planned9.

Some completeness levels computed by Recoin are for Obama 4 (detailed), for Trump
3 (fair), for Jimmy Wales 3 (fair), or for Dijkstra 2 (basic). While many levels appear
reasonable (more popular entities are more complete, less popular ones less), others can
only be understood using the explanations. The comparably low level for Jimmy Wales,
for instance, is based on the fact that he misses properties such as member of political
party, position held and father, which in the comparison set, exist for 10%, 8% and 6%
of entities.

To further evaluate the levels computed by Recoin, in a crowdsourcing experiment, we
compared a three-level scheme with levels that human annotators would give. Using 20
entities and 7 opinions per entity, we found that Recoin agreed in 60% of cases with the
majority opinion, while in 25% it was off by one level, and in 15% off by two levels.

In the next chapter, we conclude the dissertation by discussing state-of-the-art ap-
proaches in detail and, finally we reflect on the achieved results and the issues that
are left beyond the dissertation.

9As of 6th of December, 2017, Recoin has been expanded for all entities, for further details refer
to [BRN18].
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CHAPTER 8
Discussion and Outlook

In this chapter, we provide a discussion of related approaches, followed by the conclusions
and future work. In the latter section, we conclude starting with reviewing each research
question posed in Chapter 1, summarising the results, as well as discussing further related
work. In the end, we discuss the issues that are left open, beyond this dissertation for
future work.

8.1 Discussion of Other Related Approaches
In the following, we elaborate on the related studies on updates in OBDM, divided
into ABox (cf. Sec. 8.1.1) and TBox (cf. Sec. 8.1.2) updates. We focus on the most
prominent approaches, while other related works are briefly mentioned in the next sec-
tion (cf. Sec. 8.2). Some of the approaches discussed next are theoretical, while others
have a concrete implementation. Each individual approach is explained in detail as
well as illustrated using an example. We also elaborate how each approach is different
w.r.t. this dissertation, and whether we can use it for future work. In the end of each
approach, we summarise based on OBDM components: integrity constraints, mappings
language, ontology language and update language. To conclude, we provide a subsection
(cf. Sec. 8.1.3) where we summarise the approaches we discussed versus this dissertation.

8.1.1 ABox Updates in Ontology-Based Data Management

Updating RDFS: from theory to practice [GHV11]

This approach proposes both theoretical and practical means of dealing with ABox
updates in RDFS graphs. ABox and TBox are treated separately as in Description
Logics, contrary to the conventional RDFS setting, where they are not distinguished.
Updates comprise of only atomic deletes, as inserts do not pose any challenges in RDFS,
i.e., merely boils down to the merge of the respective two graphs. In practice, deleting
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ABox assertions is shown to be deterministic and finite, due to the following three
reasons: (i) instances are treated separate from the schema; (ii) the nature of the rules
used are the “minimal” RDFS (Fig. 23), i.e., “causes” can be found and traced back
unambiguously; (iii) blank nodes are treated as constants.

In order to theoretically approximate the solutions obtained by the state after an update
U over a graph O, authors introduce the so-called erase candidates—denoted ecand(O,
U)—which contain the maximal closure of the graph O that does not entail U . An
erase candidate is representable as an RDFS graph and a disjunction (union) of them
yields the complete solution, i.e., the answer of an update. For convenience reasons, the
approach is extensively based upon the complement of erase candidates, so-called delta
candidates – denoted as dcand(O,U) = (mat(O) \ E) : E ∈ ecand(O,U). In this case,
closure of the graph is not used for maintaining the graph itself, but rather it is used
only for computing delta candidates.

Delta candidates contain the triples, deletion of which yields a graph, but does not
entail the triple designated to be deleted. For computing dcand, practical algorithms for
instances (and also schemas, cf. Sec. 8.1.2) are given. The algorithm for deleting instances
is deterministic, and for each triple to be deleted computes all the “causes” that entail
the respective triple. This operation can be reduced to computing reachability in a
graph, thus can be computed in polynomial time:

• For triples of type :jack a :Person . the algorithm computes dcand – all
the reachable triples, which entail the respective triple via

“type” and “subclass” axioms (see Fig. 23) e.g., :jack a :Employee .

“domain” and “range” axioms (see Fig. 23) e.g., :jack :worksFor :marketing

.

• For triples of type :jack :belongsTo :marketing . the algorithm computes
dcand – all the existent triples which entail via “subproperties” (see Fig. 23) e.g.,
:jack :worksFor :marketing .

Example 63 (Deleting RDFS instances in practice) Given an OBDM system
⟨Om,D⟩, Om = ⟨S,M, T ⟩S,L, such that M(D) = A = {:jack a :Employee .
:jack :worksFor :marketing}, merged together with the TBox T as defined in
Ex. 3. Consider the update u:

DELETE { :jack a :Person }

then the algorithm computes the reachability for assertion :jack a :Person, com-
puting u′:

DELETE { :jack a :Person . :jack a :Employee . :jack :worksFor :marketing . }
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Relation to our approach: The setting in this approach is similar to DL-Literdfs dis-
cussed in this dissertation; this can be observed by the three reasons mentioned above.
For computing “causes”, we compute the “reachability in the graph” as discussed here by
leveraging PerfectRef algorithm, which in addition also takes into account DELETE/IN-
SERT paired with a non-instantiated WHERE clause.

Integrity constraints: No integrity constraints at the sources are supported.
Mappings language: No mappings are supported.
Ontology language: Minimal RDFS - sc, sp, dom, rng (see Fig. 23).
Update language: DEL of atomic triples in a graph (INS can be implicitly supported).

ABox Evolution in DL-Lite [CKNZ10]

The approach deals with both model-based and formula-based evolution over the closed
DL-LiteFR ontologies1. The model-based semantics are shown to not be useful in prac-
tice and therein are not discussed, and this is primarily because the result of an update
can not always be captured in DL-Lite. Since ABox and TBox are treated separately,
in the case of ABox evolution, the TBox is considered protected and vice-versa. The
approach proposes a new formula-based semantics called bold semantics (see Sec. 2.3
for disadvantages of Cross-Product and WIDTIO) that computes an unique and deter-
ministic result. The FastEvol algorithm (Fig. 3, [CKNZ10]) that implements the bold
semantics, for each fact to be inserted, checks whether there exists a set of facts in the
ABox closure that might be inconsistent. The inconsistency in this logic can occur either
from single ABox assertion, which is a member of unsatisfiable concept or role, or pair of
ABox assertions contradicting either disjointness or functionality assertion of the TBox,
directly following from Lemma 12 in [CKNZ10]. This lemma ensures that one can always
resolve inconsistencies if one inserts ABox assertions, which are inconsistent w.r.t. TBox,
consequently by deleting the old assertions in the knowledge base that contribute to the
inconsistency. The algorithm processes each fact by always inserting the new knowledge
“on hand” and its chase w.r.t. the TBox, and if there are inconsistencies after the update,
the facts in the knowledge base are added to the set of facts to be deleted. The facts to
be deleted, exploiting so-called Weeding algorithm (Fig. 2, [CKNZ10]), delete also all
the “causes”. The result of the algorithm is an unique and deterministic subset of the
materialised/closed ABox.

Example 64 (Updating DL-Lite ABox axioms) Given the OBDM system ⟨Om,D⟩,
Om = ⟨S,M, T ⟩S,L where TBox T = {Employee ⊑ ∃worksFor, ∃worksFor ⊑ Employee,
Employee ⊑ ¬Manager}, ABox M(D) = A = {worksFor(jane, finance),
Employee(jane)} and the following update:

u = INSERT {Manager(jane)}.

1A more recent version of the paper [ZKNC19], elaborates further on contraction and postulates.
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According to FastEvol, first we incorporate the update u and its chase (“effects”). Then,
we remove the inconsistencies and their causes (not including the mandatory participa-
tions of type A ⊑ ∃P ):

DELETE {Employee(jane)}.

After the update, a new axiom is derived w.r.t. TBox, so-called role-constraining formu-
las: worksFor(x, finance), x ̸= jane, which is entailed neither from the old Om, nor
from u.

This issue is resolved by the CarefulEvol algorithm extending FastEvol, which also deletes
the causes of Employee(jane):

DELETE {Employee(jane), worksFor(jane, finance)},

hence role-constraining formulas are not derived anymore.

Relation to our approach: Brave semantics Semmat
brave discussed in DL-Literdfs¬ is

inspired by FastEvol, which is lifted to deal with DEL/INS/WHERE in SPARQL. This
approach though, considers a more expressive ontology language (DL-LiteFR), as noted
by CarefulEvol dealing with side-effects introduced by FastEvol; such formulas are not ap-
plicable in our setting. We could, in similar way extend to the more expressive DL-LiteFR
by taking into account the peculiarities elaborated in this approach.

Integrity constraints: No integrity constraints at the sources are supported.
Mappings language: No mappings are supported.
Ontology language: DL-LiteFR.
Update language: INS of atomic assertions (DEL can be implicitly supported).

Propagation/Filtration algorithm [HD92]

Propagate/Filter is one of the most-used algorithms for view maintenance together with
DRed (see Sec. 2.3). Propagate/Filter compared to DRed, does not compute the whole
overestimation, but rather in each derivation step, for each tuple of the over-estimation
checks whether there exists an alternative derivation for the tuple via a query. If there
exists an alternative derivation (in this case query would return true), then the tuple
is removed from the over-estimation, i.e., it is filtered out. Propagate/Filter is used
in the bottom-up fashion, where updates are done in the underlying relational sources,
expressed in the form of extensional predicates, and the changes should be propagated
to intensional predicates which are materialised (stored). The approach works also for
both recursive views as well as views with stratified negation. The approach handles
negation in a non-monotonic way, for insertion (resp. deletion) of tuples which have
negation operator in the body of the rule, are triggered as deletion (resp. insertion) of
tuples in the view.
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Example 65 (Incremental update using Propagate/Filter) Given the OBDM sys-
tem ⟨Om,D⟩, Om = ⟨S,M, T ⟩S,L, A =M(D) and TBox T as defined in Ex. 3; consider
the update u:
DELETE { :john a :Employee . }
INSERT { :john a :Manager . }

Propagate/Filter approach does the following: first, it computes the over-estimation step-
by-step, i.e., for the deletion :john a :Employee, we apply the axiom :Employee
sc :Person and obtain the triples: :john a :Employee.:john a :Person ..
Then for each triple in the current over-estimation, i.e., :john a :Person checks
whether there exists an alternative derivation for it. The query with rule head :john
a :Person returns true (is derived from :john :worksFor :finance), thus is
removed from the over-estimation. Finally, the computed update is:
DELETE { :john a :Employee . }
INSERT { :john a :Manager . :john a :Person . }

Relation to our approach: In this dissertation we have discussed Semmat
1a and

Semmat
1b which are inspired by DRed. We could in a similar way, for these two semantics

create variants based upon Propagate/Filter and evaluate their respective performance.

Integrity constraints: No integrity constraints at the sources are supported.
Mappings language: Rules (query over relational sources mapped to a relational view).
Ontology language: Rules (recursive view).
Update language: DEL, INS, DEL-INS of atomic tuples are supported.

Reasoning as Axioms Change [KBB11]

The approach introduces an optimisation step in DRed (see Sec. 2.3) in computing the
“dependent” facts in the step of overestimation. Dependent facts are referred to all the
facts which are implicitly derived from the base facts that are to be deleted. Different
from the conventional DRed algorithm, which uses semi-naive forward chaining in steps
1 and 3 of delete and rederive, here it exploits fully the materialisation in computing
both steps.

Example 66 (Incremental update using optimised DRed) Given the OBDM sys-
tem ⟨Om,D⟩, Om = ⟨S,M, T ⟩S,L, with TBox T = {Employee ⊓ PromotedEmployee ⊑
HappyEmployee, Manager ⊑ PromotedEmployee, ∃worksFor ⊑ Person,
HappyEmployee ⊑ Person}, ABox A =M(D) = {Employee(john),Manager(john),
worksFor(john, finance)}, and the following update:

DELETE { Employee(john) }

In Step 1, optimised DRed deletes using as input the fixpoint (materialisation):
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DELETE { Employee(john), HappyEmployee(john), Person(john) }

In Step 2, optimised DRed re-derives (using as input the fixpoint):

INSERT { Person(john) }

Note the difference in Step 1 w.r.t. conventional DRed, the fixpoint has already the
assertion PromotedEmployee(john) which is used to derive HappyEmployee(john),
thus Step 1 is computed in just two computation steps. The conventional semi-naive
evaluation would need three steps instead of two in this case. For Step 2, it also exploits
fix-point, whereas DRed uses the original program rules by performing the computation
in semi-naive fashion from scratch.

Relation to our approach: For both semantics inspired by DRed, namely Semmat
1a

and Semmat
1b we could exploit materialisation as described in this approach in order to

get better performance results.

Integrity constraints: No integrity constraints at the sources are supported.
Mappings language: No mappings are supported.
Ontology language: Rules.
Update language: DEL of atomic assertions.

Updating Relational Data via SPARQL/Update [HRG10]

OntoAccess is an approach that deals with the problem of updating relational data via
SPARQL/UPDATE by resolving mappings in R3M language, which is encoded in RDF
and resembles to D2RQ2. The mapping language essentially maps database tables to
ontology classes and attribute and link tables (i.e., tables in many-to-many relation-
ship) are mapped to properties. Thus, as the result of the mapping, a database row is
represented as a set of RDF triples – which is very common. R3M is able to encode in-
tegrity constraints as well (primary keys, foreign keys, NOT NULL, DEFAULT), and thus
can check for update violation before the update is propagated to the underlying rela-
tional data. The mapping from relational data to RDF is one-to-one, i.e., there is direct
relationship between a triple and a table, thus eliminating the possible occurrence of side-
effects anomalies common in updates over views. Regarding the translation of SPARQL
updates consisted of atomic triples, it is done in 6 steps (Algorithm 1 , [HRG10]):

• The RDF triples are grouped according to subject, as they represent the same
entity,
• Table is identified via URI of subject of the triple and the definition of the mapping,
• Validity of the update is checked whether it violates integrity constraints w.r.t.

mapping definition,
• The respective SQL statements are generated using the mapping definition,
• Statements are sorted according to the foreign keys,

2http://d2rq.org
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map:empdept a r3m:LinkTableMap ;
r3m:hasTableName "empdept" ;
r3m:mapsToObjectProperty :worksFor ;
r3m:hasSubjectAttribute map:ed_employee ;
r3m:hasObjectAttribute map:ed_department .

map:ed_employee a r3m:AttributeMap ;
r3m:hasAttributeName "EMPID" ;
r3m:hasConstraint [ a r3m:ForeignKey ;
r3m:references map:employee . ] .

map:employee a r3m:TableMap ;
r3m:hasTableName "employee" ;
r3m:mapsToClass :Employee ;
r3m:uriPattern "employee%%id%%" ;
r3m:hasAttribute map:employee_id ,

map:employee_name ,
map:employee_salary .

...

Figure 81: The direct mapping in R3M of the link table empdept to the object prop-
erty :worksFor, and table employee to the class :Employee and to the properties
:employee_id, :employee_name, :employee_salary.

• SQL Statements are executed.

In the case where there is a WHERE clause, first the variables are instantiated , and
then the update is done by first deleting atomic data and afterwards inserting atomic
data. In cases where update is consisted of both DELETE and INSERT, each of the
previous 6 steps are used, and the outcome of the translation is similar.

Example 67 (Updating relational data via SPARQL/Update) Given the OBDM
system ⟨S,M, T ⟩S,L, where schema S and instances D defined as in Ex. 1, the mappings
M are defined in R3M in Ex. 67. As this approach does not take into account the
ontology, thus we have T = ∅. Consider the update:

DELETE { :emp1 :worksFor :dept102 }
INSERT { :dept2 a :Department }

Translation takes into account the database instance D and accordingly translates it to
either INSERT or UPDATE:

DELETE FROM empdept
WHERE EMPID=1 AND DEPTID=102;

UPDATE department
SET DeptName = NULL
WHERE ID=102;

In this particular case, for DELETE template, the set of triples coincide with the num-
ber of attributes in the underlying table, hence the translation is done using the same
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map:employees a d2rq:ClassMap;
d2rq:dataStorage map:database;
d2rq:uriPattern "emp@@employee.ID@@";
d2rq:class :Employee.

map:empName a d2rq:PropertyBridge;
d2rq:belongsToClassMap map:employees;
d2rq:property :name;
d2rq:column "employee.NAME".

map:salary a d2rq:PropertyBridge;
d2rq:belongsToClassMap map:employees;
d2rq:property :salary;
d2rq:column "employee.SALARY".

...

Figure 82: The mapping of table employee as instances of class :Employee; mapping
attributes to properties :name and salary respectively.

(DELETE) operator; whereas INSERT is translated to an UPDATE, since already exists
a tuple with ID equal to 102.

Relation to our approach: The approach is similar to updates in DBpedia discussed
in this dissertation, in the sense that it computes atomic updates from a general SPARQL
update, and then groups them based on subject before resolving w.r.t. mappings. This
approach encodes integrity constraints directly in the mapping definition; in similar
way we could enrich DBpedia mappings in order to statically check updates without
propagating them to the sources.

Integrity constraints: Primary keys, foreign keys, NOT NULL, DEFAULT.
Mappings language: Mappings language called R3M.
Ontology language: TBox axioms are not supported.
Update language: General DEL/INS/DEL-INS updates via SPARQL/Update.

Updating relational data via virtual rdf [EK12]

D2RQ/Update is an extension to D2RQ to support updates posed over an RDF view.
Mapping from relational data to RDF vocabulary is done via D2RQ—a known mapping
language for lifting relational data—which can be done either manually or automatically.
D2RQ/Update strives to minimize the number of generated SQL statements, while by-
passing the integrity constraints. The approach here sorts the triples by the subject, then
it does a topological sort of the triples to be added, based on the order they were added.
Regarding the integrity constraints, besides the primary/foreign keys, it emphasises on
NOT NULL constraints on attributes.

Example 68 (Updating relational data using D2RQ/Update) Given an OBDM
system ⟨S,M, T ⟩S,L, where schema S and instances D defined as in Ex. 1. In addition,
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we explicitly set attribute SALARY to NOT NULL. The mappings M are defined in
D2RQ (cf. Fig. 82). Consider the following update u:

INSERT { :emp3 :worksFor :dept103 . :emp3 :name "Joe" .
:emp3 :salary "2000"^xsd:integer }

Note that from the subject :emp3 in :emp3 :name "Joe", the mapping is able to
resolve that it should be propagated into employee table without a need for a triple of
type :emp3 a :Employee. The approach performs the translation based on the set
of triples, optimising the number of SQL statements and re-ordering them in order to
preserve the integrity constraints:

INSERT INTO employee VALUES(3, "Joe", 2000);
INSERT INTO department VALUES(103, NULL);
INSERT INTO empdept VALUES(3, 103);

Relation to our approach: In our case of DBpedia updates, we could potentially
re-use the idea behind this approach, in order to check for source constraints based on
the history they were introduced, e.g., checking infobox properties based on the time
they were added/updated by exploiting the Wikipedia history. Based on that, we could
optimize and re-order the translated updates.

Integrity constraints: A handful of integrity constraints at the sources are supported.
Mappings language: D2RQ.
Ontology language: TBox axioms are not supported.
Update language: General DEL/INS/DEL-INS updates via SPARQL/Update.

Bi-directional translation of relational data into virtual RDF
stores [RKK+10]

The approach named D2RQ++ uses the mapping language D2RQ, while also introducing
algorithms for dealing with updates over blank nodes in RDF view. It extends D2RQ
mapping language with three type of constructs for blank nodes, which are used for
capturing structures from a single table (cf. Ex. 69), tables in one-to-many relationships
and many-to-many relationships respectively. When posing updates, D2RQ++ for all
triples that can not be propagated—as they would violate the integrity constraints or
have no entity matching—it hosts them in a separate triple store. The triples in triple
store will be checked against the database on regular intervals, i.e., by consolidating with
the database and performing the updates as necessary. In case a certain attribute of a
tuple is updated with a NULL value, then the corresponding triple in the triple store
would be deleted as well. It is worth mentioning that the SPARQL SELECT queries
are posed against the RDF view and triple store altogether. The main criticism of this
approach is that there is inconsistency of the RDF view w.r.t. the legacy applications
that work with relational data, due to triples hosted in the triple store.
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map:employee_address a
d2rqrw:SimpleLiteralBlankNodePropertyBridge;
d2rq:belongsToClassMap map:employee;
d2rq:property vocab:employee_address;
d2rq:pattern "@@employee.address_street@@/

@@employee.address_city@@/
@@employee.address_state@@".

map:employee_address_street a d2rq:PropertyBridge;
d2rqrw:belongsToBlankNode map:employee_address;
d2rq:belongsToClassMap map:employee;
d2rq:property vocab:employee_address_street;
d2rq:column "employee.STREET" .

map:employee_address_city a d2rq:PropertyBridge;
d2rqrw:belongsToBlankNode map:employee_address;
d2rq:belongsToClassMap map:employee;
d2rq:property vocab:employee_address_city;
d2rq:column "employee.CITY" .

map:employee_address_state a d2rq:PropertyBridge;
d2rqrw:belongsToBlankNode map:employee_address;
d2rq:belongsToClassMap map:employee;
d2rq:property vocab:employee_address_state;
d2rq:column "employee.STATE" .

...

Figure 83: Mapping employee table to property :employee_address, which
has a blank node as a property value and has the following three properties
address_street, address_city, address_state.

Example 69 (Bi-directionality using D2RQ++) Given an OBDM system
⟨S,M, T ⟩S,L, where schema S defined as:

employee[ID:INTEGER, STREET:STRING, CITY:STRING, STATE:STRING],

and no instances, i.e., D = ∅. As one can use a blank node to represent the mapped
data from attributes STREET, CITY and STATE. The mappings M in D2RQ using
extended constructs for representing blank nodes are defined as in Fig. 83. Consider the
following update u1:

INSERT { :emp1 :employee_address [
:employee_address_street "Welthandelsplatz" .
:employee_address_city "Vienna" .
:employee_address_state "AUT" ] . }

which would be propagated as:

INSERT INTO employee
VALUES(1, "Welthandelsplatz");

UPDATE employee
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SET CITY="Vienna"
WHERE ID=1;

UPDATE employee
SET STATE="AUT"
WHERE ID=1;

Consider we have another update u2:

INSERT { :emp1 :employee_address
[ :employee_address_street "Favoritenstrase" ] . }

given that the attribute ID is the key and the corresponding attribute value for table
employee is not NULL (for ID=1), then the triple would be inserted in the triple store.
Then, given q (note T = ∅) as follows:

SELECT ?X
WHERE
{

:emp1 :employee_address [ :employee_address_street ?X ] .
}

would return both µ(?X)="Welthandelsplatz" and µ(?X)="Favoritenstrasse".

When inserting triples that constitute a blank node as shown in the previous example,
then they would be inserted only if all the triples do not exist as tuples in the underlying
database, otherwise if at least one corresponding tuple exists, then all the triples would
be stored in the triple store. This behaviour can be changed if desired to other specific
needs though. In case of updating link tables, i.e., empdept then it would only update
the link table if there exist reference rows in the respective tables, i.e., employee and
department. Otherwise, the triple would be inserted in the triple store.

Relation to our approach: The approach discussed in this work is similar to resolv-
ing updates in DBpedia that have mappings of type IntermediateNodeMappings. We
could also relax our approach and allow more values for a property by allowing redun-
dant triples to be stored in a dedicated triple store.

Integrity constraints: A handful of integrity constraints at the sources are supported.
Mappings language: D2RQ.
Ontology language: TBox axioms are not supported.
Update language: General DEL/INS/DEL-INS updates via SPARQL/Update.

RESTful Writable APIs for the Web of Linked Data using Relational
Storage Solutions [HG11]

In this approach, relational data are mapped to RDF using R2RML mapping language.
The mapping is restricted such that the table must be unique for every triple pattern
in a SPARQL SELECT query (WHERE clause), which avoids ambiguities in update
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_:mapping1 rr:table "employee" ;
rr:subjectMap [rr:column "ID"] ;
rr:propertyObjectMap [ rr:property <test:name> ;

rr:column "NAME" ;
rr:columnGraphIRI <test> ] ;

rr:propertyObjectMap [ rr:property <test:salary> ;
rr:column "SALARY" ;
rr:columnGraphIRI <test> ] .

_:mapping2 rr:table "triplestore" ;
rr:subjectMap [ rr:column "S" ] ;
rr:propertyObjectMap [ rr:propertyColumn "P" ;

rr:column "O" ;
rr:columnGraphIRI <test> ] .

...

Figure 84: Mapping 1 specifies the mapping of employee table to quads with context
⟨test⟩ having properties name and salary and subject value the "ID" attribute. Mapping
2 specifies a generic mapping where "S" is the subject of the quad with context ⟨test⟩,
whereas attribute "P" specifies the property name having property value the attribute
"O".

translations. The advantage of using R2RML mapping language is on creating any kind
of RDF triples including blank nodes, reification and NAMED graphs (quads) mapped
from the relational data. The authors introduce algorithms for SELECT queries, as well
as DELETE and INSERT for SPARQL/Update, and their translations to SQL queries
and SQL DML respectively. The general updates are transformed to atomic updates by
instantiating the variables from WHERE clause, and then performing the translation. As
for an INSERT operation there can be several translations, it uses a metric that counts
for the number of attributes and rows inserted, thus always choosing a translation that
has the least data operations.

Example 70 (Updating relational data using SPARQL/Update) Given the
OBDM system ⟨Om,D⟩, Om = ⟨S,M, T ⟩S,L, where employee schema as in Ex. 1 together
with given another table schema defined as:

triplestore[S:STRING, P:STRING, O:STRING]

Let D={employee(1, NULL, 1400)}. The mappings M in R2RML are defined as in
Fig. 84. Given the following update u1:

INSERT { :emp1 :name "bob" . }

given that there is a corresponding value equal to NULL in the employee table, according
to Algorithm 4 [HG11] would be translated to:

UPDATE employee
SET NAME = "bob"
WHERE ID=1;

142



8.1. Discussion of Other Related Approaches

Note that this has less data operations than inserting a new tuple in the other mapped
table triplestore. Now, let us consider another update u2 after u1:

INSERT { :emp1 :name "bobby" }

then it will be inserted in the table triplestore (this second update with the same property
name will not be issued in the employee table because we would overwrite the previous
name):

INSERT INTO triplestore(S, P, O)
VALUES (1, "name", "bobby") }

Then, given a query q1 (note T = ∅) as follows:

SELECT ?X
WHERE { :emp1 :name ?X }

according to Algorithm 3 [HG11], both µ(?X)="bob" and µ(?X)="bobby" would be re-
turned fetched from both tables. Lastly, if we are given the following update u3:

DELETE { :emp1 :name "bob", :emp1 :salary "1400"^^xsd:integer }

according to Algorithm 6 [HG11] would be translated to:

UPDATE employee
SET NAME=NULL, SALARY=NULL
WHERE ID=1;

Since the tuple with ID=1 has all columns with NULL values, then it would be removed
in the next step by another consecutive update:

DELETE FROM employee
WHERE ID=1;

As can be seen from Ex. 70, INSERT queries are translated to either UPDATE or
INSERT, whereas DELETE queries are always translated to UPDATE queries, thus
updating the respective attribute values with NULLs. A tuple would only be removed
if it has NULL values for all of its attributes.

Relation to our approach: This approach allows for having multiple values for a
certain property by having a separate table which stores those tuples. In the setting of
DBpedia updates, we could allow for multiple property values by either storing them in
a relational table, or in a triple store as RDF triples (as it is the case with the previous
approach [RKK+10]).

Integrity constraints: A handful of integrity constraints at the sources are supported.
Mappings language: R2RML.
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Ontology language: TBox axioms are not supported.
Update language: General DEL/INS/DEL-INS updates via SPARQL/Update.

Update Semantics of Relational Views [BS81]

This seminal work is considered to be one of the most important and provided new
understanding to the theory of view updating. In this context, view definitions are
considered as functions f , instances as states s, and updates as mappings transitions u :
s→ s′. The basic idea is that when updating a view, a new view definition g is considered
(so called “view complement”), which together with the initial view definition f , namely
the composition f×g [Ber03] gives the complete state of the database D in terms of tuples
(f(s), g(s)), such that there is a one-to-one correspondence between database states s
and the pairs (f(s), g(s)). Once an update is posed over the view, it has the complete
state of the underlying database (the “view complement” would add all the hidden
information from the database, and would distinguish between the states that map onto
the same view state under f) and thus unambiguously can translate the updates. The
composition of these two view definitions would yield an injective view definition, which
has as inverse the function (f × g)−1. In the paper are considered two criteria for
updates which should be satisfied, i.e. the translation of updates should be: consistent
(the update should be translated so that it exactly affects the view) and acceptable (the
update should not do anything to the sources, if the update would not do anything to the
view). The drawbacks of this approach primarily are first, due to the view complement—
even though can be always computed—is not unique in general (in this case it is up to the
database administrator to choose one based on application requirements), and second,
an update should not change the state of the view complement (i.e. should not change
the state of the database on which the view complement relies). The latter restriction
is imposed because an update translation should always yield a unique translation for
each state of the database (the state of the database does not play a role in an update
translation). As a last remark, in order that an update u be translatable under g (g-
translatable), then the tuple should lie in the image of the database state under f × g,
in that case it represents a unique database state s′, which is the outcome of the update.

Example 71 Given the OBDM system ⟨S,M, T ⟩S,L, where we have the following schema:

employees[Employee:STRING, Department:STRING, Manager:STRING],

the database instance D consists of a single tuple:

employees={(John, Finance, Jack)},

whereas mappings M are defined as follows:
m1 : SELECT Employee, Department

FROM Employee
→ worksFor(emp(Employee), emp(Department))

m2 : SELECT Department, Manager
FROM Employee

→ manager(emp(Department), emp(Manager))
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Note that the composition of the mappings m1 × m2 yields an injective mapping. In
this case we fix m2 as the “view complement”, and we assume it remains constant (un-
changed) after the update. Consider that we have the following update u:

INSERT { worksFor(Jane, Finance) }

If we are given only the mapping m1 then we cannot translate u, but if are given the
view complement m2, then we can uniquely translate this update to:

INSERT { employees("Jane", "Finance", "Jack") }

In other words, the assertion manager(Finance, Jack) is needed in order the update u
to be g-translatable, since there exists a new updated state in the database (i.e., the one
after the translated update is committed):

employees={(John, Finance, Jack), (Jane, Finance, Jack)}

corresponding to the pair (uf(s), g(s)) in the view under f × g:

worksFor(Jane, F inance), worksFor(John, F inance),manager(Finance, Jack)

Relation to our approach: This approach uses joins of mappings in order to translate
an update. DBpedia mappings currently do not have the expressivity of having joins,
but in case they support such constructs in the future, the approach of computing a
“view complement” would be an option to translate the updates.

Integrity constraints: A handful of integrity constraints at the sources are supported.
Mappings language: Mappings as generic functions.
Ontology language: TBox axioms are not supported.
Update language: Atomic DEL/INS/UPD.

On the evolution of the instance level of DL-Lite knowledge bases [LS11]

The approach proposes tractable algorithms for deleting and inserting ABox-es over
DL-LiteA,id ontologies, which is one of the most expressive fragments of DL-Lite fam-
ily of logics. This fragment contains, among others3, identification assertions (IDs)
(cf. [CDGL+08]). Deletions are easier than inserts, as the set of atoms and their causes
are computed. Inserts are based upon WIDTIO (see Sec. 2.3), which is considered quite
radical given that as result yields the atoms that hold in every possible consistent knowl-
edge base. Nevertheless, the advantage of WIDTIO is that the result after an update

3DL-LiteA,id is one of the most expressive DLs in the DL-Lite family, because this family includes
also DLs with n-ary relationships, DLs allowing for conjunction in the left-hand side of inclusions, DLs
combining the above features, and also DLs with general forms of denials (not only disjointness between
concepts and roles).
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is always expressible in the same logic. Given that the computation of all such possi-
ble consistent knowledge bases is exponential in the worst case in this particular logic,
it takes a different approach for computing the same result: for each ground atom in
the materialisation mat(A ∪ T ) minus the ground atoms to be inserted in u, it checks
whether for such atom there exists a T -violation set—a minimal set in which such atom
contributes to a clash—in mat(A ∪ T ) ∪mat(u ∪ T ). If such atoms participate in the
T -violation set, then they are consequently removed from the knowledge base.

Example 72 Given the OBDM system ⟨Om,D⟩, Om = ⟨S,M, T ⟩S,L, where TBox T =
{∃worksFor− ⊑ Department, id Manager worksFor,Manager ⊑ ¬Employee}
ABox A = M(D) = {worksFor(jane, finance), Manager(jane), Employee(john)}
and the update:

u = INSERT {Manager(john), worksFor(john, finance)}.

According to WIDTIO semantics one would get two consistent ABox-es:

A1 = {worksFor(jane, finance),Manager(john), worksFor(john, finance),
Department(finance)}

A2 = {Manager(jane),Manager(john), worksFor(john, finance), Department(finance)}.

Their intersection would yield the final result:

A′ = A1 ∩ A2 = {Manager(john), worksFor(john, finance), Department(finance)}.

The ComputeInsertion algorithm (Algorithm 2, [LS11]) efficiently computes the updates de-
scribed before. The fact worksFor(jane, finance) together with Manager(jane) both con-
tribute to T -violation set w.r.t. the update u, by violating the identity constraint; as such they
are both removed. Also, one can see that Employee(john) itself is in clash with the update
Manager(john); as such it is removed. The result obtained in this way is the same as comput-
ing the intersection as before.

Relation to our approach: The approach uses WIDTIO by inserting the update
on hand and overriding the conflicting knowledge in the setting of the most expressive
DL-Lite family of logics. This method could be potentially used for extending Semmat

brave

to this fragment of logics.

Integrity constraints: No integrity constraints at the sources are supported.
Mappings language: No mappings are supported.
Ontology language: DL-LiteA,id.
Update language: Atomic DEL/INS.
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Practical Update Management in Ontology-Based Data Access [DLO+17]

The approach handles both source-level and ontology-level updates in the context of
DL-LiteA OBDA. The updates on the source-level via mappings are transformed to
ontology-level updates, which as a result can be intrinsically inconsistent (cf. Ex. 22).
The approach is not a classic view update problem, in the sense that it does not propagate
updates directly to the original data at the source level, but it uses a new dedicated
database to store such changes. These auxiliary tables are specially tailored for both
deletes and inserts. In a nutshell, the update semantics does the follow: for deletions,
it deletes the facts plus their causes; for inserts, it inserts the facts and their effects
by overriding the contradicting facts and their causes. The computation of updates is
done using a non-recursive Datalog program Datalog(T ,M)—based on TBox T and
mappings M—as described in [DORS16]. The base facts are the facts contained in
the database plus the update. Let us illustrate it via an example, where we focus on
ontology-level updates only.

Example 73 Consider an OBDM system ⟨Om,D⟩, Om = ⟨S,M, T ⟩S,L, where S =
{employees,managers}, A = {Employee(john)}, T = {Manager ⊑ Person,Employee ⊑
Person,Manager ⊑ ¬Employee}, M = {m1,m2}, such that:

m1: Employee(x) :- employees(x)
m2: Manager(x) :- managers(x)

According to Datalog(M, T ) we get the following rules:

1) del_Manager’(x) :- Manager(x), del_Person_ol(x)
2) del_Employee’(x) :- Employee(x), del_Person_ol(x)
3) del_Manager’(x) :- Manager(x), ins_Employee_ol(x)
4) del_Employee’(x) :- Employee(x), ins_Manager_ol(x)
5) ins_Person’(x) :- del_Manager’(x), ¬del_Person_ol(x)
6) ins_Person’(x) :- del_Employee’(x), ¬del_Person_ol(x)

Rules 1),2) are generated to take into account deletion of causes; rules 3),4) to override
facts that are inconsistent w.r.t. new facts; and rules 5),6) are to keep the common logi-
cal consequences (dangling effects) in case of deletion of a fact. Consider the following
update:

DELETE { Person(john) }
INSERT { Manager(joe) }

We have the base facts from the update del_Person_ol(john), ins_Manager_ol(joe)
and from the database Employee(john).

From the rules we compute deletions and insertions:

del_Employee′(john), ins_Manager(joe).
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In other words, we are performing the update:

DELETE { Employee(john) }
INSERT { Manager(joe) }

Note that deletion of Person(john) is not necessary, given that we are in a virtual OBDM
setting and thus deleting Employee(john) suffices. Likewise, inserting Person(joe) is
not needed, given that it is derived from the TBox.

In the end, the original mapping is transformed in the so-called write-also mapping:

Employee(x) :- employees(x), ¬del_Employee(x)
Employee(x) :- ins_Employee(x)
Manager(x) :- managers(x), ¬del_Manager(x)
Manager(x) :- ins_Manager(x)

Relation to our approach: This approach is essentially Semmat
brave lifted in the context

of (virtual) OBDM, as such the Datalog program consisting of TBox and mappings could
be implemented in the context of SPARQL as well [Pol07]. Also, herein are discussed
intrinsically inconsistent updates caused by source-level updates, in the same spirit as
safe rewriting discussed in this dissertation.

Integrity constraints: A handful of integrity constraints at the sources are supported.
Mappings language: Rules.
Ontology language: DL-LiteA.
Update language: Atomic DEL/INS/DEL-INS.

8.1.2 TBox Updates in Ontology-Based Data Management

Updating RDFS: from theory to practice [GHV11]

The approach concerns with deleting TBox-es in the RDFS context. The algorithm for
deleting schema triples, so-called delta candidates (i.e., minimal schema triples to be
deleted), is based upon performing a minimal multicut on the graph on both sc and
sp axioms separately. When performing a multicut, there is non-deterministic choice of
which axiom is selected for deletion, as they are equally possible thus being exponential
in the worst case. But for small schemas number of such choices is small, thus being more
feasible. Notably, deleting triples of type dom and rng is done by just simply deleting the
respective axiom. Deleting a graph boils down to deleting individual triples separately,
and creating a set from the union of the resulting triples.

Example 74 (Deleting TBox axioms) Given the OBDM system ⟨Om,D⟩, Om =
⟨S,M, T ⟩S,L, with components as defined in Ex. 1 bravely merged with {Manager ⊑
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Employee} (i.e., the conflicting knowledge in TBox is removed), and an ontological ax-
iom to be removed u1 = DELETE {Manager ⊑ Person}. According to (Algorithm1 ,
[GHV11]), the materialisation of the graph is computed and then the graphs as in the
Fig. 85 are created. Then, a minimal multicut on the computed graphs G[sp] and
G[sc] is performed. In our example, the multicut would be performed on the graph
G[sc] where either pairs of triples {(nManager, nEmployee), (nManager, nP erson)}, or pairs
of triples {(nEmployee, nP erson), (nManager, nP erson)} are chosen to be removed, i.e., dele-
tion is non-deterministic:

DELETE { :Manager sc :Employee . :Manager sc :Person }

or

DELETE { :Employee sc :Person . :Manager sc :Person }

Now, suppose we are given the state before the u1, and given another update u2:

DELETE { :worksFor dom :Person }

then again using the same algorithm the minimal multicut would be on both G[sp] and
G[sc], thus we get:

DELETE { :worksFor dom :Person . :Employee sc :Person }

Relation to our approach: This approach performs a minimal multicut on a graph
in order to deal with deletion of implicit TBox axioms. This deletion as also exemplified
above has non-deterministic result. In this dissertation we have proposed Semmat

incut and
Semmat

outcut which both have deterministic results and can be rewritten using SPARQL
property paths, and both achieve the same result as doing a minimal multicut on a graph
(cf. Prop. 7).

Integrity constraints: No integrity constraints at the sources are supported.
Mappings language: No mappings are supported.
Ontology language: Minimal RDFS - sc, sp, dom, rng (see Fig. 23).
Update language: DEL of atomic triples in a graph (INS can be implicitly supported).

TBox Evolution in DL-Lite [CKNZ10]

The approach deals with TBox evolution in DL-Lite knowledge bases. For TBox evolu-
tion same as with ABox evolution (cf. Sec. 8.1.1) the same postulates should be satisfied,
i.e. Coherence4, Minimality of change and Protection5. The state-of-art formula-based

4Coherence is a stronger requirement than consistency because not only the knowledge base should
be satisfiable, but also each concept from vocabulary must have at least one individual assigned in ABox.

5That is, when a portion of TBox (or ABox) is declared as protected, it means that it cannot be
subject of any TBox (or ABox resp.) changes and thus it remains always static after updates.

149



8. Discussion and Outlook

emp1 dept101

worksFor

belongsTo
dom

rng

Employee

Department

Person
sc

Manager

sc

sp

memp1, dept101

mworksFor

mbelongsTo
mEmployee, dom

mPerson, dom

mDepartment, rng

nManager

nEmployee

nPerson

sc

G G[sp] G[sc]

Figure 85: The directed graph is generated given the ontology in Ex. 74. The dashed
lines represent implicit triples as computed by the materialisation. From the graph G
are distinguished both sp and sc axioms and denoted using the respective G[sp] and
G[sc] graphs.

semantics have the caveat of inexpressibility (because of lack of disjunction in DL-Lite),
but the paper proposes a pragmatic variant of it called “bold semantics”, which given a O
and U always yields a maximal non-deterministic result. The advantage of this approach
is that it always computes the result in polynomial time, whereas the disadvantage is the
non-determinism. The algorithm starts from the empty set of TBox axioms and then it
enumerates over all individual TBox axioms non-deterministically (without any imposed
order), by adding them and making a check whether the ontology is coherent. If that
is the case, then they are added to the set returned TBox axioms and this process is
continued iteratively.

Example 75 Given the OBDM system ⟨Om,D⟩, Om = ⟨S,M, T ⟩S,L, with components
as defined in Ex. 1 merged with TopManager ⊑ Manager, and TBox to be added
u = INSERT {TopManager ⊑ ¬Person}. According to the “bold semantics”, the
result is non-deterministic, i.e., the result is:

DELETE { :TopManager sc :Manager }

or

DELETE { :Manager sc :Person }

posed over Om.

Relation to our approach: The bold semantics discussed in this approach could
be used to extend the semantics discussed in this dissertation, namely Semmat

incut and
Semmat

outcut, and lift them from DL-Literdfs into the setting of more expressive logics
DL-LiteFR.
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Integrity constraints: No integrity constraints at the sources are supported.
Mappings language: No mappings are supported.
Ontology language: DL-LiteFR.
Update language: Atomic INS (DEL can be implicitly supported as well).

Reasoning as Axioms Change [KBB11]

The approach also supports the updates over rules instead of just facts, the latter as
elaborated in Sec. 8.1.1. Deleting rules is performed by merely deleting the designated
explicit rule, and then performing the DRed if update contains both rule and atomic
atoms. Though it is not possible to delete any implicit rule.

Example 76 Let we interpret the ground atoms as ABox and rules as TBox axioms
respectively. Then, given the OBDM system ⟨Om,D⟩, Om = ⟨S,M, T ⟩S,L, with compo-
nents as in Ex. 1, and update as follows:

DELETE { :john :worksFor :finance . :worksFor rng :Department . }

according to the approach it would be translated to (first TBox axioms are deleted):

DELETE { :worksFor rng :Department . }

afterwards, for ABox-es the same algorithm as described in Sec. 8.1.1, is performed.

Step 1: delete over-estimation:

DELETE { :john :worksFor :finance . :john a :Person . }

Step 2: re-derive:

INSERT { :john a :Person . }

Note that :finance a :Department is not in the set of ABox axioms to be removed,
as :worksFor rng :Department is a rule removed previously. Due to TBox changes
is not possible to use here fixpoint as input to compute faster the derivations, as it was
the case with ABox only updates.

Relation to our approach: This is a straightforward method to handle TBox+ABox
updates, which can be similarly incorporated in our semantics for handling TBox+ABox
updates, e.g., by first applying Semmat

incut and then followed by Semmat
2 .

Integrity constraints: No integrity constraints at the sources are supported.
Mappings language: No mappings are supported.
Ontology language: Rules.
Update language: Atomic DEL.

151



8. Discussion and Outlook

8.1.3 Discussion of Related Approaches Versus this Dissertation

In Sec. 8.1.1 and Sec. 8.1.2 we have thoroughly discussed the related (state-of-the-art) ap-
proaches, which fall into the category of updates over views, view maintenance, updates
over DL knowledge bases and updates in the context of OBDM.

From their analysis, we can deduce that—in the most cases—there is an “exclusive
or” support for TBox axioms versus mappings, i.e., whenever TBox is supported then
mappings are not, and vice versa.

Previous work on updates in the context of tractable ontology languages such as RDFS
and DL-Lite (cf. Sec. 8.1.1) typically has treated deletes and inserts in isolation, but
not both at the same time nor in combination with templates filled by where clauses,
as in SPARQL 1.1; that is, these approaches are not based on BGP matching but rather
on a set of ABox assertions to be updated, known a priori. Pairing both delete and
insert, as treated in this dissertation, poses new challenges, which we tried to address
here in the practically relevant context of triple stores.

The related approaches and the update semantics discussed therein, often maintain a
materialised knowledge base, while none of them treat the other extreme of maintaining
a reduced knowledge base. In this dissertation, we discussed in the context of triple
stores various update semantics which are materialise-preserving, as well as the ones
which are reduce-preserving respectively.

Yet another observation is that approaches that deal with the problem of updates over
views used mappings without restrictions, whereas in the context of updates in OBDM,
the mappings are mainly of one-to-one type. This pragmatic approach of having map-
pings of one-to-one type, is somewhat expected given that TBox axioms render the
problem harder by adding another layer of complexity.

In the context of updates in OBDM discussed in this dissertation, we proposed up-
date semantics in the DBpedia setting, where not only mappings are more expressive
(many-to-many DBpedia mappings), but also the (DBpedia) ontology language is quite
expressive in OWL 2 RL.

Finally, as regards to TBox updates, the related approaches (cf. Sec. 8.1.2) typically
perform a TBox update with a non-deterministic outcome. In this dissertation, we have
opted for two semantics that yield a deterministic result when doing a (TBox) triple
deletion, and can easily be re-written using SPARQL 1.1 property paths.

8.2 Conclusions & Future Work
The motivation for this dissertation has been the lack of a standard defining the interplay
between SPARQL updates and entailment regimes, which was left open in the resp.
SPARQL 1.1 specifications [GPP13, GOH+13], in the case of an ABox managed by a
triple store, or also in the more general context of Ontology-Based Data Management
(OBDM) involving a relational DBMS where mappings are present.
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We have investigated different update semantics, starting with TBox expressivity from
minimal RDFS, adding disjointness, and finally adding OWL 2 RL features to capture
the DBpedia setting. For the first two cases, we have elaborated on the rationale of the
update semantics by checking against a set of postulates, which we defined inspired by
AGM postulates.

The choice of the update semantics can be done based on the use cases or/and on the
postulates that they fulfill. In general, based on the use cases and the accompanying
examples we have elaborated for the semantics, as well as the postulates they fulfill, we
conclude that there is no “one-size-fits-all” semantics. This claim is not surprising given
that this behavior has always been the case when tackling updates on a knowledge base.

In general, we mention that the update semantics which fulfills the most postulates (12)
is Semmat

1b —thanks to distinguishing between explicit and implicit triples—whereas the
ones that fulfill the least number of postulates (8) are Semmat

3 , Semmat
caut and Semmat

faint.
Semmat

3 deletes too much facts, while Semmat
caut and Semmat

faint when dealing with incon-
sistencies do not give priority to the new facts to be inserted.

While ontologies should be “ready for evolution” [NK04], more work into semantics for
updates of ontologies alongside with TBox & ABox data is still needed to ground research
in Ontology Evolution into Semantic Web standards: SPARQL, RDF, RDFS and OWL.
In particular, this is needed in the light of the emerging importance of RDF and SPARQL
in domains where data is continuously updated, e.g., dealing with dynamics in Linked
Data, querying sensor data, or stream reasoning.

In the area of database theory, there has been a lot of work on updating logical databases:
Winslett [Win05] distinguishes between model-based and formula-based updates. The
update semantics discussed in this dissertation clearly falls in the latter category; more
concretely, ABox updates could be viewed as sets of propositional knowledge base up-
dates [KM89] generated by SPARQL instantiating delete/insert templates.

In the more applied area of databases, there are obvious parallels between some of
our considerations and cascade deletes in SQL. That is, deletions under foreign key
constraints, in the sense that we trigger additional deletions of causes/effects in some of
the proposed update semantics discussed herein.

8.2.1 DL-Literdfs

First, we answered the research questions posed in Sec. 1.3 by proposing different seman-
tics of SPARQL 1.1 Update in the context of interplay with DL-Literdfs:

Given a SPARQL update request, how can we preserve materialisation or reducedness
of the triple store while capturing the intuition of the update? Which additional triples
should be deleted or inserted in order to achieve this intuition?

To the best of our knowledge, this is the first work to discuss how to combine RDFS
with the SPARQL 1.1 Update language. While initially we have been operating on a
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very restricted setting (only capturing minimal RDFS entailments, restricting BGPs to
disallow non-standard use of the RDFS vocabulary), we could demonstrate that even
in this setting the definition of a SPARQL 1.1 Update semantics under entailments is a
non-trivial task. We proposed several possible semantics in the case of ABox updates
for both materialised and reduced triple stores, neither of which might seem intuitive for
all possible use cases; this suggests that there is no “one-size-fits-all” update semantics.
Likewise, for TBox updates, we proposed two semantics in the context of materialised
triple stores, which both yield deterministic results.

Next, we discussed a more in-depth investigation of our postulates in the light of the
more general considerations in classical AI on theory change and belief revision [AM82,
AGM85]. From the results (cf. Table 41), we see that unless one’s strategy is to remove
the causes, in which case one would choose Semmat

2 , then the optimal strategy is to
choose Semmat

1b . As regards to the subtle differences between Semmat
1a and Semmat

1b :
first, they yield different output as discussed in Ex. 27; second, from the postulates we
can see that keeping explicit and implicit triples separate as in Semmat

1b has the advantage
that updates are always idempotent, whereas Semmat

1a has the advantage that different
syntactic updates but having identical semantics return same output. Also, Semmat

1a has
the disadvantage that deleting inexistent triples might still have side-effects. Combining
Semmat

1a and Semmat
2 , namely Semmat

3 , deemed to be too aggressive in case of deletions,
and thus fulfilling the least number of postulates.

The same holds for reduce-preserving semantics, i.e., one would always prefer Semred
0 ,

unless one’s motivation is to delete the causes – in that case use Semred
1 .

For TBox updates, we see (cf. Table 42) that both semantics fulfill the exact number
of postulates as Semmat

2 , this is not surprising given the similarity in their respective
definitions. Also, discussing a semantics which combines both ABox and TBox is a next
step that would make sense to investigate in the future, not only in the context of RDFS
but also in the more expressive RDFS¬.

Next, continuing with “from theory to practice” approach, our preliminary implementa-
tion shows the feasibility of the proposed approaches on top of an off-the-shelf triple store,
namely Apache TDB. As expected and confirmed by our experiments, those semantics
that rely on rewriting (Semmat

2 ), especially the optimised ones, in general perform better
than the ones using materialisation. Regarding the comparison between mat-preserving
vs. red-preserving, from the experiments we can conclude that keeping the store re-
duced could be a viable strategy, given that reduce operator can be computed using
SPARQL 1.1 update query, and subsequently rewriting queries does not add dramatic
costs.

Our work can be trivially extended to any standard compliant, off-the-shelf triple store
such as RDF4J, and different benchmark datasets used in OBDM setting such as NPD
[LRS+14] to name a few.

As for further related works, in the context of reduced stores, we refer to [PPSW13],
where the cost of redundancy elimination under various (rule-based) entailment regimes,
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including RDFS, is discussed in detail.

8.2.2 DL-Literdfs¬

As a stepping stone, we answered the research questions in Sec. 1.4, by proposing different
semantics of SPARQL 1.1 Update in the context of interplay with DL-Literdfs¬ :

Given a SPARQL update posed over a triple store, how can we preserve consistency
as well as materialisation of the triple store? Which triples (belonging to the update
vs triple store) should be given priority when resolving inconsistencies?

The idea has been to extend further in the context of DL-Lite, building upon thoroughly
studied query rewriting techniques (not necessarily relying on materialisation), and at
the same time benefit from a more expressive ontology language. Expanding beyond our
simple minimal RDFS language towards more features of DL-Lite or coverage of unre-
stricted RDF graphs would impose new challenges: for instance, consistency checking
and consistency-preserving updates, which do not yet play a role in the setting of RDFS,
would become relevant.

Thus, in this dissertation we combined SPARQL Update and RDFS entailment by adding
disjointness axioms as a first step towards dealing with inconsistencies in the context of
SPARQL Updates. We distinguish the case of intrinsic inconsistency, localized within
instantiations of the INSERT clause of a SPARQL update, and the usual case when the
new information is inconsistent with the old knowledge. In the former case, our solution
was to discard all solutions of the WHERE query that participate in an inconsistency.
For the latter case, we discussed several reconciliation strategies, well suited for efficient
implementation in SPARQL.

Intrinsic consistency of an update is a common assumption in knowledge base update
(e.g. [CKNZ10, LLMW06, DLPR09, FKAC13]), which can be easily violated in the case
of SPARQL updates. As we have shown, this assumption is not trivially verifiable in
the context of SPARQL Updates where DELETE/INSERT atoms are instantiated by
a WHERE clause, and clashing triples could be instantiated within the same INSERT
operation. It is worth noting that our resolution strategy for intrinsic inconsistency
called safe rewriting can be combined with all three update semantics using just the
basic SPARQL operators.

Next, taken that the problem of intrinsic consistency is solved, we have demonstrated
how to extend the approach of [CKNZ10] to SPARQL updates. We have defined a ma-
terialisation and consistency preserving rewriting for SPARQL updates that essentially
combines the ideas of [CKNZ10] and the previous work on SPARQL updates under RDFS
for materialised triple stores, dealing with clashes due to class disjointness axioms in a
brave manner. That is, we overwrite inconsistent information in the triple store in favor
of information being inserted. Alternatively, we have also defined a dual consistency-
reserving update semantics that on the contrary discards insertions that would lead to
inconsistencies. Furthermore, we have also shown how a compromise between the two
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extreme approaches can be defined and implemented using SPARQL’s partial bindings
feature.

Regarding the postulates, we investigated how brave, cautious and fainthearted seman-
tics do in terms of fulfilling them. We can see from the results (cf. Table 52) that
Semmat

brave seem to be the most rational, i.e., fulfill the most number of postulates. This
is down to the fact that it can be viewed as the most natural that one would use in the
case of handling negative information. Semmat

caut and Semmat
faint fulfill one postulate less

than Semmat
brave.

Same as in the case of DL-Literdfs, our preliminary implementation shows the feasibility
of all proposed approaches on top of an off-the-shelf triple store supporting SPARQL
and SPARQL update (Apache TDB). As argued in Sec. 7.2, cautious semantics is always
worse than brave semantics because of the additional ASK query, whereas between brave
and fainthearted depends from the actual rewritings, i.e., based on the TBox axioms.
In other words, if inserts produce a lot of clashes, then certainly brave semantics would
perform worse than fainthearted; in the other case of low clashes then checks in WHERE
condition of the fainthearted semantics would take more time.

As regards to further related work, the consideration of negative information is an im-
portant issue also in other related works on knowledge base updates: for instance, the
seminal work on database view maintenance by Gupta et al. [GMS93] is also used in the
context of materialised views using Datalog rules with stratified negation. Likewise, let
us mention the work of Winslett[Win05] on formula-based semantics to updates, where
negation is also considered.

As argued in Sec. 5.3.1, brave semantics implements the most established approach of
adapting the new information fully via a minimal change, which is feasible in the setting
of fixed RDFS¬ TBoxes. Also semantics deliberating between accepting and discarding
change are known (see [Han99] for a survey). In [NRG12] an approach involving user
interaction to decide whether to accept or reject an individual axiom is considered, with
some part of the update being computed automatically in order to ensure its consistency.
In this setting are not covered interactive procedures (although they clearly make sense
in the case of more complex TBoxes or for TBox updates – like in (OWL) DBpedia).
Instead, we rely on the resolution strategies which are simple for the user to understand
and can be efficiently encoded in SPARQL. In a practical KB editing system, one should
probably combine the two approaches, e.g. for resolving the intrinsic inconsistency.
Likewise, the approaches [BBPW14], [FKAC13] and [KZC13] consider grounded updates
only, whereas our focus is on implementation of updates in SPARQL. The approach in
[FKAC13] captures RDFS and several additional types of constraints and is close in
spirit to our brave semantics.

As future work, much interesting work remains to be done in order to optimize rewritten
updates. Moreover, we plan to further extend our work towards increasing coverage of
more expressive logics and OWL profiles, namely additional axioms from OWL 2 RL
or OWL 2 QL [MGH+12]. Also, as it is the case with DL-Literdfs, the extension of
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experiments with different triple stores and benchmark datasets is left for future work.

8.2.3 (OWL) DBpedia

As a final piece of work, we addressed the research questions in Sec. 1.5, by leveraging dif-
ferent semantics of SPARQL 1.1 Update we have defined for dealing with inconsistencies
(DL-Literdfs¬), and lifting them in the context of (OWL) DBpedia and mappings:

Given a SPARQL update, how can we resolve mappings and translate it into updates
of the underlying DBpedia infoboxes? Or, the other way around, can any of the
update semantics discussed before capture an infobox update?

We presented first insights to allow ontology-based updates of wiki content. This was
used as an use case for updates in the context of Ontology-Based Data Management, in
the setting where mappings are present and TBox is more expressive. For this work, we
have adopted the update semantics from the previous section that are able to handle
inconsistencies.

The work was motivated by the little attention that has been paid to the benefits that
the semantic infrastructure can bring to maintain the wiki content, for instance to ensure
that the effects of a wiki edit are consistent across infoboxes.

The ultimate aim is not to compare our approach with any belief revision operators, but
rather using/developing statistics (pre-existing data) and patterns (pre-existing interac-
tions) as a means for helping users in making a meaningful choice, complementing work
on belief revision with practical guidelines.

The main distinguishing characteristic herein is the DBpedia OBDM setting, and the
focus on update accommodation strategies which are simple, comprehensible for the
user and can draw from pre-existing meta-knowledge, such as already existing mapping
patterns resp. usage frequencies of certain infobox fields, to decide update ambiguities
upon similar, prototypical objects in the underlying data, estimating probabilities of
alternative update translations. Our goal in this work was twofold: on the one hand,
to understand and to formalize the DBpedia setting from the OBDM perspective, and
on the other hand, to explore more pragmatic approaches to OBDM. To the best of
our knowledge, it is the first attempt to study DBpedia mappings from the formal
point of view. We found out that although the worst-case complexity of OBDM can be
prohibitively high (even with low expressivity ontology and mapping languages), the real
data, mappings and ontology found in DBpedia do not necessarily hit this full potential
complexity; indeed, we conclude that the study and development of best-effort pragmatic
approaches—some of which we have explored—is worthwhile.

We realized that various worst-case scenarios of update translation, especially those
exhibiting the intractability of update handling, can be hardly realized in the current
DBpedia version (mappings and ontology). From the practical point of view, the follow-
ing aspects of OBDM appear crucial for the DBpedia case. Firstly, it is the inherent
ambiguity of update translation; mappings often create a many-to-one or many-to-many
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relationships between infobox and DBpedia properties. Second, concisely presenting a
large number of options to the user is a challenge, hence an automatic selection of most
likely update translations is likely required. Finally, being a curated system, Wiki also re-
quires curated updates. Thus, splitting a SPARQL update into small independent pieces
to be verified by the Wiki maintainers is needed as well. Note that human intervention
is often unavoidable, since calculating mappings involve non-invertible functions.

Our early practical experiments with a DBpedia-based OBDM prototype shows that high
worst case complexity of update translation can have little to do with actual challenges of
OBDM for curated data. Rather, simple and comprehensible update resolution policies,
reliable methods of confidence estimation and the ability to automatically learn and use
best practices should be considered.

As further related work, the majority of existing OBDM approaches (e.g., [PCS14,
KRRM+14, RMR15]) consider the problem of query answering only rather than updates,
using different fragments of OWL. The emphasis in those approaches is in algorithms
for query rewriting considering one-to-many, many-to-many mappings, where queries
consist of also variables (without an instantiation step as in our case).

As for updates and tgds, the approach [KGIT13] addresses a quite different setting of a
peer data network in which data and updates are propagated via tgds. The peers in the
network do not impose additional schema constraints (like the DBpedia TBox), features
like class disjointness are not part of the setting, the focus is on combining the external
data with local updates in a peer network.

We mentioned work reporting about inconsistencies in DBpedia [BKPR14, DKF+15].
In another work about detecting inconsistencies within DBpedia [PG15] have considered
mappings to the DOLCE upper ontology to detect even more inconsistencies, operating
in a more complex ontology language using a full OWL DL reasoner (HermiT). Their
approach is orthogonal in the sense that they focus on detecting and resolving systematic
errors in the DBpedia ontology itself, rather than automatically fixing the assertions,
leave alone the data in Wikipedia itself. Nonetheless, it would be an interesting future
direction to combine these two orthogonal approaches.

It is also worth mentioning work in the domain of applying statistical methods for
disambiguating updates, e.g., [TKS12], namely for enriching the TBox based on the
data, which is actually not our scope, as we do not modify the TBox here.

As regards to updates where repairing mappings are considered to deal with potential
inconsistencies, there is a preliminary work [LRS+17] that considers updates both on
source and ontology level.

Recently Wikipedia partially shifted to another, structured datasource than infoboxes,
namely, Wikidata. We note that the model of Wikidata is different to DBpedia; different
possible representations in plain RDF or Relational models have been recently suggest-
ed/discussed [HHR+16]. Our approach could potentially help in bridging between the
two, which we leave to future work. In that aspect, we have also designed and imple-
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mented a method to compute similar entities in Wikidata, with the ultimate aim of
capturing the relative completeness measure of entities.
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