
Master Thesis

A structured approach to Open Data

monitoring

Florian Jauernig
Date of Birth: 01.03.1997

Student ID: 01613073

Subject Area: Digital Economy

Degree Program Code: UJ 066 960

Supervisor: Univ.Prof. Dr. Axel Polleres

Date of Submission: September 25, 2023

Department of Information Systems and Operations, Vienna University of
Economics and Business, Welthandelsplatz 1, 1020 Vienna, Austria

Contents
Abbreviations v

List of Figures vi

List of Tables vii

Code Listings viii

1 Introduction 1
1.1 Research Problem and Research Questions 2
1.2 Thesis Structure . 4

2 Background and Related Work 5
2.1 Foundations of Open Data . 5
2.2 Monitoring Approaches and Common Metrics 8
2.3 Related Work . 11

3 Current State and Goals 12
3.1 Current Infrastructure . 12
3.2 Functional Goals . 15
3.3 Technical Requirements . 16

4 Implementation 18
4.1 System Overview . 18
4.2 Portal Discovery and Validation 19
4.3 Dataset and Metadata Crawling 23
4.4 Reproducibility Study Preparation 28

5 Evaluation and Future Work 31
5.1 Evaluation of Goal Attainment 31
5.2 Initial Results . 32
5.3 Limitations and Future Work 38

6 Conclusion 42

References 43

A Documentation 48
A.1 Deploying the system . 49
A.2 Search engine portal discovery 50
A.3 Portal list creation and validation 53

iii

A.3.1 Extract search results 53
A.3.2 Create a portal list . 54
A.3.3 Deduplicate the portal list 54
A.3.4 Add manually validated API endpoints 55
A.3.5 Add protocol prefixes and activity status 56
A.3.6 Validate the list . 56
A.3.7 Analyze the validated list 58
A.3.8 Extract portals with working APIs 58
A.3.9 Check custom URL lists 59

A.4 Portal crawling . 60
A.4.1 Crawl Opendatasoft API v1.0 61
A.4.2 Crawl Opendatasoft API v2.1 61
A.4.3 Crawl CKAN API v2.x 62
A.4.4 Crawl Socrata API v1.0 63

A.5 ODArchiver connection . 65
A.5.1 Instantiate the class 66
A.5.2 Get dataset information via API 66
A.5.3 Add dataset via API 67
A.5.4 Get mapping via database 68
A.5.5 Add mapping via database 69
A.5.6 Handle dataset . 69

A.6 Helper functions . 71
A.6.1 Check website activity 71
A.6.2 Check website protocol 71
A.6.3 Remove double slashes 72

A.7 Experiments . 73
A.7.1 Validating "www." URLs with and without "www." . . 73
A.7.2 Validating Opendatasoft file export formats 74
A.7.3 Validating railway and university portals 74
A.7.4 Validating the ODPW list 74
A.7.5 Checking false positives of marker validation 74
A.7.6 Checking DCAT extension on CKAN portals 75

A.8 Extending the system . 76

iv

Abbreviations
AI Artificial Intelligence.

API Application Programming Interface.

CKAN Comprehensive Knowledge Archive Network.

CSV Comma-Separated Values.

DCAT Data Catalog Vocabulary.

DCAT-AP DCAT Application Profile.

HTML Hypertext Markup Language.

HTTP Hypertext Transfer Protocol.

HTTPS Hypertext Transfer Protocol Secure.

JSON JavaScript Object Notation.

ML Machine Learning.

ODArchiver Open Dataset Archiver.

ODPW Open Data Portal Watch.

OGD Open Government Data.

RDF Resource Description Framework.

URL Uniform Resource Locator.

v

List of Figures
1 Relevant parts of the current infrastructure. 12
2 Architecture of ODPW [26]. 13
3 Architecture of ODArchiver [40]. 14
4 Data Portal Tracker components. 18
5 Opendatasoft API call limit. 25
6 DCAT mapping of ODPW [26]. 29

vi

List of Tables
1 Functional goals of the new system. 16
2 Technical requirements of the new system. 17
3 Attainment of the functional goals. 31
4 Attainment of the technical requirements. 32
5 Portal API validation results. 33
6 Validation results per API software. 33
7 Datasets, supported datasets and resources per API software. 34
8 Largest CKAN portals by resources. 35
9 Largest Opendatasoft portals by supported datasets. 35
10 Largest Socrata portals by supported datasets. 36
11 Portal API validation results of different studies. 36
12 Portal API sources of different studies. 36
13 Evolution of working portal APIs on the ODPW list. 37
14 Detailed validation results for the ODPW list. 37
15 CKAN portals with enabled DCAT extension. 38

vii

Code Listings
1 Function call within a script 49
2 Function call on the command line 49
3 Portal discovery: basic search engine query 50
4 Portal discovery: search engine query with offset 50
5 Portal discovery: search engine query with search operators . . 50
6 Portal discovery: search result example 52
7 Portal handler: extract search results 53
8 Portal handler: create list . 54
9 Portal handler: remove duplicates 54
10 Portal handler: add API endpoints 55
11 Portal handler: add prefixes 56
12 Portal handler: validate list 57
13 Portal handler: validate list, retry failed portals 57
14 Portal handler: analyze list . 58
15 Portal handler: extract working APIs 59
16 Portal crawler: code to comment out for counting datasets . . 60
17 Portal crawler: crawl Opendatasoft v1 61
18 Portal crawler: crawl Opendatasoft v2 62
19 Portal crawler: crawl CKAN 63
20 Portal crawler: crawl Socrata 64
21 ODArchiver connector: call class constructor 66
22 ODArchiver connector: get dataset information from API . . . 67
23 ODArchiver connector: add dataset via API 67
24 ODArchiver connector: get mapping via database 68
25 ODArchiver connector: add mapping via database 69
26 ODArchiver connector: handle dataset 70
27 How to extend the crawley-lite/config.json file 78
28 How to extend the validate_list function 80
29 How to extend the analyze_list function 82
30 Code to comment out when testing an adapted crawling script 82

viii

Abstract

Open Data is freely available data published by governments or

companies and while it can improve transparency for citizens and fuel

innovation, its value is highly dependent on the quality of the datasets

and associated metadata. Meanwhile, the Open Data landscape is

evolving, with new data portals going online while others are discon-

tinued or change their technical implementations. Building on prior

research at WU, our new Data Portal Tracker allows automated dis-

covery and validation of portals and extends the ODArchiver, a prior

dataset crawling and archiving tool, to also index metadata. By pro-

viding detailed technical documentation, we want to enable future ex-

tensions, such as a metadata quality rating system. Our initial results

show 2.7 times as many portals as the previous reference list used in

many WU projects, making the output of our system comparable to

more resource-intensive and less dynamic solutions found in literature.

ix

1 Introduction
Open Data is data made available for unrestricted use [15], and is typically
published by governments or companies along with respective metadata in
Open Data portals, which are often accessible through application pro-
gramming interfaces (APIs) of standard data catalog frameworks such as
CKAN, Opendatasoft or Socrata [23, 26]. Some of the biggest drivers of
the movement are Open Government Data (OGD) initiatives which are
aimed at improving transparency [20] and stimulating the economy through
innovation [1]. Increasingly, also companies and semi-public organisations
recognize the value and innovation power of Open Data, however, mostly
through collaborations with other firms as opposed to advertising and ex-
changing their data offerings through own data portals [36, 42].

Naturally, as time passes and more data gets published, two questions
come into focus: how does the quality and availability of data differ and are
there any significant changes over time? A notable example of efforts in the
corresponding field of Open Data monitoring is the official portal for Open
Data originating from countries in the European Union, data.europa.eu,
which features a dashboard showing metadata quality scores and their his-
toric evolution for all indexed portals [30]. Previously, OpenDataMonitor,
a project co-founded by the European Union, provided a similar set of fea-
tures, however, the platform seems to not be maintained anymore [31].

WU’s institute of Data, Process and Knowledge Management has ac-
tively taken part in this field through the development of solutions for mon-
itoring and archiving metadata and datasets from publicly available Open
Data APIs, two important examples being the Open Data Portal Watch
(ODPW), a monitoring framework for assessing the quality and status of
Open Data portal APIs [26] and the Open Dataset Archiver (ODArchiver),
a crawling and archiving tool that downloads the datasets offered by portals
and checks for new versions in dynamic intervals [40].

However, since data.europa.eu is limited to data portals from the EU
(many of which are by EU institutions), OpenDataMonitor is not functional
anymore apart from displaying a list of portals, WU’s ODPW is also no
longer operational and other internal WU projects were never completed or
have different goals, there is a gap in portal monitoring capabilities, both
inside and outside WU, since there is no project or tool keeping track of
data portals worldwide [30, 31]. Additionally, most monitoring solutions
and lists of portals have so far been based on manual collection of relevant
websites and only rate the metadata quality, but do not archive the actual
datasets. Research indicates the feasibility of automated portal discovery,

1

albeit with heavy resource usage [7, 8], and the institute already has a tool
capable of archiving datasets [40]. Thus, the system to be developed as
part of this thesis should contribute by building an integrated infrastructure
that can be used for semi-automated portal discovery and monitoring of data
portals as well as archiving of datasets and metadata. Furthermore, it should
lay the foundation for subsequent analyses, particularly the calculation of
metadata quality scores in a future reproducibility study of the ODPW paper
by Neumaier et al. [26].

1.1 Research Problem and Research Questions
We have identified the following research problems and gaps which directly
lead to a set of research questions that we aim to tackle both conceptually
and with a practically usable implementation.

The first issue concerns the discovery of data portals. For many Open
Data related system developments and research works carried out in the in-
stitute, the list of portal APIs that was originally created for ODPW serves
as the central input [21, 25]. The ODArchiver, while intended to handle ar-
bitrary URLs, has also used the same list to build up its corpus of regularly
crawled data [40]. Neumaier et al. briefly mention the various sources used
for this list, but do not present any selection criteria or a repeatable and
structured process for creating the list [26]. The reason for this is that in
the beginning of the project, a list of available portals was mostly manually
picked and collected through personal communications, with the initial goal
to find as many such portals in a best effort approach. In the past years,
many new portals have gone online, whereas others were discontinued or mi-
grated to new data offerings, or changed their APIs. Consequently, multiple
questions arise: How can we create the list of monitored portals in a sustain-
able and automated fashion? Where can we get the URLs of services that
are built on a specific data catalog software? How can we check the ongoing
availability of the APIs? How can we continuously update the list by adding
new entries and marking or removing inactive ones? From these open issues,
the first research question is derived.

Over time, the fragmented nature of the many different projects and un-
dertakings has lead to an urgent to stabilize the existing infrastructure and tie
the separate but related parts together in a meaningful way. The ODArchiver
is the most promising tool in terms of capability, but its metadata handling
must still be extended.

While both internal and external solutions for the continuous monitor-

2

ing and metadata assessment of data portals exist, most of the discussed
platforms are currently not working in a stable and reliable way (OpenData-
Monitor has remained online longer than ODPW’s website but also already
has major issues with broken functionality) and have stopped taking meta-
data snapshots years ago [31]. The only exception is data.europa.eu, but it
is limited to selected European portals [30]. In 2020, the ODArchiver started
crawling and storing datasets, however, it does not store the metadata pro-
vided by the data portals, only some automatically generated file-related
metadata [40]. As a consequence, we are currently unable to conduct long-
term analyses of the evolution in the field. The previously existing monitoring
capabilities must be fully restored to help conduct further valuable research
and enable a follow-up / reproducibility study that should answer the sec-
ond research question.

Research question 1: Can a comprehensive list of Open Data portal
APIs be retrieved from the web and regularly updated in an automated way?

Research question 2: How can a scalable infrastructure for monitoring
the evolution of Open Data portals, their datasets and metadata be built?

Following from the research questions, the first goal of the thesis is to in-
troduce a structured way of (semi-)automatically generating a list of portals
that is much larger than the list created for ODPW. Additionally, we will use
the new method to validate the ODPW list by checking the availability and
functionality of portals on it. The second goal is to build a sustainable and
scalable infrastructure that continuously collects and stores relevant meta-
data to enable the subsequent calculation of quality metrics. We will not
conduct a full reproducibility study, but rather lay the foundation for other
researchers at our institute to subsequently analyze the evolution of Open
Data APIs in continuation of the ODPW efforts.

To solve the outlined research problems, our work will comprise both a
thorough literature review and practical programming work. Based on the
issue at hand and the associated research questions, we will research the rele-
vant background and preliminaries regarding Open Data, Open Data portals,
portal discovery, Open Data monitoring and related topics. Subsequently,
the existing technology stack of the Open Data related infrastructure at the
institute will be closely examined to derive current capabilities and short-
comings that will then inform functional goals and technical requirements,
which are essential for the practical implementation. Results will be vali-
dated using suitable metrics and the system will be documented in detail
and made available via a Git repository.

3

1.2 Thesis Structure
The remaining sections of this thesis are outlined below.

Chapter 2 introduces the main concepts and preliminaries of Open Data,
presents important examples of existing solutions regarding portal lists and
metadata quality assessments and highlights related literature in the covered
fields.

Chapter 3 includes a detailed analysis of the existing infrastructure and
previously developed systems at the institute, highlights the need for a new
integrated system to restore and extend past capabilities and lists the derived
goals and requirements and ways of evaluating the finished product.

Chapter 4 presents the Data Portal Tracker, the new system developed
for this thesis, and shows how it connects to the existing infrastructure and
how each of the components are implemented.

Chapter 5 showcases and evaluates the first results obtained by using
the Data Portal Tracker, mentions the identified weaknesses of the system
and suggests improvements as well as possible future research topics and ap-
plications for the Data Portal Tracker.

Chapter 6 closes the thesis with a short conclusion that summarizes the
main contributions and gives an outlook into the future.

The documentation in the appendix serves as a comprehensive guide
that will enable researchers at WU to understand, use, improve and extend
all components of the Data Portal Tracker.

4

2 Background and Related Work
Before assessing the current state of the institute’s infrastructure and for a
better understanding of the issues at hand, it is important to get an overview
of the relevant basic concepts and look at some key facts and the impact of
Open Data in research and practice while discussing different approaches and
recent regulatory changes.

2.1 Foundations of Open Data
Geiger and von Lucke define Open Data as follows:

"Open Data are all stored data which could be made accessible in a public
interest without any restrictions for usage and distribution." [15]

If this data is made available by public bodies, it is referred to as Open
Government Data (OGD) [15]. In fact, governments around the world
are a major contributor to Open Data as they publish data about the admin-
istrative resource use [20] as well as statistics about public bodies, citizens
and businesses and make the data available via Open Data portals, for
example on data.gv.at, the Austrian OGD portal run by Austria’s Federal
Ministry of Finance.

Prior research has shown the importance of Open Data portals in improv-
ing transparency towards citizens as part of Open Government initiatives
and has identified the following essential aspects to guide a transparency-by-
design approach when building a data portal: quality, accessibility, find-
ability, understandability and usefulness of data as well as portal structure,
community engagement and user support [20].

Companies and semi-public organisations have two main options when
working with Open Data. Firstly, the commercial use of Open Data
provided by outside organizations, such as governments and other corpo-
rations, to create or improve products and services [42] and secondly, the
sharing of internal company data with other firms or the general public,
for example to increase collaboration and innovation [36].

In 2000, a study published by the European Commission attempted to
quantify OGD usage by businesses and estimated the value of public sector
information at over 1 % of the GDP in the European Union, with a majority
of the value being created through the use of geographical, economic, social
and business-related data. More precisely, the economic value was estimated
to be between EUR 28 billion and EUR 134 billion compared to a yearly
investment of EUR 9.5 billion [12]. 13 years later, a survey conducted among

5

Swedish IT companies showed that the use of OGD was perceived as highly
important and in some cases indispensable for the concept and core activities
of the analyzed companies [19].

Data originating from companies, however, still makes up a smaller part
of the Open Data ecosystem, with only some firms opting to advertise and
exchange their data offerings though such portals and hoping to benefit from
increased collaboration and innovation [36, 42]. Even among these compa-
nies, few seem to make data publicly available, but rather focus on Open
Innovation efforts, which are collaborative research projects of a limited
number of companies that help innovation and reduce costs and time for the
participants compared to individual attempts [3].

In order for businesses to create value using data published by govern-
ments, they require personnel with specific skills, data availability, data and
information capabilities as well as hardware and software resources [42], while
the outcomes of Open Innovation have been shown to also be dependent on
the extent of management support [3].

Recently, the potential economic benefits of Open Data have motivated
the institutions of the European Union to step in and modify previously exist-
ing legislation on public sector information to help Open Data adoption. In
June 2019, the European Parliament and Council adopted Directive (EU)
2019/1024 on Open Data which aims to increase the use of Open Data
and to fuel innovation. It applies to public bodies and, with certain limita-
tions, also to public companies and publicly funded research projects. One of
the goals is to support Artificial Intelligence applications by limiting the costs
of data provision, encouraging the use of APIs when making data available
and mandating the publication of government data in areas like meteorol-
ogy, geospatial mapping and mobility [1]. Regarding this obligation for OGD
publishing, the directive requires the European Commission to compile a list
of high-value datasets in a separate regulation, which was done in the Com-
mission Implementing Regulation (EU) 2023/138 in December 2022. With a
high level of detail, the regulation defines the thematic scope, structure and
exact content of datasets that are considered to have substantial value for
the economy and society at large and must therefore be made available free
of charge in standard formats [2].

Open Data portals typically provide datasets consisting of a number
of resources which are the actual data files that contain structured data
(e.g. tables) or unstructured data (e.g. text documents). Accompanying
metadata informs users on the content, structure, origin, and many other
aspects of the dataset [26]. Typically, both a web interface and an API can
be used to retrieve data from a portal.

6

Operators of Open Data portals often do not develop a custom solution
from scratch to host their data, but rather rely on existing portal software
frameworks (which we will later also refer to as data management systems
or data catalog software). Popular choices include CKAN (Comprehensive
Knowledge Archive Network), Socrata and Opendatasoft [26], which will be
essential in subsequent chapters of the thesis. Our example from above,
data.gv.at, is currently using CKAN, which is evident from the response to
a CKAN-specific "status_show" API function call.

An important distinction to make when dealing with different portal soft-
ware concerns the terminology and fundamental design choices regarding
datasets. On portals that use Opendatasoft or Socrata, a dataset is often
equivalent to a resource on CKAN portals in terms of content. CKAN al-
lows multiple resources to be grouped together in one larger entity which is
called a dataset or a package. These resources may be multiple versions of
the same file in different formats or multiple files with different content (or a
combination of both). In contrast, if multiple download URLs are available
for a single dataset on an Opendatasoft or Socrata portal, this is because the
same dataset is offered for download in different file formats. In this case,
the content is typically the same regardless of which download URL is used,
which is the key difference to CKAN.

In interviews with providers and users of Open Data, Janssen et al. iden-
tified deficiencies in availability and standardization of metadata, among
others, as issues hindering Open Data adoption. Adding to the problem
are the different interests of users one one side, for whom metadata directly
impacts the findability and usability of datasets and some government of-
ficials on the other, who expressed the wish to publish data without any
work-intensive metadata-related edits [16].

Naturally, with a rising number of data providers, different ways of ex-
pressing metadata have emerged. These so-called schemas differ in the pres-
ence and naming of various fields, which complicates finding, using and ex-
changing large quantities of datasets from different sources. One possible
way of addressing this issue is Data Catalog Vocabulary (DCAT), a rec-
ommendation by the World Wide Web Consortium (W3C) that offers a stan-
dardized metadata schema. Based on the needs of European data providers,
the European Commission has created an extension to DCAT, the DCAT
Application Profile (DCAT-AP) which is in use across many OGD portals in
Europe, benefits the integration of portals in platforms like data.europa.eu
and has in turn inspired changes to the standard, which were introduced in
version 2 of DCAT [18, 26, 39]. Another standard vocabulary enabling uni-
fied metadata schemas is the Schema.org dataset vocabulary [27] which

7

is used in the Google Dataset Search alongside DCAT [4].

2.2 Monitoring Approaches and Common Metrics
When it comes to Open Data monitoring, two of the most important activities
that existing monitoring efforts and services engage in are the following:

1. Creating and updating lists of data portals and possibly making them
available on the web. There may be restrictions to certain regions (e.g.
Europe) or areas (e.g. research data, government data). Regardless of
the method used and even if the list is not published on the web, this
data portal discovery is a requirement for rating the quality and
tracking the evolution of portals.

2. Analyzing data portals, particularly by examining their datasets, re-
sources and associated metadata and giving quality scores related to
features like availability, discoverability or usability. When carrying
out data portal monitoring, these ratings may be repeated regu-
larly, enabling comparisons of current and historic results.

As mentioned above, to monitor portals and rate their metadata quality,
their existence must first be known, therefore a major aspect in this context
is the data portal discovery. Previous solutions such as ODPW have of-
ten relied on manually created lists. Today, multiple large lists of portals
are available online, but the collection procedure is usually also manual. Ex-
amples include a list provided by the Open Knowledge Foundation that was
manually curated by domain experts [14] and another one by Opendatasoft
that was put together from multiple sources by hand and is described as
"crowdsourced" [33]. On OpenDataMonitor, a platform mentioned earlier
that used to provide metadata quality ratings, a portal list is still online
that was compiled using a manual process, as the project’s knowledge base
includes a note that automatic discovery is not supported [32]. Services like
re3data and Fairsharing, which are conceptually similar but focus more on
research databases and repositories instead of data portals by governments
or companies, also curate the data by hand and manually evaluate sugges-
tions for new entries according to specific guidelines [28, 29]. One exception
seems to be a list of websites using CKAN which was compiled by BuiltWith
in what they claim to be an automated or semi-automated way using web
crawling. However, the process is not transparent and the list is not freely
available - rather, a subscription costing 295 USD per month is required to
access the information [5].

8

The validation and automated discovery of data portals has also been
investigated in academia, for example in a series of three research papers by
Correa et al. In 2018, the authors combined and deduplicated data from
various portal lists, including WU’s ODPW, resulting in 3152 unique URLs.
A subsequent check of the sites’ API functionality showed a total of 356
working CKAN, Opendatasoft and Socrata portals [9].

A year later, an adapted version of the survey was repeated. This time,
the portal list to be checked was sourced from the URL index of the Com-
mon Crawl archive from November 2018 containing more than 3 billion web
pages and filtered by keeping only URLs containing the keyword "data" in
multiple languages. 719 working CKAN, Opendatasoft and Socrata portals
were found this way [8].

In the third study, Correa et al. repeated a similar approach based on
Common Crawl data from April 2019 and performed a search for "open
data" and all three software names in the HTML code of 2.5 billion web
pages, processing around 200 TB of data. Almost 1 million potential portals
with keyword matches were found and subsequently multiple requests were
sent to them to look for APIs, resulting in 837 working CKAN, Opendatasoft
and Socrata portals. They then trained an ML algorithm on labeled data
consisting of the HTML source code of the validated data portals and of
other websites. However, the testing datasets were unlabeled, therefore no
metrics like accuracy could be calculated for the model [7].

A possible way to avoid the high utilization of resources in the studies
above could be focused crawling, a concept proposed by Chakrabarti et al. in
1999, which moves away from the common and hardware-intensive approach
of crawling the entire World Wide Web and subsequently searching the com-
plete crawl using keywords. Instead, the authors document the advantages
of a crawler based on an ML model pre-trained on relevant websites which
classifies each visited site and only follows the links further if the current
website is classified as related to the topic of interest [6].

An example for existing data portal monitoring offerings, marketed as
the central portal for Open Data in the European Union, is data.europa.eu,
which features a metadata quality dashboard. Since 2021, it has been rat-
ing portals using multiple attributes and has been providing portal rankings,
aggregated results and the evolution of portal ratings [30]. The former Euro-
pean Data Portal, one of the predecessors of data.europa.eu, had originally
been built on CKAN, but due to scaling issues related to the translation of
metadata into RDF, a custom data management system called Piveau was
developed for the platform [18]. Another example was the website Open-
DataMonitor, which was co-founded by the European Union. It featured

9

quality and quantity metrics and showed their evolution over certain time
periods, both for individual data portals and aggregated per country. When
most parts of the website could still be accessed without issues, the data
shown had not been updated in multiple years and by now, the metadata
ratings are not available anymore [31]. At WU, Open Data Portal Watch
(ODPW) was a monitoring framework for assessing the quality and status
of Open Data portal APIs by checking the availability of the API as well
as downloading the metadata of resources and using it to calculate quality
scores. ODPW solved the issue of differences between metadata schemas of
the data catalog software providers CKAN, Socrata and Opendatasoft by
mapping the schemas to the Data Catalog Vocabulary (DCAT), a standard
metadata vocabulary defined in RDF [26, 39]. In a related project, the meta-
data was further mapped to the Schema.org dataset vocabulary [27].

Many of the quality metrics commonly used in portal monitoring so-
lutions share similarities with the criteria for a transparency-by-design ap-
proach when building a data portal that we summarized earlier [20]. To
calculate scores for ODPW, Neumaier et al. incorporated the following as-
pects [26]:

• Existence (of metadata)

• Conformance (to formats)

• Retrievability (of data)

• Accuracy (of metadata)

• Open Data (openness of data)

Wentzel et al. have developed a system for rating metadata that is mostly
based on previous work like the FAIR principles and Five-Star Linked Open
Data and has been deployed on the data.europa.eu platform. Their metrics
are organized in the following categories [41]:

• Findability

• Accessibility

• Interoperability

• Reusability

• Contextuality

10

2.3 Related Work
In this section, we present selected projects and research papers that are
either related to previously cited literature or cover topics that are out of
scope of this thesis but are still relevant and could inspire future extensions
of our work.

ADEQUATe, a project that ran from 2015 to 2018, dealt with the ques-
tion which quality aspects and information contained in metadata are im-
portant to users and lead to the creation of a platform for assessing and
improving the quality of datasets from selected Open Data portals with the
help of user contributions. It included a Data Monitor module for retrieving
metadata that was based on the ODPW framework [24].

In a recent paper, Kirstein et al. tackle an issue that we might also en-
counter in the development of our system: the need for unique, cross-platform
persistent identifiers for datasets. The authors propose replacing the In-
ternationalized Resource Identifer (IRI) recommended by DCAT with a de-
centralized solution based on a distributed ledger architecture consisting of
nodes that assign and resolve unique identifiers [17].

Benjelloun et al. provide insights into Google Dataset Search, a search
engine for datasets, and describe how it indexes all datasets located on web-
sites that can be crawled by the Google Crawler and offer schema.org or
DCAT metadata. As of 2020, the corpus contained 28 million datasets, 90%
of which could be classified as Open Data based on the metadata, and showed
high rates of activity regarding deletions and new additions. A mere 44% of
metadata included a dataset download URL, which might lead to challenges
in our project, even if the portals that we will analyze will typically not be
research data repositories like the largest sources of Google Dataset Search.

11

3 Current State and Goals
We will now analyze the existing infrastructure and previous projects related
to Open Data monitoring at WU’s Institute for Data, Process and Knowledge
Management based on literature, database queries and personal communica-
tion and point out their strengths and weaknesses. Once we have evaluated
the current situation, we will lay the groundwork for the development of a
new integrated solution by defining functional goals (what should the sys-
tem be able do?) and technical requirements (how should the system do it?)
which will guide our evaluation of the finished product.

3.1 Current Infrastructure
Figure 1 gives an overview of the current Open Data infrastructure and
how the systems and data relate to each other. From 2016 to 2019, ODPW
crawled and rated metadata and made the aggregated results for each portal
available on a website. ODArchiver has been downloading, storing and ver-
sioning datasets since 2020 and features an API and a website. In 2021, Por-
tal Watch API attempted to replace ODPW with the help of the ODArchiver,
but the project was never finished. All of these systems use the same list of
portals that was originally created as part of the ODPW project.

Figure 1: Relevant parts of the current infrastructure.

12

Open Data Portal Watch (ODPW) is a service that periodically
took snapshots of the metadata of more than 200 CKAN, Socrata and Open-
datasoft portals, checked the availability of their API endpoints and made
results for each portal available on the project’s website. It was designed by
Neumaier et al. to calculate metadata quality scores based on a number of
attributes related to the categories existence, conformance, retrievability, ac-
curacy and Open Data [26]. Different metadata schemas of CKAN, Socrata
and Opendatasoft were mapped to the standard RDF metadata vocabulary
of DCAT [39]. Database queries show that snapshots were taken from June
6th, 2016 to August 19th, 2019, with the number of snapshots varying de-
pending on the database table. Table portalsnapshot, which contains basic
properties like the number of datasets and resources for each portal, shows
162 snapshots. Meanwhile tables datasets and resourcesinfo, which provide
more information about the individual datasets and resources of each por-
tal, include 133 and 85 snapshots, respectively. Figure 2, which outlines
the architecture of ODPW, shows that the system harvested metadata from
the selected portals and sent head requests for the resources, but does not
give any information on how ODPW handled the portal discovery. This is
because the list of portals used by the system was manually created and up-
dated while the project was running. The problem we are facing regarding
ODPW is that the system is no longer fully operational, as it has stopped
taking snapshots 4 years ago and stability issues leave its website offline more
often than not. Unfortunately, since the project was programmed in Python
2 and has some limitations regarding scalability and efficiency, fixing and
modernizing ODPW would entail a full rewrite. Thus, to resume Open Data
monitoring, a replacement for ODPW is needed.

Figure 2: Architecture of ODPW [26].

Open Dataset Archiver (ODArchiver) is a web crawling and data
archiving tool that downloads, stores and versions the data / resources of

13

datasets, is compatible with many different file formats and can take arbi-
trary input URLs. As figure 3 shows, it uses NGINX for the load balancer
(and reverse proxy) and Node.js for carrying out tasks in the backend while
MongoDB serves as the database. Due to its use of a Kubernetes cluster
with multiple nodes, the ODArchiver is also highly scalable. Since April
6th, 2020, the ODArchiver has been regularly crawling an initial corpus of
datasets based on ODPW’s list of portals. Currently, the ODArchver only
stores a very limited amount of metadata that is focused more on the crawling
process whereas the detailed metadata provided by portals is not downloaded
[40]. With its strong scalability and file compatibility, the ODArchiver could
be used to crawl not just datasets but also metadata by adding the dataset
URLs and metadata URLs via its API and creating a mapping system be-
tween datasets and their related metadata. In fact, this was the idea guiding
the Portal Watch API project, which is described next.

Figure 3: Architecture of ODArchiver [40].

Portal Watch API is an unfinished tool that was intended to accept a
list of CKAN, Socrata, and Opendatasoft portal URLs as input and retrieve
both the download URL and the metadata URL of each individual resource
of every portal before adding them to the ODArchiver. Contrary to its name,
but just like the ODArchiver, the important parts of Portal Watch API’s code
are completely independent from the ODPW system. Another similarity to
the ODArchiver is that it is designed to get its input from ODPW’s list of
portals, however, in this case, this can be easily changed [10]. Portal Watch

14

API was a first attempt at restoring past capabilities by replacing ODPW,
but was discontinued in an early stage. Some of the ideas and logic contained
in its Python scripts will serve as the basis for parts of the code created in
the implementation phase of this thesis.

Datamonitor was another data collection effort for which a database
is still available that holds crawled data mainly from 2016 to 2019, with
some tables indicating that crawling started as early as 2014 and 2015. How-
ever, the relevant table crawldata seems to only contain aggregated counts
of domains and file formats of datasets. Additionally, some CSV files were
downloaded from 2014 to 2019, but the data is only very limited in most
years at the start and end of the range. Unfortunately, the database does
not seem to contain datasets or metadata that would be relevant to us in
terms of quality or quantity.

3.2 Functional Goals
Based on the identified research problems, the research questions and the
current state of the infrastructure, there are three main functionalities the
new system should be able to provide:

1. It should feature a dynamic / semi-automated discovery of avail-
able data portal APIs using a structured and repeatable method to
create, validate and update the portal list. There should be an option
to add portals manually to handle special cases.

2. Partly consolidated from previously available tools and partly newly
developed, the resulting architecture should fulfill the tasks of auto-
mated crawling and portal monitoring. In addition to integrating
the archiving of datasets and metadata, it should also create a mapping
between them to facilitate working with the data.

3. To prepare reproducibility studies of the original study by Neu-
maier et al. [26], the new system should be deployed to access the por-
tals from ODPW’s list and evaluate the availability of the portals as
well as one example metric from the study. Additionally, there should
be a workflow for accessing the metadata as this is relevant for future
work.

In table 1, the functional goals derived from these desired functionalities
are presented alongside a code that will enable us to easily refer to specific
goals and more precisely evaluate whether the implemented system meets
the requirements.

15

Table 1: Functional goals of the new system.

Code Description

F.1 Automate portal discovery and validation

F1.1 Find portal URLs on the web in an automated way

F1.2 Validate the used portal software

F1.3 Allow manual additions of portals

F.2 Restore and extend Open Data monitoring capabilities

F.2.1 Integrate dataset and metadata archiving

F.2.2 Create a mapping between datasets and metadata

F.3 Prepare ODPW reproducibility studies

F3.1 Validate ODPW’s portal list

F3.2 Show workflow for accessing metadata

3.3 Technical Requirements
After having determined what our new system should achieve, we will now
also define how exactly the solution should be implemented and what the
requirements regarding performance, maintenance and documentation are:

1. Internal and external resource use, particularly in terms of storage
and HTTP requests, should be kept as low as possible. Due to the
quantitative nature of this requirement, we will be able to try out
multiple options and compare their results and effects before making
decisions on implementation details.

2. The system should take advantage of the scalable architecture of the
ODArchiver and add datasets and metadata via its API while adding
the mapping between them into a new collection in the existing Mon-
goDB. Also, there should be backwards compatibility with ODArchiver’s
corpus by ensuring that the system can add any missing part (dataset,
metadata or dataset/metadata mapping) individually so that existing
datasets already indexed by the ODArchiver can be enriched.

3. To simplify future maintenance and extensions, the system should be
well documented and written in Python 3 which many institute staff
members and informatics students are familiar with.

16

Just like for the functional goals, we assigned codes to the technical re-
quirements in table 2 shown below, which will be used in subsequent chapters.

Table 2: Technical requirements of the new system.

Code Description

T.1 Manage resource use

T1.1 Keep hardware use low during portal discovery

T1.2 Minimize HTTP requests during portal discovery and validation

T1.3 Balance URL deduplication and information loss

T.2 Use and extend ODArchiver’s infrastructure

T.2.1 Use ODArchiver’s API for adding datasets and metadata

T.2.2 Add a new mapping collection to ODArchiver’s MongoDB

T.2.3 Ensure compatibility with old datasets indexed by ODArchiver

T.3 Create a sustainable and well documented architecture

T3.1 Write code in Python 3

T3.2 Use comments, docstrings, README files and Jupyter notebooks

T3.3 Provide a detailed guide on using and extending the system

17

4 Implementation
In this chapter, we present the Data Portal Tracker, which attempts to
achieve goals F.1 to F.3 in the given order while meeting requirements T.1
to T.3. We will highlight its main aspects, starting with the portal discovery
and then moving on to the portal crawling and the preparation of repro-
ducibility studies. Before going into implementation details, however, we
will give an overview of the system.

4.1 System Overview
Figure 4 shows the major elements of the Data Portal Tracker, our new
system for discovering, validating and monitoring Open Data portals and
regularly crawling and archiving their datasets and metadata. The compo-
nents for search engine crawling and portal validation include shortened and
simplified code from the tool Crawley by Dobriy [11], while the ODArchiver
by Weber et al. [40] is used as for downloading and permanently storing
datasets and metadata. First drafts of the portal crawling and ODArchiver
connection code were inspired by the unfinished Portal Watch API [10].

Figure 4: Data Portal Tracker components.

18

Data Portal Tracker’s code is available via a Git repository1. The project’s
root directory contains a README file, a text file listing the requirements
and two directories crawley-lite and data_portal_tracker which are intended
to keep external and internal code somewhat separated despite a tighter inte-
gration than typical of a dependency. For development, experiments and data
exploration, we made heavy use of Jupyter notebooks in the data_portal_tracker
directory. In the subsequent sections, we describe the implementation process
and functionality of the system, while the README file and the documen-
tation in the appendix focus on usage and deployment aspects.

4.2 Portal Discovery and Validation
First, we will describe the portal discovery and validation pipeline, which
consists of the components "Search Engine Crawling", "Portal Handler" and
"Portal Validation" visible in figure 4 and covers the activities of finding
potential portal URLs, adding them to a list, validating the portals in a
multi-step process, extracting data that is relevant for the subsequent com-
ponents and analyzing the results. The relevant code can be found in the
crawley-lite.py script in the directory of the same name as well as the por-
tal_handler.(ipynb|py) script in the data_portal_tracker directory.

Starting with search engine crawling, we use the tool Crawley created
for the institute by Daniil Dobriy [11] to perform search engine queries via
the service SerpAPI, but have reduced the code to the core functionality
required for the Data Portal Tracker. Compared to other semi-automated
solutions for portal list creation researched previously [7, 8], we are exploring
a different approach by using search engine portal discovery, which aims to
be similarly comprehensive while being less resource-intensive and easier to
keep up to date. To collect Open Data portals dynamically and on the fly,
our approach takes some inspiration from focused crawling [6] with regards
to reducing the hardware requirements, but also differs in a few major ways.
Most importantly, we are still querying comprehensive web crawls for relevant
URLs, but not by downloading and searching through immense amounts of
data like the archives of the Common Crawl. Instead, we are making use of
the vast resources of large search engine operators like Google and are simply
performing search engine queries via available APIs, then store the results
and extract the URLs to be validated at a later stage. This approach requires
a fraction of the resources of the previously published semi-automated dis-
covery solutions [7, 8]. Alternatively, we could change the solution to resem-

1https://git.ai.wu.ac.at/h1613073/data_portal_tracker

19

ble focused crawling more closely by reimplementing recursive link crawling
which is intentionally left out in our adapted and simplified version of Craw-
ley. Recursive link crawling is possible in the original tool, but was not tested
in depth as the results were already sufficient without using it, so it was one
of the parts of the code to be removed for simplicity. Another reason for this
and other edits was to improve future code maintenance seeing as Crawley
is integrated differently than a normal dependency. However, if desired, this
capability can be restored by copying any conditional sections in the origi-
nal code asking for the command line argument --links to be specified, like
"if args.links:", back to the crawley-lite/crawley-lite.py script [11]. In case of
reimplementing recursive crawling, the results of the search engine queries
could serve as a starting point, providing an initial list of sites whose links
can then be crawled.

A major change compared to the standalone Crawley tool is the way
search results are handled. In the original version, the URLs of all search
results are crawled, with the full webpages being stored in the resultsHTML
subdirectory. This means that for previously collected search results, pages
do not have to be re-requested in a subsequent execution of the program.
While this approach can be beneficial for certain use cases, it does not align
with our system which is designed to rerun the pipeline completely from
scratch for every creation of a new, updated portal list. By not requesting
the webpages until later in the process when they are needed and not per-
manently storing them, we can mitigate this and reduce storage use while
being able to seamlessly integrate the code into the portal validation. Thus,
our adapted version does not have a resultsHTML folder, only a results folder
in which the search result JSON files, which are later accessed by the portal
handler to extract the URLs, are stored.

Next up is the portal_handler.(ipynb|py) script, which includes not just the
"Portal Handler" component, but also the "Portal Validation" component
from figure 4. It carries out the portal list creation and validation
and currently features 4 data sources, taking input from the search engine
results, from portal lists on the web, from ODPW’s list of portals and from
manual additions. The code deduplicates the domains, performs requests to
all websites to check their activity status and whether HTTPS or HTTP is
available and validates the remaining sites in two steps: First, it looks for
HTML elements ("markers") that can usually be found on Opendatasoft,
CKAN and Socrata sites. Then, it verifies that the API is actually working
by requesting the specific endpoint and validating the response. Each time a
list is created and validated, the most important statistics can be calculated
and saved, allowing to monitor the evolution of the list over time.

20

During the deduplication process, URLs of possible portals taken from
the different sources are shortened to their base URL by removing the path
(/...). If this was not done, large numbers of duplicates would remain in the
URL list, for example different subpages of the same website and sometimes
even URLs of individual datasets. Our assumption here is that in most cases,
the API can be reached by appending the appropriate API URL string (e.g.
/api/explore/...) to the base URL. For deviating portals, the API endpoint
can be researched and added by hand using a dedicated function. Such
cases might be found by looking for portals which passed the first validation
step, but not the second, meaning that portal software HTML markers were
detected but no working API could be found using the base URL and the
API string. In the CSV file created by the validation function, such portals
have a non-null value for the "suspected_api" field other than "Unknown"
while the "api_working" field has the value "False".

Apart from removing duplicate entries of the same portal, reducing the
URL to its base URL also serves other purposes: completely erasing any
erroneous characters that might occur at the end of a URL and avoiding the
execution of denial-of-service attacks which, in extreme cases, might other-
wise happen when checking the sites’ activity and used data catalog software
due to a multitude of requests.

In addition to removing the path from each URL, the protocol prefix
is also truncated for better deduplication as some sites appear twice in the
initial list, once with HTTP and once with HTTPS. Subsequently, when
checking the activity status, we are adding a protocol prefix to URLs of
active sites by testing whether HTTPS is available and falling back to HTTP
if necessary. Our initial results validate this approach and show that even
in 2023, we cannot simply assume that HTTPS is universally adopted. 702
out of 4380 active sites (16%) and 46 out of 705 working portals (6.5%)
exclusively use HTTP, so only requesting websites via HTTPS would lead to
information loss. Similarly, we tried removing the "www." prefix, assuming
it was not required for sites to function anymore. However, a few portals are
still requiring it, e.g. Bahrain and Corsica, so we decided to wait until the
final list to remove any duplicate URLs with and without "www".

As mentioned above, sometimes the API endpoint of a portal is on a
subpage, e.g. data.wu.ac.at/portal or data.gv.at/katalog. Since the URLs in
the portal list are not always equivalent to the endpoint and the path is cut
off completely in the deduplication step anyway, we are addressing this issue
by manually adding such non-standard endpoints of selected portals with
APIs that are known to be working. So far, the function add_api_endpoints
has been implemented and integrated into the portal handler, but only the
two examples from above have been added in this way. Extending the portal

21

list with more such cases could be a valuable contribution to improve and
lengthen the portal list even further, but is out of scope of this thesis and
thus listed in the future work section.

Certain portals pose challenges by combining two issues: not having any
markers indicating the used software in their HTML code and exposing their
API via an endpoint on a subpage. One example is data.overheid.nl/data,
the Open Data portal of the Netherlands. Even in the unlikely case that
the endpoint URL was present in some of the sources and thus part of the
initial list, it would not persist until the final list for two reasons: In the
deduplication step, the URL is reduced to its base URL and in the validation
step, the API functionality of a site is only checked if any validation markers
were found. To ensure that such portals still get included, the function
mentioned above enables adding such API endpoints to the list after the
deduplication step and marks them with a label that tells the validation
function to skip searching for markers and to directly move on and check if
the API works.

In general, when validation markers were found on a website but there
is no working API (at least not reachable from the base URL), there are
two possible explanations: either the marker-based validation produced a
false positive as the site in question is not actually a data portal using the
respective portal software or the second part of the validation that checks the
API functionality incorrectly gave a negative result for a valid portal with a
working API. Given the chosen approach of only testing if the API works on
sites for which the validation marker search has been successful, these cases
are worth investigating. For future improvements in this area, we suggest
starting out with the basic code in the section "Checking false positives of
marker validation" of the experiments notebook.

Finally, for a better understanding of the portal validation’s output files,
here are the specifics regarding retrieved and stored version numbers of
working portal APIs:

• For CKAN portals, we store a single version number which is that of
CKAN itself, not the number of CKAN’s Action API which has only
one available version [13].

• For Opendatasoft portals, we store an array of all supported version
numbers among the Search API v1 and Explore API v2.0 / v2.1 [34, 35].

• For Socrata portals, the version number is that of the Socrata Meta-
data API which only has one version, not the number of the SODA
API [37, 38].

22

4.3 Dataset and Metadata Crawling
Turning to the lower half of figure 4, we will now cover the components
"Portal Crawler" and "Archiver (via Connector)" which are implemented
in the portal_crawler.(ipynb|py) and archiver_connector.(ipynb|py) scripts in
the data_portal_tracker directory. When executing one of the four available
crawling functions, each for a specific portal software, the function takes the
extracted portal information from the previous validation step, loops through
all datasets or resources and adds them to the ODArchiver along with their
metadata and a dataset/metadata mapping. Portal Watch API, an earlier
effort to resume portal monitoring [10], was taken as a template for the men-
tioned scripts, but was almost completely rewritten and heavily extended -
in effect, our final implementation only shares some ideas and logic with the
original.

Our portal crawler works through the corpus of every data portal and
retrieves three specific URLs for each dataset or resource that will be used
by the ODArchiver later on:

• The dataset URL is a URL for downloading a dataset, but our defini-
tion of dataset depends on the portal software. For CKAN, it refers to
a resource and we crawl all resources of a dataset/package separately,
while for Opendatasoft and Socrata, it refers to one specific export op-
tion of a dataset, typically CSV, so we only crawl one file per dataset.
For details on platform-specific terminology, see the chapter on founda-
tions of Open Data. Previously, the ODArchiver often indexed multiple
formats per dataset, as the URLs were taken from ODPW project using
its SPARQL endpoint2 [40].

• The metadata URL is a URL which allows fetching the metadata
related to one specific dataset. Since CKAN provides metadata for
each dataset, but not for each resource of a dataset, we are always
crawling the URL of a dataset’s metadata, regardless of the portal
software.

• The source URL leads to a web page which is targeted at human users
accessing it manually via a web browser and which presents information
about a dataset and its download URL(s).

For crawling Opendatasoft portals, we support both the Search API v1
(deprecated) [35] and Explore API v2.1 [34]. Due to the large differences

2https://data.wu.ac.at/portalwatch/sparql

23

between these APIs, we developed two separate crawling functions. In either
of them, we collect exactly one dataset URL, metadata URL and source URL
per dataset, assuming that every dataset is available in CSV. To check the
validity of this assumption, we carried out the following experiment:

Since Opendatasoft is specifically designed for structured datasets only3,
it could be hypothesized that every dataset on every Opendatasoft portal
might be available in the CSV format. If true, this would allow a simplifica-
tion of the Opendatasoft crawling function(s) and would reduce the required
crawling time and number of HTTP requests, as the availability of the CSV
file format would not have to be checked in every single instance.

Technically, the hypothesis would have to be the other way around: "Not
every Opendatasoft portal offers every dataset in CSV". We could show
that there is not sufficient evidence to prove this hypothesis if the number of
datasets was the same as the number of supported datasets for every single
portal which was successfully checked. While this would not prove that every
Opendatasoft portal offers every dataset in CSV, it would should show that
the opposite cannot be proven and would be a very strong indicator that
for the purposes of simplification, the existance of the CSV format can be
assumed without major information loss.

To test this, the crawl_opendatasoft_v2 function from the portal_crawler
script checked every dataset on every Opendatasoft portal for the existence
of a CSV file export option. In the portal statistics created by the function,
we could see that out of 355 total Opendatasoft portals, the only ones for
which the two relevant numbers do not match are 7 portals which could not
be reached and 2 portals which offer so many datasets that the daily API call
rate was exceeded by the function. Thus, it can be concluded that currently,
every dataset on every Opendatasoft portal is available in CSV format.

Based on these results, the crawl_opendatasoft_v2 function was designed
to always assume the availability of CSV. Due to this simplification com-
pared to the experimental code, the number of requests per execution of the
crawling function is reduced by 1 request per dataset (around 91000 as of
August 2023), each taking about 0.5 to 1.5 seconds depending on whether a
1 second delay is used to lighten the load on the used APIs. This reduction
also prevents the issue of reaching the API call limit of 5000 requests per
portal per day which was encountered during the experiment (see figure 5)
and would make it much more complicated to regularly check every dataset
on Opendatasoft portals with more than 5000 datasets.

When using version 1 of the Opendatasoft Search API, assuming CSV
availability is not an option that can be tested, but rather an inevitable

3https://help.opendatasoft.com/faq-glossary/en/faq_index.html

24

necessity since the documentation does not mention any method of retrieving
the available file formats. On a side note, the filename is not preserved when
downloading a dataset via Search API v1, so the downloaded CSV file is only
named "download" and does not have a file extension.

Figure 5: Opendatasoft API call limit.

For Socrata, monitoring the used API versions and adapting the code
to ensure compatibility is less of a concern than for Opendatasoft because
the Socrata Metadata API seems to only have one version [37] and while
the SODA API, a closely related complementary API which allows advanced
operations with datasets via the "/resource/" endpoint, has had multiple ver-
sions, the release intervals are extremely long, with the latest release (v2.1)
dating back to 2015 [38]. Only datasets which are available in a tabular for-
mat or a file format like PDF, KML or ZIP are crawled, as we could not find
consistent methods to build the dataset URL for other file formats. More
specifically, there are multiple ways of obtaining access to a dataset. The first
is by using the "/resource/" endpoint of the SODA API, which is designed
to display the response directly on the site for browser users, and adding
a file extension like .csv or .json to the URL. However, this only works for
tabular data and so the chosen approach for the crawling script is to check
the asset type and depending if it is a (tabular) dataset or a file (typically
PDF, KML or ZIP), to build the dataset URL based on one of two differ-
ent ways of downloading datasets. This means that only datasets which are
available using these two methods are crawled and subsequently indexed - in
the statistics file exported by the crawl_socrata function, these are referred to
as "supported datasets" and counted alongside the total number of datasets,
enabling us to evaluate the benefit of any extensions to be made to the script
in the future. Currently unsupported types include charts, Data Lens pages,
filtered views and maps - in section A.4 of the documentation, we discuss
which types can likely be downloaded just like the "dataset" type, but still
need to be tested.

Our CKAN crawling function has been tested with numerous CKAN ver-
sions ranging from v2.0 to v2.10 and works for all of them, possibly because

25

CKAN’s Action API only has one version. When crawling CKAN portals,
we are looping through the datasets using the "package_search" method and
are only looking for resources, disregarding any datasets that do not have re-
sources. The metadata URL saved in the process is that of the dataset’s
metadata, not the resource’s (very limited) metadata, since the former in-
cludes the latter and additionally contains all of the important descriptive
information about the resource. Since front-end webpages with information
are only available for datasets, not for resources, the source URL is the por-
tal’s API base url plus the path "/dataset/" and the ID of the dataset or
package. Finally, due to the differences in definition described above, we take
the URL of the resource as the dataset URL.

To add crawled datasets and metadata to the ODArchiver, all of our
crawling scripts call the handle_dataset function of our ODArchiver connector
which sends requests to the ODArchiver’s API and queries the new mapping
collection in its MongoDB. First, the function checks if the ODArchiver is
indexing the dataset and metadata already, adding one or both of them if
necessary before getting the IDs assigned by the ODArchiver. Using the IDs,
the existence of the dataset/metadata mapping is checked and in case it is
missing, a new mapping is created.

When adding datasets or metadata to the ODArchiver, the relevant API
method allows the file format to be optionally specified by passing it as an
argument. However, there are no real benefits to passing this parameter,
so it is intentionally omitted in the function. Also, the ODArchiver can
already determine the file type and additional characteristics of tabular data
by analyzing the file without relying on the file extension [40].

URL encoding is an important step when working with the ODArchiver
API’s /get/dataset/url method. Passing unencoded URLs to the method will
not deliver consistent and reliable results as the lookup will fail and return an
empty result for some datasets that are already indexed by the ODArchiver
and for which MongoDB queries targeting "url.href" work without any is-
sues. Subsequently, this makes the handle_dataset function think that the
dataset is not indexed yet, and thus it tries to add it, which in turn does not
work because the dataset is already in the ODArchiver.

Exact duplicates of URLs are recognized by the ODArchiver and so
datasets are not indexed again when trying to add them repeatedly via the
API. Additionally, our handle_dataset function always checks the existence
of any dataset in the ODArchiver first. However, as there is no file-based
deduplication, any cases where the same dataset in the same format can be
downloaded via multiple different data repositories and thus has multiple

26

download URLs are not covered and could lead to duplicates.
In the process of finding out if a dataset is already included by the

ODArchiver, the dataset URL serves as the identifier. However, when us-
ing the Opendatasoft Search API v1, the URL linking to the same file can be
built in different ways, by adding or leaving out parameters like "format" and
"csv_separator" or switching their order. To avoid duplicates, we need to
create the dataset URLs in exactly the same way as when they were originally
added to the ODArchiver. Therefore, we manually queried ODArchiver’s
MongoDB to check dataset URLs that were indexed from Opendatasoft por-
tals using Search API v1, which showed that a majority of them used the for-
mat api/records/1.0/download?dataset={ID}&format={FILE_FORMAT}, so
we used this exact URL format in our crawl_opendatasoft_v1 function.

Since the introduction of the ODArchiver, Opendatasoft’s Search API v1
has already been deprecated and we recommend using our function for the
Explore API v2.1 instead. In version 2 and 2.1 of the Opendatasoft Explore
API, the issue is mitigated because every export URL of a dataset always
has the same URL structure, so there can’t be multiple URLs pointing to the
same dataset in the same format. However, a dataset might still be available
in multiple file formats. For CKAN dataset URLs, there are no such issues
since for every resource there is a single download URL, which is included in
the respective metadata field. On Socrata portals, a dataset can also have
multiple formats and the structure of a download URL depends on the file
type, but we have not encountered more than one way of building the dataset
URL for the same file format.

A more sustainable way around the issue, which would require changes
to the ODArchiver, would be the addition of an API method that makes
it possible to search for datasets by their source URL. The same could be
achieved by using a MongoDB query that checks the source, however both
variations of this approach have two major shortcomings: they rely on cor-
rect and complete source data being present for existing ODArchiver data
and on the source URL remaining constant over time. Given the lack of a
universal persistent identifier across the portals of interest, another possible
solution would be the modification of the ODArchiver so that it saves the
platform-specific identifier to a newly added metadata field. All in all, the
issue highlights the need for persistent identifiers as means of ensuring
the traceability of datasets and enabling long-term monitoring efforts. A pos-
sible solution proposed by Kirstein et al. [17] was mentioned earlier already.

Our dataset/metadata mapping implementation allows more than one
dataset to be mapped to the same metadata in the new "datasets.mappings"
collection of the ODArchiver’s MongoDB, which is important since multiple

27

resources or multiple file formats of the same dataset all share the same
metadata on CKAN, Opendatasoft and Socrata portals.

One of the additional requirements was to design a solution that considers
changes of metadata and enables the extraction of insights like "this metadata
described this dataset from A until B". Since the ODArchiver already has the
capability to crawl indexed datasets periodically and keep track of versions,
the decision to treat the detailed metadata as datasets leads to a simple and
elegant solution, as the versioning features are therefore also extended to the
metadata. Consequently, the database can be queried to retrieve and combine
versioning information for any dataset and the metadata that describes it. By
querying the collection "datasets.files" and specifying the "_id" value taken
from the "datasets" collection as the "filename", it is possible to display
information, including the upload timestamp, about all versions of a dataset,
whether it is an actual dataset or metadata. The discussed requirement
of analyzing the temporal component of each dataset-metadata relationship
can thus be fulfilled by getting pairs of IDs from the collection that maps
datasets to metadata and conducting queries in the described way. However,
in an attempt to achieve easier access and to reduce execution times further,
materializing the metadata mapping and versions at least partially could be
useful.

In this context, it is also worth considering that the dataset or metadata
URL is used as an identifier by the ODArchiver and therefore, if one of the
two URLs changes, the dataset or metadata will not just be indexed again,
but also a new mapping will be added to the collection if the handle_dataset
function is called on the latest dataset and metadata URLs.

4.4 Reproducibility Study Preparation
While a full reproducibility study of ODPW is out of scope of this thesis,
we will prepare future work in this direction by analyzing requirements and
describing the necessary steps to extract metadata from the ODArchiver and
map the different schemas to DCAT to simplify the metadata rating process.
Additionally, we will use the Data Portal Tracker to validate the original
ODPW list of portals and compare our results to those of a study from 2018.

Our system effectively extends the ODArchiver to index not just datasets,
but also metadata. In the future, to fully restore the features of ODPW
regarding quality metrics, metadata indexed by the ODArchiver must be
accessed and analyzed. This brings two major requirements with it:

• The ODArchiver must be able to download and store metadata in

28

any form.

• It must be feasible to extract metadata indexed by the ODArchiver.

Addressing the first point, proof that the ODArchiver can handle arbi-
trary URLs, not just download URLs, and by extension metadata regardless
of whether it is in JSON format or embedded into HTML is provided by
previously indexed webpages4.

With regards to the second requirement, to extract metadata, the desired
version of the metadata needs to be identified, then the file belonging to that
version must be found in the MongoDB collection "datasets.files". After-
wards, all chunked binaries from the collection "datasets.chunks" that make
up the file must be rejoined and decoded using Base64. If the metadata is
not directly present in JSON format, but is contained within HTML code,
the relevant data then has to be extracted in a further step.

Figure 6: DCAT mapping of ODPW [26].

For ODPW, Neumaier et al. converted the metadata schemas of CKAN,
Opendatasoft and Socrata using the DCAT mapping in figure 6. The ac-

4https://archiver.ai.wu.ac.at/api/v1/get/dataset/id/5e8634b5b511a400118c95af

29

companying Python code can be found in ODPW’s GitHub repository5 and
could be used as a starting point for a DCAT mapping to be integrated into a
future extension of our solution. However, a few changes to CKAN’s schema
will have to be considered: "resources.url" now contains the download URL
instead of "resources.download_url" and "frequency" seemingly has been re-
placed by "update_frequency". In Opendatasoft’s API v1, the mapping is
still accurate, while in v2 and v2.1, only the field "datasetid" was renamed to
"dataset_id". Opendatasoft’s metadata schema differs the least from DCAT
out of the three, as it is a subset of DCAT by default and the portal oper-
ator can activate the other DCAT fields6. Some updated fields can also be
observed in the Socrata API, which is the only of the three that provides an
easily accessible and complete metadata schema [37]. The field "viewLast-
Modified" was replaced by "metadataUpdatedAt" and the fields "owner" and
"tableAuthor" do not exist anymore, however this information can now be
provided using "attribution" and within the nested set of "customFields".
Also, there is no "licenseId", only a "license".

CKAN additionally offers a DCAT extension that enables the retrieval
of metadata using DCAT7. We checked the availability of this extension and
of the Turtle / RDF catalog for all CKAN portals on our new list. Our code
is available in the experiments notebook and detailed results can be found
in table 15 in the results chapter, but in short, only about a third of CKAN
portals support these features. From these portals, DCAT metadata can
be crawled and used directly without a conversion, however, the question is
whether the benefits offset the increased effort and complexity of creating
two separate processes for both types of CKAN portals and constantly keep-
ing track of the extension support.

One contribution to portal monitoring that we can already provide thanks
to our new system is an analysis of the evolution of ODPW’s original
portal list. We used the Data Portal Tracker to validate these portals’ activity
status and find out if they still have a functional CKAN, Opendatasoft or
Socrata API. To get a better idea of how these portals have evolved over
time, we compared our results to the original numbers from 2016 [26], the
state of the list in 2019 [22] and a study from 2018 by Correa et al. [9] who
performed a validation of the ODPW portals. Our findings and the detailed
comparisons are presented in tables 13 and 14 and are discussed in the results
chapter below.

5https://github.com/sebneu/portalwatch
6https://help.opendatasoft.com/faq-glossary/en/faq_index.html
7https://extensions.ckan.org/extension/dcat

30

5 Evaluation and Future Work
Now that the implementation details of the Data Portal Tracker have been
thoroughly covered, we will evaluate the degree of goal attainment, present
our initial results, report on the limitations that have become clear in the
process and offer our suggestions for possible future work.

5.1 Evaluation of Goal Attainment
In the implementation chapter, we described all functional and technical as-
pects of our system that address the given goals and requirements in depth.
To provide a much more compact summary, we will now present two ta-
bles that contain information on the attainment of goals and requirements.
Starting with the functional goals we defined earlier, table 3 gives a concise
overview of how each of them has been achieved.

Table 3: Attainment of the functional goals.

Code Description

F.1 Portal discovery and validation implemented

F1.1 Semi-automated: search engine APIs, lists, manual additions

F1.2 Two-step validation: HTML markers, API functionality

F1.3 Two types of manual additions: domain, endpoint

F.2 Open Data monitoring capabilities restored

F.2.1 Dataset archiving extended to metadata

F.2.2 Mapping between datasets and metadata implemented

F.3 ODPW reproducibility studies prepared

F3.1 Evolution of ODPW’s portal list analyzed

F3.2 Workflow for accessing metadata documented

Moving on, table 4 outlines the steps we have taken to design our system
in ways that meet the given technical requirements.

31

Table 4: Attainment of the technical requirements.

Code Description

T.1 Resources managed

T1.1 Hardware use minimized: search engine queries via APIs

T1.2 HTTP requests minimized: two-step validation, CSV assumption

T1.3 Information loss minimized: multi-step URL deduplication

T.2 ODArchiver used and extended

T.2.1 Crawler adds datasets/metadata to ODArchiver via its API

T.2.2 Mapping collection created in ODArchiver’s MongoDB

T.2.3 Old datasets in ODArchiver corpus can be enriched

T.3 Sustainable and well-documented architecture created

T3.1 Code written in Python 3, requirements list provided

T3.2 Comments, docstrings, READMEs and notebooks used

T3.3 Thesis appendix contains detailed system documentation

5.2 Initial Results
After implementing and testing the Data Portal Tracker, we used it to cre-
ate and validate a new portal list and subsequently count all datasets and
resources of the portals. We will now present our results, collected from
August to September 2023, and compare them to those of previous studies
in the context of the respective system design. Moreover, we will show the
evolution of the portals on ODPW’s list from 2016 to 2023 as well as the
outcomes of our DCAT extension availability check among CKAN portals.

First up, table 5 shows the results of our initial portal discovery and
validation run which involved only a limited number of performed search
queries. After collecting URLs from various sources, reducing them to their
base URLs and removing duplicates, there are more than 5000 websites on
the list. A little over 4000 of them were found to be active, the rest could not
be reached or timed out. For now, only 4 portals with known API endpoints
on subpages were manually added as an initial test of this feature. Our first
validation step detected validation markers in the HTML code of 768 sites,
while the second step found 717 portals with a working API. After the second

32

deduplication at the end of the pipeline, our list has 705 working portals.

Table 5: Portal API validation results.

Total Active Inactive Subpage Markers Working Unique
5 539 4 380 1 159 4 768 717 705

Looking at the platform-specifc results in table 6, we can see that
there are 355 unique Opendatasoft portals while 224 are based on CKAN
and the other 126 use Socrata. We can also observe the difference between
the number of sites with validation markers and the number of portals with
working APIs which could be an indicator of the quality of our validation
markers. Only the results for CKAN show a sizeable gap in this regard while
for the other portal solutions, the marker-based validation had a precision
of almost 100 percent as almost all sites suspected to have a working API
actually had one.

Table 6: Validation results per API software.

Software Markers Working Unique
CKAN 276 233 224

Opendatasoft 362 356 355
Socrata 130 128 126

Upon inspection of the specific HTML markers found on CKAN portals,
we have realized that there are some obvious false positives, for example due
to the "Powered by" marker which is an HTML element
that can not only be followed by a CKAN logo on CKAN portals, but,
among others, also by a logo of the Dataverse project8 on portals using this
software, e.g. the Harvard Dataverse or the Australian Data Archive.

However, these false positives are rather limited in number and a manual
check of the relevant sites revealed that most cases can be attributed to non-
standard API endpoints on subpages, unmaintained sites with broken APIs
or instances where a portal has both validation markers and a working API,
but each are located exclusively at different subdomains. An example of the
latter is the Open Data portal of the City of York, which uses a subdomain
for its working CKAN API9, while validation markers can only be found in
the HTML code of the front-end10.

8https://dataverse.org
9https://data.yorkopendata.org

10https://www.yorkopendata.org

33

Subsequently, we moved on to counting and aggregating the number of
datasets and resources on each portal. As shown in table 7, we found more
than 3 million datasets and almost 7 million resources or datasets in
export formats supported by our crawling functions, respectively. To know
how much data the ODArchiver will have to index when our system crawls all
of these portals, we can estimate the number of unique metadata pages to be
3 million, as resources do not have separate metadata. Therefore, based on
the number of resources and supported datasets plus the related metadata,
we can estimate the total sum to be around 10 million dataset and metadata
entities. However, we have to keep in mind that the ODArchiver enforces a
file size limit and does not index any datasets/resources exceeding it. Still,
for comparison, the ODArchiver corpus currently consists of less than 1.2
million datasets/resources, which indicates that our system will extend the
institute’s portal monitoring capabilities significantly. Note that the much
higher number of files presented on the ODArchiver webpage includes all
versions of a dataset or resource11. Also, when checking a large list of portals,
not every single one will always be reachable, thus there is a slight difference
between the number of portals in table 6 and the number of portals on which
the data in table 7 is based. In total, 692 portals responded to our requests
during this check (349 Opendatasoft, 218 CKAN, 125 Socrata).

Table 7: Datasets, supported datasets and resources per API software.

Software
Datasets Resources/Supported

Total Average Total Average
CKAN 2 729 379 12 520 6 680 682 30 645

Opendatasoft 90 636 260 90 636 260
Socrata 186 603 1 493 64 097 513
Total 3 006 618 4 345 6 835 415 9 878

For each portal software, we extracted the detailed results per portal and
compiled the largest 5 portals in terms of resources or supported datasets, as
this is the most relevant metric for our system. The resulting numbers are
sorted in descending order and are presented in tables 8, 9 and 10. Starting
with the largest CKAN portals, the top 5 are accounting for 78 percent
of all resources on more than 200 CKAN portals, with the top 2 alone mak-
ing up 69 percent, highlighting a strong imbalance in the size of Open Data
portals.

11https://archiver.ai.wu.ac.at/stats

34

Table 8: Largest CKAN portals by resources.

Portal Datasets Resources
https://data.amerigeoss.org 647 468 3 064 339

https://catalog.data.gov 250 615 1 554 272
https://data.gov.ua 29 243 225 757

https://ckan.publishing.service.gov.uk 56 145 213 544
https://scmb-ckan-dev.research.dc.uq.edu.au 1 343 182 581

Looking at the largest Opendatasoft portals, we can immediately find
a potential duplicate as the numbers in spots 3 and 4 are matching exactly
and indeed, both domains can be attributed to the French administrative
region of Occitania. Our understanding of the Opendatasoft Data Hub is that
every single dataset published on any Opendatasoft portal is automatically
also made available on the Data Hub12. Naturally, it is therefore ranked
number 1, however it only lists 35 percent of all Opendatasoft datasets we
discovered as opposed to 50 percent. Thus, either the Data Hub does not
fully cover every portal or there is a much higher level of duplication between
portals than we have confirmed so far.

Table 9: Largest Opendatasoft portals by supported datasets.

Portal Datasets Supported
https://data.opendatasoft.com 31507 31507

https://smartregionidf.opendatasoft.com 8777 8777
https://data.laregion.fr 1601 1601

https://occitanie.opendatasoft.com 1601 1601
https://analyzejerseycity.opendatasoft.com 1256 1256

In the table of the largest Socrata portals, there is also an obvious
duplicate as portals number 1 and 2 have the same dataset count. As it
turns out, both domains belong to the Open Data portal of Colombia. For
future extensions to the Data Portal Tracker, such cases should be addressed,
whether by manually keeping a list of domains or by finding an automated
solution that is carefully calibrated so as not to lead to information loss.

We will now compare the results of multiple studies on data portal
discovery that we mentioned in the literature chapter. Table 11 lists how

12https://www.opendatasoft.com/en/blog/what-is-the-opendatasoft-data-hub/

35

Table 10: Largest Socrata portals by supported datasets.

Portal Datasets Supported
https://www.datos.gov.co 31 484 6 786

https://colombia-mintic.data.socrata.com 31 484 6 786
https://data.ny.gov 5 681 4 172

https://dati.lombardia.it 5 542 3 376
https://bronx.lehman.cuny.edu 4 319 3 209

many CKAN, Opendatasoft and Socrata portals were found in the ODPW
study by Neumaier et al., in three consecutive studies by Correa et al. and
in the first run of our Data Portal Tracker. In total, our number of identified
APIs is similar to those of the studies in which Common Crawl archives were
used. We found more Opendatasoft portals and fewer CKAN and Socrata
portals, which might have been impacted by our sources, particularly the
web lists, and would be an interesting issue to investigate in future work.

Table 11: Portal API validation results of different studies.

Study Year CKAN Opendatasoft Socrata Total
Neumaier et al. [26] 2016 148 11 102 261

Correa et al. [9] 2018 185 39 132 356
Correa & Silva [8] 2019 351 167 201 719
Correa et al. [7] 2020 439 143 255 837

Data Portal Tracker 2023 224 355 126 705

Details on each study’s methodology were already covered in the literature
chapter, but to put the results in context, table 12 offers essential information
regarding the chosen data sources at a glance.

Table 12: Portal API sources of different studies.

Study Manual Lists Common Crawl Search API
Neumaier et al. [26] 3

Correa et al. [9] 3

Correa & Silva [8] 3

Correa et al. [7] 3

Data Portal Tracker 3 3 3

36

Table 13 shows the evolution of portals with working APIs on ODPW’s
list from 2016 to 2023. The initial data from 2016 was taken from the original
ODPW study, while the data point for 2018 is based on results we found in
one of the mentioned studies by Correa et al. ODPW’s GitHub repository
contains a portals.ttl file updated in 2019 which provided us with the data for
that year. We created the results for 2023 by validating the latest version of
the ODPW list using the Data Portal Tracker.

Table 13: Evolution of working portal APIs on the ODPW list.

Study Year CKAN Opendatasoft Socrata Total
Neumaier et al. [26] 2016 148 11 102 261

Correa et al. [9] 2018 85 10 77 172
Neumaier et al. [22] 2019 118 11 65 194
Data Portal Tracker 2023 61 9 46 116

In table 14, "All" refers to the raw portal list and "Relevant" denotes the
list after keeping only portals marked as CKAN, CKANDCAT, Opendatasoft
or Socrata, changing CKANDCAT to CKAN by truncating the "/catalog.ttl"
path and removing the resulting duplicates. "(In-)active" means that the site
could (not) be reached and "Working" counts all portals with working APIs.

Table 14: Detailed validation results for the ODPW list.

Study All Relevant Inactive Active Working
Neumaier et al. [26] 261 261 0 261 261

Correa et al. [9] - 267 37 230 172
Neumaier et al. [22] 278 267 76 191 191
Data Portal Tracker 278 267 90 177 116

Socrata portals show a gradual decline over the years, while the few Open-
datasoft portals on the list remained almost constant. Only the CKAN por-
tals show a sudden increase in 2019, also leading to an overall increase of
working portals compared to 2018. However, one limitation of this compari-
son is the uncertainty regarding methodological differences. Particularly, the
data from 2019 does not differentiate between active and working portals. It
is not fully clear whether the ODPW maintainers exchanged certain inactive
portals for active ones over time, whether any broken URLs were corrected
or whether the "active" label from the list can even be equated to "working",

37

as we do not know the exact procedures regarding the list updates. Addi-
tionally, Correa et al. might have had a similar approach regarding filtering
the raw list - in this case, the value for "All" for 2018 would be the same as
that for 2023 if the list did not change from 2018 to 2019. The data we are
most confident about is found in the columns on inactive and active portals
in table 14, showing a steady decrease in active portals, with 68 percent
of portals still being active 7 years after the first study. Fully operational
portals that did not change the path of their API endpoint or implement
an API software other than CKAN, Opendatasoft or Socrata are even less
common, as we could only find a working API on 44 percent of portals.

Table 15: CKAN portals with enabled DCAT extension.

Total Checked DCAT extension TTL catalog
224 217 77 68

Finally, we investigated which degree of availability of CKAN’s DCAT
extension can be assumed in future work by counting the CKAN portals on
our list whose API response showed the extension to be enabled. Addition-
ally, we also checked whether a Turtle / RDF catalog was present. Table
15 shows that only 35 percent of portals that successfully responded to our
request made use of the DCAT exension, while 31 percent featured a Turtle
/ RDF catalog.

5.3 Limitations and Future Work
During development, testing and evaluation of the Data Portal Tracker, we
encountered a number of weaknesses of the system, came up with possible
extensions and improvements and thought of several ways in which the newly
available tools and data could be used for further analyses and research.

First up, the most significant limitation is a bug in the ODArchiver
that will hopefully be fixed soon. All functions of the ODArchiver required
for development and testing of our system work fine up until and includ-
ing the point where it indexes the dataset and metadata, which success-
fully are assigned an ID. Additionally, regular crawls of existing datasets
in ODArchiver’s corpus seem to work, as new versions of datasets are still
added to the MongoDB. For newly added datasets and metadata, however,
the timestamps indicate that crawls are performed, but the downloading of
data does not work as the actual files never end up in the MongoDB.

38

After this bug is fixed and the datasets and metadata of all new portals
have been crawled, the logical next step will be to implement the mentioned
DCAT mapping, fully restore ODPW’s capabilities and resume calculating
metadata scores, both for ODPW’s portals in a reproducibility study and
for all new portals we discovered.

Regarding the crawling, it could also be worth investigating the possible
issue of the ODArchiver’s crawling being out of sync between datasets
and the related metadata in the future due to the ODArchiver’s dynamic
crawling frequency. First, it should be analyzed how much they are out of
sync and if necessary, actions should be taking to synchronize the crawls of
datasets and the associated metadata, for example using the mapping infor-
mation. Of course, this would require a modification of the ODArchiver’s
code.

We have documented the required steps for adding another portal
software to the system in detail in the appendix, and one such Open Data
platform software that could be of interest for a future addition is ArcGIS13.
Piveau, which powers data.europa.eu, could also be considered. However,
when extending the Data Portal Tracker by adding support for data.europa.eu
or other sites that aggregate datasets from many individual portals, a strat-
egy should first be defined to avoid duplicates of datasets that originate from
sources that we already support and index.

Also, a method for detecting duplicates in cases where the same datasets
are offered for download on multiple portals should be defined and imple-
mented. In such instances, the same datasets might be hosted on multiple
different portals or on the same portal using multiple domain names (such
as the covered examples of Colombia and the French region of Occitania).
Mitigation might involve analyzing the file contents and manually examining
any matching numbers of datasets on multiple portals.

Concerning the portal discovery pipeline, highly interesting insights might
be generated by researching the detailed impact of each data source on
the final list of portals by running the complete list creation and validation
process once per source while temporarily removing all other data inputs
within the create_list function and comparing the results.

Currently, Crawley is operated by manually calling the script on the com-
mand line and passing the search parameters. In the future, this could be
fully automated by defining a fixed set of search terms and writing a function
that lets the system request the queries automatically upon execution.

13https://www.esri.com/en-us/arcgis/products/arcgis-open-data

39

Checking the activity status of a portal could be improved. With the
current approach, some active portals are not included, but rather labeled
as inactive. For example, the data portal of New York City has a working
Socrata API endpoint14, but accessing the base URL15 returns the HTTP
code 403 (Forbidden) when requesting it via the Python script. This is be-
cause the front-end of the portal uses a different domain16 which users access-
ing the API’s base URL via their browser are redirected to. More broadly,
the general approach to activity checking the websites in the pipeline could
be simplified and improved. For example, the add_prefixes function which
requests the base URL to check website activity could be called in the sub-
sequent list validation function. Instead of calling these two functions in
separate steps, integrating them would allow the activity check to also take
advantage of the validation function’s already existing ability to retry failed
sites. Not only would very short outages no longer lead to websites being
marked inactive and skipped in the validation, but this change could also
contribute to addressing the varying availability of certain portals encoun-
tered in testing and would simplify the regular reevaluation of portals that
were unavailable at an earlier point.

Going forward, improvements in this area could contribute to a more
detailed analysis on why specific portals are still active and can be reached,
but do not have a working API at the known and tested path anymore. For
this purpose, it would be helpful to capture and analyze the status code and
the complete exception instead of just the type.

Fine-tuning the validation markers could help reduce the number of
marker-related false positives. For example, there are certain domains that
appear repeatedly in search results and might contain validation markers,
but almost certainly do not host a valid Open Data portal using CKAN,
Opendatasoft or Socrata. Subdomains like *github.com, *github.io, *soft-
onic.com and websites like https://ckan.org could be removed from the list
or even passed as parameters to the search engine queries to be excluded
from the beginning.

While functionality to manually add portals featuring an API endpoint
on a non-standard subpage has been implemented in the Data Portal
Tracker, carrying out the associated tasks is now up to the future users of
the system. To search for more portals like these, the CSV file containing the
validation results can be used as a starting point. Relevant cases are portals
on which API markers were found, but for which no working API could be

14https://data.cityofnewyork.us/api/views/metadata/v1
15https://data.cityofnewyork.us
16https://opendata.cityofnewyork.us

40

verified. After identifying a portal, its HTML code should be accessed to
look for portal software indicators and the JSON file containing the markers
found on the site during the validation should be consulted to determine if the
validation markers need fine-tuning. In the experiments notebook, we have
provided code in the section "Checking false positives of marker validation"
to help identify relevant cases.

41

6 Conclusion
Data published by governments or companies free of charge and without us-
age restrictions in Open Data portals can have significant economic value and
positive societal impacts. However, to achieve these benefits, certain charac-
teristics like usability and discoverability play a vital role and are facilitated
by high-quality metadata. Open Data monitoring solutions are keeping track
of these aspects and are compiling lists of available portals. However, portal
lists are typically either created manually or use methods that are extremely
resource-intensive and not dynamic, while many metadata monitoring plat-
forms, including WU’s ODPW, are no longer fully operational.

In this thesis, we presented the Data Portal Tracker, an integrated solu-
tion for portal discovery, validation and monitoring as well as dataset and
metadata crawling. It features a semi-automated system to dynamically dis-
cover Open Data portals by querying search engines via the tool Crawley and
combines the results with web lists and manual additions. After deduplicat-
ing the websites and checking their activity status and HTTPS support, all
potential portals are validated in a two-step process based on HTML mark-
ers and API functionality testing. Our system was built with support for
the portal software options CKAN, Opendatasoft and Socrata, but can be
extended by following the steps documented in the appendix of the thesis.
Additionally, the Data Portal Tracker crawls all dataset and metadata URLs
from each portal and sends them to the ODArchiver, a data archiving and
versioning tool whose prior functionality was extended: instead of only in-
dexing datasets, metadata is now also included.

Our initial results show 705 functional portals using CKAN, Opendatasoft
or Socrata, a significant increase over ODPW’s 261 identified portals and
comparable to more resource-intensive and less dynamic solutions found in
literature. We further analyzed the evolution of the ODPW portals since
2016 and found that 68 percent of sites are still active and 44 percent still
feature a working API based on one of the three studied software solutions.
Archiving all datasets, resources and metadata of all portals on our new list
will be the basis for a future metadata rating system to replace the related
features of ODPW and will lead to the ODArchiver crawling 10 million URLs,
vastly expanding its corpus of currently 1.2 million records.

While the Data Portal Tracker is a dynamic and extensible solution,
makes use of the highly scalable ODArchiver and provides interesting first
results, there is still room for improvement in future work. By providing
detailed technical documentation, we want to facilitate extensions to our sys-
tem that add support for additional portal software or implement metadata
quality rating mechanisms.

42

References
[1] Directive (EU) 2019/1024 of the European Parliament and of the Coun-

cil of 20 June 2019 on open data and the re-use of public sector informa-
tion (recast). Official Journal of the European Union, L 172, 62:56–83,
June 2019.

[2] Commission Implementing Regulation (EU) 2023/138 of 21 December
2022 laying down a list of specific high-value datasets and the arrange-
ments for their publication and re-use (Text with EEA relevance). Of-
ficial Journal of the European Union, L 019, 66:43–75, January 2023.

[3] Husam Barham, Marina Dabic, Tugrul Daim, and Dara Shifrer. The
role of management support for the implementation of open innovation
practices in firms. Technology in Society, 63:101282, November 2020.

[4] Omar Benjelloun, Shiyu Chen, and Natasha Noy. Google Dataset Search
by the Numbers. In Jeff Z. Pan, Valentina Tamma, Claudia d’Amato,
Krzysztof Janowicz, Bo Fu, Axel Polleres, Oshani Seneviratne, and
Lalana Kagal, editors, The Semantic Web – ISWC 2020, volume 12507,
pages 667–682. Springer International Publishing, Cham, 2020. Series
Title: Lecture Notes in Computer Science.

[5] BuiltWith. Websites using CKAN. URL:
https://trends.builtwith.com/websitelist/CKAN. Last accessed: 14
March 2023.

[6] Soumen Chakrabarti, Martin Van Den Berg, and Byron Dom. Focused
crawling: a new approach to topic-specific Web resource discovery. Com-
puter Networks, 31(11-16):1623–1640, May 1999.

[7] Andreiwid Sheffer Correa, Alencar Melo Jr., and Flavio Soares Cor-
rea Da Silva. A deep search method to survey data portals in the whole
web: toward a machine learning classification model. Government In-
formation Quarterly, 37(4):101510, October 2020.

[8] Andreiwid Sheffer Correa and Flavio Soares Correa Da Silva. Laying
the foundations for benchmarking open data automatically: a method
for surveying data portals from the whole web. In Proceedings of the
20th Annual International Conference on Digital Government Research,
pages 287–296, Dubai United Arab Emirates, June 2019. ACM.

[9] Andreiwid Sheffer Correa, Pär-Ola Zander, and Flavio Soares Correa Da
Silva. Investigating open data portals automatically: a methodology

43

and some illustrations. In Proceedings of the 19th Annual International
Conference on Digital Government Research: Governance in the Data
Age, pages 1–10, Delft The Netherlands, May 2018. ACM.

[10] Horia-Stefan Dinu and Nicolas Ferranti. GitLab - Portalwatch API,
2021. URL: https://git.ai.wu.ac.at/ferranti/portalwatch_api. Last ac-
cessed: 8 September 2023.

[11] Daniil Dobriy and Axel Polleres. Crawley: A Tool for Web Platform
Discovery. In Proceedings of the 22nd International Semantic Web Con-
ference, 2023.

[12] Directorate-General for the Information Society and Media Euro-
pean Commission. Commercial exploitation of Europe’s public sector
information: executive summary. Publications Office of the European
Union, Luxembourg, 2000.

[13] Open Knowledge Foundation. API guide - CKAN 2.10.1 documentation.
URL: https://docs.ckan.org/en/2.10/api/. Last accessed: 10 September
2023.

[14] Open Knowledge Foundation. Data Portals. URL:
https://dataportals.org. Last accessed: 25 May 2023.

[15] Christian Philipp Geiger and Jörn Von Lucke. Open Government and
(Linked) (Open) (Government) (Data). JeDEM - eJournal of eDemoc-
racy and Open Government, 4(2):265–278, December 2012.

[16] Marijn Janssen, Yannis Charalabidis, and Anneke Zuiderwijk. Benefits,
Adoption Barriers and Myths of Open Data and Open Government.
Information Systems Management, 29(4):258–268, September 2012.

[17] Fabian Kirstein, Anton Altenbernd, Sonja Schimmler, and Manfred
Hauswirth. A Decentralised Persistent Identification Layer for DCAT
Datasets. In Companion Proceedings of the ACM Web Conference 2023,
pages 1424–1427, Austin TX USA, April 2023. ACM.

[18] Fabian Kirstein, Kyriakos Stefanidis, Benjamin Dittwald, Simon
Dutkowski, Sebastian Urbanek, and Manfred Hauswirth. Piveau: A
Large-Scale Open Data Management Platform Based on Semantic
Web Technologies. In Andreas Harth, Sabrina Kirrane, Axel-Cyrille
Ngonga Ngomo, Heiko Paulheim, Anisa Rula, Anna Lisa Gentile, Peter
Haase, and Michael Cochez, editors, The Semantic Web, volume 12123,

44

pages 648–664. Springer International Publishing, Cham, 2020. Series
Title: Lecture Notes in Computer Science.

[19] Erik Lakomaa and Jan Kallberg. Open Data as a Foundation for In-
novation: The Enabling Effect of Free Public Sector Information for
Entrepreneurs. IEEE Access, 1:558–563, 2013.

[20] Martin Lnenicka and Anastasija Nikiforova. Transparency-by-design:
What is the role of open data portals? Telematics and Informatics,
61:101605, August 2021.

[21] Johann Mitlohner, Sebastian Neumaier, Jurgen Umbrich, and Axel
Polleres. Characteristics of Open Data CSV Files. In 2016 2nd Interna-
tional Conference on Open and Big Data (OBD), pages 72–79, Vienna,
August 2016. IEEE.

[22] Sebastian Neumaier. GitHub - Open Data Portal Watch, 2019.
URL: https://github.com/sebneu/portalwatch. Last accessed: 26 Au-
gust 2023.

[23] Sebastian Neumaier. Semantic enrichment of open data on the Web -
or: how to build an open data knowledge graph. PhD thesis, TU Wien,
2019.

[24] Sebastian Neumaier, Lörinc Thurnay, Thomas J. Lampoltshammer, and
Tomá Knap. Search, Filter, Fork, and Link Open Data: The ADE-
QUATe platform: data- and community-driven quality improvements.
In Companion of the The Web Conference 2018 on The Web Conference
2018 - WWW ’18, pages 1523–1526, Lyon, France, 2018. ACM Press.

[25] Sebastian Neumaier and Jürgen Umbrich. Measures for Assessing the
Data Freshness in Open Data Portals. In 2016 2nd International Con-
ference on Open and Big Data (OBD), pages 17–24, Vienna, August
2016. IEEE.

[26] Sebastian Neumaier, Jürgen Umbrich, and Axel Polleres. Automated
Quality Assessment of Metadata across Open Data Portals. Journal of
Data and Information Quality, 8(1):1–29, November 2016.

[27] Sebastian Neumaier, Jürgen Umbrich, and Axel Polleres. Lifting Data
Portals to the Web of Data. In Workshop Proceedings of the 10th Work-
shop on Linked Data on the Web (LDOW2017), Perth, Australia, 2017.
CEUR Workshop Proceedings.

45

[28] University of Oxford. FAIRsharing | Databases. URL:
https://fairsharing.org/search?fairsharingRegistry=Database. Last
accessed: 14 March 2023.

[29] Karlsruhe Institute of Technology. Registry of Research Data Reposito-
ries. URL: https://www.re3data.org. Last accessed: 14 March 2023.

[30] Publications Office of the European Union. Metadata Quality | Offi-
cial Portal for EU Data. URL: https://data.europa.eu/mqa/?locale=en.
Last accessed: 26 August 2023.

[31] OpenDataMonitor. European Data Catalogues Overview. URL:
https://opendatamonitor.eu/frontend/web/index.php?r=datacatalogue/list.
Last accessed: 19 September 2023.

[32] OpenDataMonitor. FAQ | Open Data Monitor Knowledge Base. URL:
http://knowhow.opendatamonitor.eu/help/. Last accessed: 28 August
2023.

[33] Opendatasoft. Open Data Inception. URL:
https://data.opendatasoft.com/explore/dataset/open-data-
sources@public. Last accessed: 27 August 2023.

[34] Opendatasoft. Opendatasoft’s Explore API Reference Documentation
(v2.1). URL: https://help.opendatasoft.com/apis/ods-explore-v2/. Last
accessed: 10 September 2023.

[35] Opendatasoft. Search API v1 documentation. URL:
https://help.opendatasoft.com/apis/ods-search-v1/. Last accessed:
10 September 2023.

[36] Per Runeson, Thomas Olsson, and Johan Linåker. Open Data Ecosys-
tems — An empirical investigation into an emerging industry collabora-
tion concept. Journal of Systems and Software, 182:111088, December
2021.

[37] Socrata. Metadata API. URL:
https://socratametadataapi.docs.apiary.io. Last accessed: 10 September
2023.

[38] Tyler Technologies. API Endpoints | Socrata. URL:
https://dev.socrata.com/docs/endpoints.html. Last accessed: 10
September 2023.

46

[39] World Wide Web Consortium (W3C). Data Catalog Vo-
cabulary (DCAT) - Version 2, February 2020. URL:
https://www.w3.org/TR/vocab-dcat-2. Last accessed: 5 Septem-
ber 2023.

[40] Thomas Weber, Johann Mitöhner, Sebastian Neumaier, and Axel
Polleres. ODArchive – Creating an Archive for Structured Data from
Open Data Portals. In Jeff Z. Pan, Valentina Tamma, Claudia d’Amato,
Krzysztof Janowicz, Bo Fu, Axel Polleres, Oshani Seneviratne, and
Lalana Kagal, editors, The Semantic Web – ISWC 2020, volume 12507,
pages 311–327. Springer International Publishing, Cham, 2020. Series
Title: Lecture Notes in Computer Science.

[41] Bianca Wentzel, Fabian Kirstein, Torben Jastrow, Raphael Sturm,
Michael Peters, and Sonja Schimmler. An Extensive Methodology and
Framework for Quality Assessment of DCAT-AP Datasets. In Ida Lind-
gren, Csaba Csáki, Evangelos Kalampokis, Marijn Janssen, Gabriela
Viale Pereira, Shefali Virkar, Efthimios Tambouris, and Anneke Zuider-
wijk, editors, Electronic Government, volume 14130, pages 262–278.
Springer Nature Switzerland, Cham, 2023. Series Title: Lecture Notes
in Computer Science.

[42] Anneke Zuiderwijk, Marijn Janssen, Kostas Poulis, and Geerten Van
De Kaa. Open data for competitive advantage: insights from open data
use by companies. In Proceedings of the 16th Annual International Con-
ference on Digital Government Research, pages 79–88, Phoenix Arizona,
May 2015. ACM.

47

A Documentation
As a successor to Open Data Portal Watch (ODPW) [26], the Data Portal
Tracker aims to semi-automatically create, validate and regularly update a
comprehensive list of Open Data portals, crawl the URLs of all datasets and
the associated metadata on these portals and add them to the Open Dataset
Archiver (ODArchiver) [40] for downloading, periodic crawling and version
tracking. It consists of the core Data Portal Tracker functionality and an
adapted version of Daniil Dobriy’s search engine crawling tool Crawley [11]
and connects to the ODArchiver’s API and MongoDB.

The subsequent documentation chapters and the extensive comments in
the code aim to provide the reader with a thorough understanding of the
tool’s functionality and will enable them to try out, deploy, improve and
extend the code. A concise version of the information presented in this
section can be found in the README files in the Git repository17 - see
README.md and crawley-lite/README.md.

Even though testing has shown no major issues, we recommend perform-
ing manual sanity checks whenever results seem odd. If you want to improve
this tool and need a starting point, please see the limitations and future
work chapter of the thesis. Requirements for extracting metadata from the
ODArchiver as a first step towards a metadata rating system can be found
in section 4.4 in the main part of the thesis. Additionally, chapter A.8 below
outlines the technical steps to add support for other portal software options.

Chapter A.1 shows the necessary steps to deploy the system.

Chapter A.2 covers search engine portal discovery using Crawley.

Chapter A.3 describes the list creation and validation pipeline.

Chapter A.4 presents the four crawling scripts.

Chapter A.5 explains how the crawling scripts connect to the ODArchiver.

Chapter A.6 outlines the helper functions.

Chapter A.7 gives an overview of the experiments that we carried out.

Chapter A.8 provides details on how to extend the system.
17https://git.ai.wu.ac.at/h1613073/data_portal_tracker

48

A.1 Deploying the system
Before deploying the Data Portal Tracker, first install the Python libraries
listed in the requirements.txt file in the project’s root directory.

To use the full functionality of the system and be able to connect to the
ODArchiver’s production MongoDB and use the method of the ODArchiver
API that posts resources, request the .env file from the institute’s system
administrators and save it in the project’s root directory. While the repos-
itory includes an .env_example file, it does not contain the API secret and
the MongoDB connection strings.

The ODArchiver’s MongoDB uses a Kubernetes cluster and is currently
running on three nodes, that’s why there are three production connection
strings in the .env file and multiple try/except blocks in the __init__
method of the ArchiverConnector class that try out these strings. A vir-
tual machine provided by the institute is needed to connect to these nodes,
each of which has a port that was opened for this purpose.

Whenever the ArchiverConnector class, which is defined in the
data_portal_tracker/archiver_connector.py script, is instantiated, for exam-
ple after importing it into the data_portal_tracker/portal_crawler.(ipynb|py)
script, the argument "mode" must be set to "production" instead of "local".

Checklist:
• Install Python libraries

• Save .env file to project root

• Use "[...]ai.wu.ac.at" virtual machine

• Call ArchiverConnector(mode = "production")

For brevity, some of the subsequent Python function call examples will
only be shown in the short form used within a script (see listing 1), but the
functions can of course also be executed on the command line (see listing 2).

1 crawl_ckan(portal_list, "data/portal_statistics_ckan.csv")

Listing 1: Function call within a script

1 python3 -c 'from portal_crawler import *;
crawl_ckan(portal_list, "data/portal_statistics_ckan.csv")',!

Listing 2: Function call on the command line

49

A.2 Search engine portal discovery
Path: crawley-lite/.*

The tool Crawley, which we use for portal discovery via search engine
APIs, was provided by Daniil Dobriy [11] and subsequently adapted and
simplified for our use case. Also, parts of our documentation related to the
tool were taken over and edited.

When using Crawley, make sure that there are SerpAPI keys in the
crawley-lite/keys.txt file. If there are none, register for a free account and
add keys to the file. In order to perform a Google search for "Open Data
Portal", use the command line to navigate to the crawley-lite directory and
execute the crawley-lite/crawley-lite.py script:

1 python3 crawley-lite.py --query "Open Data Portal" --engine
Google --count 100 --offset 0,!

Listing 3: Portal discovery: basic search engine query

For Google searches, there are up to 100 results per query - the number
of results to be returned is controlled by the parameter --count, while the
number of results to be skipped is controlled by the parameter --offset. In
pagination terms, when showing 100 results per page, you can skip to page
2 by specifying an offset of 100, to page 3 with an offset of 200 and so on.

1 python3 crawley-lite.py --query "Open Data Portal" --engine
Google --count 100 --offset 100,!

Listing 4: Portal discovery: search engine query with offset

Just like on the web interface, quotes can be used for exact matches (and
must be escaped when using the same type of quotes for the whole search
query) and search operators can restrict the results to certain domains or
exclude domains.

1 python3 crawley-lite.py --query "site:*.opendatasoft.com \"Open
Government Data\" -site:data.opendatasoft.com" --engine
Google --count 100 --offset 0

,!

,!

Listing 5: Portal discovery: search engine query with search operators

50

Search results returned by the API are saved to JSON files in the crawley-
lite/results folder. These files are later used as input files in the portal_handler
script in the data_portal_tracker project directory, which extracts all of the
organic result URLs and adds them to the list creation and portal validation
pipeline.

Listing 6 shows the first organic search result in one of the JSON files
mentioned above and gives an idea of the additional, currently unused data
that is available for potential further refinement of the system in the future:

1 {
2 "position": 1,
3 "title": "Data.gov CKAN API - Catalog",
4 "link":

"https://catalog.data.gov/dataset/data-gov-ckan-api",,!

5 "displayed_link": "https://catalog.data.gov > dataset >
data-gov-ckan-api",,!

6 "date": "Nov 10, 2020",
7 "snippet": "The data.gov catalog is powered by CKAN, a

powerful open source data platform that includes a robust
API. Please be aware that data.gov and ...",

,!

,!

8 "snippet_highlighted_words": [
9 "powered by CKAN"

10],
11 "rich_snippet": {
12 "bottom": {
13 "detected_extensions": {
14 "data_update_frequency_r_pm": 1,
15 "metadata_created_date_november": 10
16 },
17 "extensions": [
18 "Data Update Frequency: R/P1M",
19 "Metadata Created Date: November 10, 2020"
20]
21 }
22 },
23 "about_this_result": {
24 "keywords": [
25 "powered",
26 "by",
27 "ckan"
28],

51

29 "languages": [
30 "English"
31],
32 "regions": [
33 "United States"
34]
35 },
36 "cached_page_link":

"https://webcache.googleusercontent.com/search?q=cache:,!

37 L-lWAlt2ab8J:https://catalog.data.gov/dataset/
38 data-gov-ckan-api&cd=10&hl=en&ct=clnk&gl=us",
39 "related_pages_link":

"https://www.google.com/search?q=related:,!

40 https://catalog.data.gov/dataset/data-gov-ckan-api",
41 "source": "data.gov"
42 }

Listing 6: Portal discovery: search result example

More details about our adapted version of Crawley can be found in the
crawley-lite/README.md file. The original code is also available on GitHub18.

18https://github.com/semantisch/crawley

52

A.3 Portal list creation and validation
Path: data_portal_tracker/portal_handler.(ipynb|py)

Our portal handler uses a multi-step pipeline to create a list of portals
from various sources and validate the websites on the list. It allows manual
additions at two different points.

Currently, files created by functions are saved to data_portal_tracker/data,
but for all files whose paths are passed to functions as arguments, this can
be changed. When rerunning the script’s functions to create an updated list,
we recommend creating a new (sub-)folder for every update and change the
paths passed to the functions as arguments accordingly. In this way, no ex-
isting data is overwritten and the evolution of data portals can be analyzed.

Log files containing failure or success information that are generated dur-
ing the execution of functions are stored in the data_portal_tracker/logs di-
rectory. To change this, the function definitions would have to be edited. Log
files that are automatically created by functions are stored in CSV format
and include the function name and a timestamp in their name - for exam-
ple: crawl_socrata_2023-08-15_16_52_42_fail.csv. In addition, we manu-
ally saved printed output of functions to files that include the function name
in their name and a have .log file extension - for example: validate_list.log.

A.3.1 Extract search results

Once the search engine portal discovery component has delivered some re-
sults, we can use the function extract_search_results to extract the URLs of
organic search results from the saved JSON files. This function includes code
for looping through the search results adapted from Crawley.

When calling the function, two arguments are required:

• search_results_folder (string): the path of the folder in the crawley-lite
directory containing the search results

• output_file (string): the path of the CSV file to be exported

Here is how we called the function for the first run:

1 extract_search_results(
2 search_results_folder = "../crawley-lite/results",
3 output_file = "data/0_search_results.csv")

Listing 7: Portal handler: extract search results

53

A.3.2 Create a portal list

Next, the function create_list is used to create an initial list of portal URLs
based on multiple sources. This function contains the first of two options for
manually adding portals. All URLs added here will go through the entire
deduplication and validation process without bypassing any steps. Currently,
additions are made by extending the array additional_portals in the function
definition, however, it might be useful to do this via a function parameter
in the future (just like we already implemented in the add_api_endpoints
function, the second option for manual additions).

When calling the function, two arguments are required:

• search_results_file (string): the path of the CSV input file containing
search result URLs in a column "url"

• output_file (string): the path of the CSV file to be exported

Here is how we called the function for the first run:

1 create_list(
2 search_results_file = "data/0_search_results.csv",
3 output_file = "data/1_initial_portals.csv")

Listing 8: Portal handler: create list

A.3.3 Deduplicate the portal list

The function remove_duplicates deduplicates a list of URLs by removing
unwanted characters, reducing each URL to its base URL, truncating the
HTTP(S) protocol prefix and finally dropping all duplicates.

When calling the function, two arguments are required:

• initial_portals_file (string): the path of the CSV input file containing
initial portal URLs in a column "url"

• output_file (string): the path of the CSV file to be exported

Here is how we called the function for the first run:

1 remove_duplicates(
2 initial_portals_file = "data/1_initial_portals.csv",
3 output_file = "data/2_deduplicated_portals.csv")

Listing 9: Portal handler: remove duplicates

54

A.3.4 Add manually validated API endpoints

The function add_api_endpoints addresses two issues:

• Some portals have API endpoints that use a non-standard path (e.g.
/catalog/api instead of /api).

• The second validation step of the validate_list function (see section
A.3.6) only checks the API functionality of portals for which HTML
markers were found in the first validation step.

Therefore, the function add_api_endpoints can be used to add portals
which use a custom path or are known to support a certain API, but do not
have any HTML markers. If they are added in this way, the first validation
step of the validate_list function is bypassed and the portals will end up on
the final portal list. Also note that portals added like this will be counted as
"suspected" for their respective portal software in the validation statistics -
thus, the number of "suspected" portals is not fully equivalent to the number
of sites for which portal HTML markers were found.

When calling the function, three arguments are required:

• manual_api_additions_file (string): the path of the CSV input file
containing API base URLs without "/api/..." in a column "url", e.g.
"data.gv.at/katalog", and the API software name or "Unknown" in a
column "manually_checked_api"

• deduplicated_portals_file (string): the path of the CSV input file con-
taining deduplicated portal URLs in a column "url"

• output_file (string): the path of the CSV file to be exported

Here is how we called the function for the first run:

1 add_api_endpoints(
2 manual_api_additions_file =

"data/manual_api_additions.csv",,!

3 deduplicated_portals_file =
"data/2_deduplicated_portals.csv",,!

4 output_file = "data/3_extended_portals.csv")

Listing 10: Portal handler: add API endpoints

55

A.3.5 Add protocol prefixes and activity status

For each entry in the input list, the function requests the URL with HTTPS,
then falls back to HTTP in case of an exception or a response code indicating
failure. Information about the supported protocol and the website activity
status is added to each row in the DataFrame and the enriched list is ex-
ported to a CSV file.

When calling the function, two arguments are required:

• extended_portals_file (string): the path of the CSV input file contain-
ing portal URLs in a column "url"

• output_file (string): the path of the CSV file to be exported

Here is how we called the function for the first run:

1 add_prefixes(
2 extended_portals_file = "data/3_extended_portals.csv",
3 output_file = "data/4_prefixed_portals.csv")

Listing 11: Portal handler: add prefixes

A.3.6 Validate the list

To identify portals that use one of our supported API software solutions
(CKAN, Opendatasoft, Socrata), the function validate_list iterates over the
input portal list, validates that the portals use a relevant catalog software
and exports the validation results. Portal software validation is a two-step
process: First, the function searches a portal’s HTML code for specific vali-
dation markers that indicate the use of a certain software. If HTML markers
are found or if a portal was previously added to the list via the function
add_api_endpoints, the function checks whether the suspected API is work-
ing. This function includes code for HTML validation and related JSON
exporting adapted from Crawley. The rules for the marker-based validation
are located in the crawley-lite/config.json file.

Since there is always at least a small number of websites that are unavail-
able at a given time, we implemented an optional mode that allows you to
retry the failed portals without starting from scratch. To do this, the input
list/markers must be the output list/markers of the previous validation run
and the retry_failed_portals argument must be set to True. The function
will then rerun the validation, but will retry only the portals for which the

56

validation failed or the suspected API did not work previously.

When calling the function, three arguments are required and two are
optional:

• input_list (string): the path of the CSV input file containing URLs
- must be a file created previously by add_prefixes or validate_list -
if retry_failed_portals is True, must be a file created previously by
validate_list

• output_list (string): the path of the CSV output file to be exported,
containing validated URLs

• output_markers (string): the path of the JSON output file to be ex-
ported, containing portals and their detected validation markers

• input_markers (string, optional): the path of the JSON input file con-
taining portals and their detected validation markers - must be a file
created previously by validate_list

• retry_failed_portals (Boolean, optional): whether or not to retry the
portals for which the validation failed or the suspected API did not
work in a previous run - defaults to False

Here is how we called the function for the first run:

1 validate_list(
2 input_list = "data/4_prefixed_portals.csv",
3 output_list = "data/5_validated_portals.csv",
4 output_markers = "data/5_validated_sites.json")

Listing 12: Portal handler: validate list

And here is how we called the function to retry the portals that failed in
the first run:

1 validate_list(
2 input_list = "data/5_validated_portals.csv",
3 output_list = "data/5_validated_portals_retry.csv",
4 output_markers = "data/5_validated_sites_retry.json",
5 input_markers = "data/5_validated_sites.json",
6 retry_failed_portals = True)

Listing 13: Portal handler: validate list, retry failed portals

57

A.3.7 Analyze the validated list

Once the validation is done, the function analyze_list allows analyzing, pre-
senting and saving the most important information about a validated portal
list. Results are currently stored in the data/validation_statistics.csv file,
which is hard-coded in the function definition so that the statistics of all
validation runs are collected in one file.

In the validation statistics, the term "suspected" (e.g. in the column
"ckan_suspected") is deliberately used instead of "markers". This is be-
cause portals added via the add_api_endpoints function will be counted as
"suspected" for their respective portal software and thus, the number of
"suspected" portals is not equivalent to the number of sites for which HTML
markers were found.

When calling the function, one argument is required and two are optional:

• validated_portals_file (string): the path of the CSV input file contain-
ing validated portal URLs - must be a file created previously by vali-
date_list

• show (Boolean, optional): whether or not to display the relevant DataFrames
and results - defaults to True

• export (Boolean, optional): whether or not to append the results to the
statistics CSV file - defaults to False

Here is how we called the function for the first run:

1 analyze_list(
2 validated_portals_file =

"data/5_validated_portals_retry.csv",,!

3 show = True,
4 export = True)

Listing 14: Portal handler: analyze list

A.3.8 Extract portals with working APIs

In the last step of the portal handler pipeline, the function extract_working_apis
extracts the essential data from the validated portal list, keeps only the por-
tals with working APIs, performs a final deduplication and exports the final
list that will be used for portal crawling later.

When calling the function, two arguments are required:

58

• validated_portals_file (string): the path of the CSV input file contain-
ing validated portal URLs - must be a file created previously by vali-
date_list

• output_file (string): the path of the CSV file to be exported, containing
the final list of portal APIs

Here is how we called the function for the first run:

1 extract_working_apis(
2 validated_portals_file =

"data/5_validated_portals_retry.csv",,!

3 output_file = "data/portals.csv")

Listing 15: Portal handler: extract working APIs

A.3.9 Check custom URL lists

Just like we already deployed our portal handler to check URLs submitted
by colleagues, any arbitrary list of URLs can be run through and validated.
If you want to combine your custom URLs with our 4 sources, edit the
create_list function and add code that loads the URLs and appends them to
the initial_portals DataFrame, then proceed with the other functions as usual.
If you only want to check the custom URLs, save them in a CSV file that
has a single column named "url" and skip the create_list function, instead
pass the CSV file to the remove_duplicates function as input, then continue.
When doing such a custom check, all presented rules and guidelines still apply
and all functionality, for example adding manually validated endpoints that
skip the first validation step, is available.

59

A.4 Portal crawling
Path: data_portal_tracker/portal_crawler.(ipynb|py)

Our portal crawler is the next major component of the Data Portal
Tracker. It contains four crawling functions, each for a specific portal API
software:

• Opendatasoft API v1.0 (deprecated, only for completeness)

• Opendatasoft API v2.1 (latest version)

• CKAN API v2.x (wide range, including latest version)

• Socrata API v1.0 (only version of metadata API)

Which specific APIs the stated numbers refer to is explained in the thesis,
however, please note that some of the crawling functions might partially use
APIs that are different to the API to which the respective number belongs.
For example, within the same portal API software, downloading datasets
might sometimes be handled by a different API / service than displaying
metadata.

Every function of the portal crawler takes the final portal list from the
portal handler, loops through the corpus of every data portal and adds each
dataset to the ODArchiver along with its metadata and a dataset/metadata
mapping. In case of an exception, the last activity is retried up to three times
before skipping the current loop iteration. Errors and, where applicable, also
the dataset for which they occurred are saved for troubleshooting. Some
crawling ideas and logic were taken from the unfinished Portal Watch API.

If you only want to count the numbers of datasets/resources per por-
tal without crawling and indexing all datasets/resources, run the functions
crawl_opendatasoft_v2, crawl_ckan and crawl_socrata after commenting out
the code that handles the datasets and adds them to the Archiver:

1 # Calling the Archiver connector to insert data into the

Archiver,!

2 archiver.handle_dataset(dataset_url, metadata_url, source_url,
log_file_success, log_file_fail),!

Listing 16: Portal crawler: code to comment out for counting datasets

60

A.4.1 Crawl Opendatasoft API v1.0

To crawl all portals on an input list that support the Opendatasoft API
v1.0, you can use the function crawl_opendatasoft_v1. However, it was only
created for completeness and to perform some comparisons with the Open-
datasoft API v2.0 / v2.1 - Opendatasoft API v1.0 is now deprecated and
we recommend using the function for v2.1 below!

As the Opendatasoft API v1.0 supports pagination, the function iterates
over the metadata and datasets in batches of 800 until there are none left.
For each set of dataset URL, metadata URL and source URL, it calls the
ODArchiver connector to add the dataset, metadata and their mapping to
the ODArchiver. Dataset URLs are built by assuming the availability of the
CSV export format for all datasets, as explained in chapter 4.3 of the thesis.
Optionally, if the portal is the Opendatasoft data hub19, the source URL
can be built differently than for all other portals by taking the URL of the
original data source instead of the URL of the page that presents the dataset
on the Opendatasoft data hub.

The two required arguments are the same as in all crawling functions:

• portal_list (string): the path of the CSV input file containing the final
portal list - must be a file created previously by extract_working_apis
in the portal handler

• statistics_file (string): the path of the CSV file to be created or ex-
tended, containing the statistics for the crawled portals

Here is how we called the function (during testing only):

1 crawl_opendatasoft_v1(
2 portal_list = portal_list,
3 statistics_file =

"data/portal_statistics_opendatasoft_test.csv"),!

Listing 17: Portal crawler: crawl Opendatasoft v1

A.4.2 Crawl Opendatasoft API v2.1

All portals on an input list that support the Opendatasoft API v2.1 can be
crawled with the function crawl_opendatasoft_v2. Even though API v2.0

19https://data.opendatasoft.com

61

also exists and the API responses of v2.1 differ slightly from v2.0, there is no
need for a separate v2.0 function since every portal in our list that supports
v2.0 also supports v2.1.

The logic of the function is similar to that of the v1.0 function, with two
main differences. Firstly, since portals using API v2.1 offer a JSON meta-
data catalog of all datasets, the catalog is requested for each portal instead
of using pagination. Secondly, the optional code from the v1.0 function is
not present here, but there is another optional code section that checks the
available export formats of each dataset and that was used to determine that
CSV is generally available - which is why CSV is now assumed for building
the dataset URL and the code is commented out. Per dataset, the function
takes roughly 2 seconds, which means it can work through 30 datasets per
minute or 1800 datasets per hour.

The two required arguments are the same as in all crawling functions:

• portal_list (string): the path of the CSV input file containing the final
portal list - must be a file created previously by extract_working_apis
in the portal handler

• statistics_file (string): the path of the CSV file to be created or ex-
tended, containing the statistics for the crawled portals

Here is how we called the function for the first run:

1 crawl_opendatasoft_v2(
2 portal_list = portal_list,
3 statistics_file =

"data/portal_statistics_opendatasoft.csv"),!

Listing 18: Portal crawler: crawl Opendatasoft v2

A.4.3 Crawl CKAN API v2.x

The function crawl_ckan crawls all portals on the input list that support
the CKAN API v2.x and has been tested with portals using a wide range of
CKAN versions from v2.0 to v2.10.

Similar to the Opendatasoft API v1.0 function, pagination is used to
loop through all datasets. However, on CKAN portals, one dataset/package
can contain multiple resources. Therefore, unlike all other crawling func-
tions, there is a nested loop for each dataset that iterates over all resources

62

of a dataset. For each set of resource URL, (dataset) metadata URL and
(dataset) source URL, the function calls the ODArchiver connector to add
the resource, metadata and their mapping to the ODArchiver.

The two required arguments are the same as in all crawling functions:

• portal_list (string): the path of the CSV input file containing the final
portal list - must be a file created previously by extract_working_apis
in the portal handler

• statistics_file (string): the path of the CSV file to be created or ex-
tended, containing the statistics for the crawled portals

Here is how we called the function for the first run:

1 crawl_ckan(
2 portal_list = portal_list,
3 statistics_file = "data/portal_statistics_ckan.csv")

Listing 19: Portal crawler: crawl CKAN

A.4.4 Crawl Socrata API v1.0

The function crawl_socrata crawls all portals on the input list that support
the Socrata API v1.0.

Using pagination, the function loops through all datasets of each portal
and checks whether the dataset type is one of two supported asset types for
which our function can build dataset URLs: "dataset" or "file". If one of
these types is found, the dataset and metadata are sent to the ODArchiver
for indexing and mapping, otherwise the dataset is skipped. The asset types
"chart", "datalens" and "filter" might work with the same method as the
"dataset" type, but further testing is required to ensure that this approach
is valid. We added a comment to the function that contains this information
and a replacement for the current if-statement which can be used if testing
shows positive results. For the type "map", future support is not likely be-
cause maps are purely front-end visualizations that use data from entities of
the type "dataset", which are already supported and crawled.

The two required arguments are the same as in all crawling functions:

• portal_list (string): the path of the CSV input file containing the final
portal list - must be a file created previously by extract_working_apis
in the portal handler

63

• statistics_file (string): the path of the CSV file to be created or ex-
tended, containing the statistics for the crawled portals

Here is how we called the function for the first run:

1 crawl_socrata(
2 portal_list = portal_list,
3 statistics_file = "data/portal_statistics_socrata.csv")

Listing 20: Portal crawler: crawl Socrata

64

A.5 ODArchiver connection
Path: data_portal_tracker/archiver_connector.(ipynb|py)

Our ArchiverConnector contains methods which connect to the ODArchiver
API (using HTTP requests) and the ODArchiver database (via MongoDB
queries). In the subsections below, we describe how to interact with this class
and its methods. Currently, the crawling script calls the ArchiverConnector’s
class constructor and all crawling functions call its handle_dataset method
which then calls all other class methods.

For manual interactions with the ODArchiver’s MongoDB, here is some
information about the database schema:

• datasets: essential information for crawler to work - two unique iden-
tifiers, _id and id, an array of versions and the three objects meta, url
and crawl_info

• datasets.files: information about the individual versions of a dataset,
referenced by their IDs from the versions array of the respective datasets
document

• datasets.chunks: actual data of the files, stored as chunked, Base64-
encoded binaries - the files_id field references the _id field in the files
collection.

• datasets.mappings: newly added as part of the Data Portal Tracker,
contains the mappings of datasets and metadata - the dataset_id, meta-
data_id and added fields store the IDs of the dataset and metadata as
well as the timestamp of the mapping creation

• hosts: necessary information for the locking mechanism and host po-
liteness to work properly, for example the currentlyCrawled field

• sources: referenced by the source array field in the meta object of the
datasets collection - one dataset can have multiple sources and one
source can be referenced by multiple datasets

When performing queries in the ODArchiver MongoDB without using the
methods we provided, keep in mind that some fields, for example _id in the
datasets collection, use the type ObjectID rather than string.

65

A.5.1 Instantiate the class

ArchiverConnector is instantiated by its __init__ method which attempts to
establish a connection to the MongoDB and prints information on the suc-
cess or failure. By passing an argument, the database to connect to can be
chosen: If "production" is passed, the three nodes of the Kubernetes cluster
that the ODArchiver’s MongoDB runs on are tried out one after another.
For testing, a local database can be used by passing "local" and ensuring
that the local connection string and database name in the .env file match a
local MongoDB that has the same database structure and a collection named
datasets.mappings.

One argument is required:

• mode (string): which MongoDB to connect to - must be "local" or
"production"

Here are the two ways of calling the class constructor:

1 archiver = ArchiverConnector(mode = "production")
2 # archiver = ArchiverConnector(mode = "local")

Listing 21: ODArchiver connector: call class constructor

A.5.2 Get dataset information via API

The method api_get_dataset takes a dataset URL, encodes it and performs
an API request to check if the dataset is already indexed by the ODArchiver.
Keep in mind that all ODArchiver API methods refer to "datasets", but now
also apply to metadata because of the extensions we made to the system.

One argument is required:

• dataset_url (string): the URL of the dataset

A dictionary containing four items is returned:

• request_success: whether the request was successful

• dataset_found: whether the dataset was found

• dataset_id: the ID of the dataset in the ODArchiver or None

66

• message: success message or failure message with details about the
error

Here is how we called the method for testing:

1 archiver = ArchiverConnector(mode = "production")
2 dataset_url = "http://data.cookcountyil.gov/download/ikxe-tdm7"
3

4 archiver.api_get_dataset(dataset_url = dataset_url)

Listing 22: ODArchiver connector: get dataset information from API

A.5.3 Add dataset via API

The method api_add_dataset takes a dataset URL and a source URL and
performs an API request to add the dataset to the ODArchiver. Keep in
mind that all ODArchiver API methods refer to "datasets", but now also
apply to metadata because of the extensions we made to the system.

Two arguments are required:

• dataset_url (string): the URL of the dataset

• source_url (string): the URL of the dataset’s source

A dictionary containing three items is returned:

• request_success: whether the request was successful

• dataset_inserted: whether the dataset was inserted

• message: success message or failure message with details about the
error

Here is how we called the method for testing:

1 archiver = ArchiverConnector(mode = "production")
2 dataset_url = "http://data.cookcountyil.gov/download/ikxe-tdm7"
3 source_url = "http://data.cookcountyil.gov/d/ikxe-tdm7"
4

5 archiver.api_add_dataset(
6 dataset_url = dataset_url,
7 source_url = source_url)

Listing 23: ODArchiver connector: add dataset via API

67

A.5.4 Get mapping via database

The method mongodb_get_mapping checks if there is an existing mapping
between a dataset and its metadata in the "datasets.mappings" collection of
the MongoDB.

Two arguments are required:

• dataset_id (string): the ID of the dataset in the ODArchiver

• metadata_id (string): the ID of the metadata in the ODArchiver

A dictionary containing five items is returned:

• query_success: whether the query was successful

• dataset_found: whether the dataset was found in any mapping

• metadata_found: whether the metadata was found in any mapping

• mapping_found: whether a mapping between the dataset and the meta-
data was found

• message: success message or failure message with details about the
error

Here is how we called the method for testing:

1 archiver = ArchiverConnector(mode = "production")
2 dataset_id = "64db96b381165e001229e325"
3 metadata_id = "64db96b382d36f00137ff647"
4

5 archiver.mongodb_get_mapping(
6 dataset_id = dataset_id,
7 metadata_id = metadata_id)

Listing 24: ODArchiver connector: get mapping via database

68

A.5.5 Add mapping via database

The method mongodb_add_mapping adds a mapping entry for a given dataset
ID and metadata ID to the "datasets.mappings" collection of the MongoDB.

Two arguments are required:

• dataset_id (string): the ID of the dataset in the ODArchiver

• metadata_id (string): the ID of the metadata in the ODArchiver

A dictionary containing three items is returned:

• inserted: whether the mapping was inserted

• mapping_id: the ID of the mapping document or None

• message: success message or failure message with details about the
error

Here is how we called the method for testing:

1 archiver = ArchiverConnector(mode = "production")
2 dataset_id = "64db96b381165e001229e325"
3 metadata_id = "64db96b382d36f00137ff647"
4

5 archiver.mongodb_add_mapping(
6 dataset_id = dataset_id,
7 metadata_id = metadata_id)

Listing 25: ODArchiver connector: add mapping via database

A.5.6 Handle dataset

The method handle_dataset checks if a dataset and its metadata are both
already indexed by the ODArchiver and have a mapping that describes their
relation. Any missing indexing or mapping is added.

Five arguments are required:

• dataset_url (string): the URL of the dataset

• metadata_url (string): the URL of the dataset’s metadata

69

• source_url (string): the URL of the dataset’s source

• log_file_success (string): the path of a CSV file logging successfully
handled datasets

• log_file_fail (string): the path of a CSV file logging datasets for which
an exception occurred

A dictionary containing seven items is returned:

• success: whether the process was successfully completed

• dataset_added: whether the dataset was inserted via the API

• metadata_added: whether the metadata was inserted via the API

• mapping_added: whether a mapping between the dataset and the meta-
data was added via the MongoDB

• dataset_id: the ID of the dataset in the ODArchiver or None

• metadata_id: the ID of the metadata in the ODArchiver or None

• message: success message or failure message with details about the
error

Here is how we called the method for testing:

1 archiver = ArchiverConnector(mode = "production")
2 dataset_url = "http://data.cookcountyil.gov/download/ikxe-tdm7"
3 metadata_url =

"http://data.cookcountyil.gov/api/views/metadata/v1/ikxe-tdm7",!

4 source_url = "http://data.cookcountyil.gov/d/ikxe-tdm7"
5 log_file_success = "logs/handle_dataset_TEST_success.csv"
6 log_file_fail = "logs/handle_dataset_TEST_fail.csv"
7

8 archiver.handle_dataset(
9 dataset_url = dataset_url,

10 metadata_url = metadata_url,
11 source_url = source_url,
12 log_file_success = log_file_success,
13 log_file_fail = log_file_fail)

Listing 26: ODArchiver connector: handle dataset

70

A.6 Helper functions
Path: data_portal_tracker/helpers.py

We have created multiple functions to support URL processing tasks in
the portal handler and portal crawler scripts. These utilities were designed
to be reused in different components of our system, thus we collected them in
a separate script only containing helpers, which enables intuitive and simple
importing of the functions wherever they are needed.

A.6.1 Check website activity

The first helper function check_url requests a well-formed input URL that
has a protocol prefix and returns information about the response. This func-
tion is currently called by check_protocol, another helper function.

One argument is required:

• url (string): the URL to be requested - must include a protocol prefix
(http:// or https://)

A dictionary containing three items is returned:

• request_success: whether the request was successful

• response_code: the HTTP response code

• message: success message or failure message with details about the
error

A.6.2 Check website protocol

Next, check_protocol takes an input URL with or without protocol prefix
and finds out which protocol is working for the URL. It requests a URL with
HTTPS and, if required, falls back to HTTP and finally returns the "best"
working variant of the URL in this order: HTTPS, HTTP, URL without
prefix. This function is currently called by the function add_prefixes in the
portal handler.

One argument is required, one is optional:

• url (string): the URL for which the protocol should be checked - can
be with or without HTTP(S) prefix

71

• show_details (Boolean, optional): whether or not to print details about
the requests - defaults to True

One string is returned:

• str: the working URL with protocol prefix (HTTPS > HTTP) or non-
working URL without protocol prefix

A.6.3 Remove double slashes

Finally, remove_double_slashes removes redundant forward slashes by re-
placing a double forward slash with a single forward slash in any part of
a HTTP(S) URL except for the protocol prefix. In the context of the por-
tal_crawler script, only apply this function to the substring of a URL related
to the API, so before adding a dataset-specific ID or something similar! The
function is currently called in all crawling functions of the portal crawler.

One argument is required:

• url (string): the URL to be modified which may contain double forward
slashes

One string is returned:

• str: the modified URL with only single forward slashes

72

A.7 Experiments
Path: data_portal_tracker/experiments.ipynb

In this section, we will briefly describe experiments that we carried out to
justify implementation decisions, to use our portal validation on other data
and to prepare future work. More details, the code and all results can be
found in the data_portal_tracker/experiments.ipynb notebook.

A.7.1 Validating "www." URLs with and without "www."

This experiment supported the decision-making process regarding the dedu-
plication of URLs in the portal handler. Since a minority of URLs were
appearing in the list twice, once with and once without the "www." prefix,
the question was whether this prefix could be removed in the early dedupli-
cation step in the portal handler or if this would cause problems, e.g. a large
number of sites not responding to requests anymore.

Based on the results of the experiment, which showed that 3 CKAN
portals, 10 Opendatasoft portals and 4 Socrata portals would be lost when
removing "www." early on, we have decided not to remove the "www." prefix
in the early deduplication step. Taking into account the small share of the
described duplicates among all URLs, the benefits derived from this dedupli-
cation (reducing the number of HTTP requests during validation, avoiding
any duplicate sites in the list) are not outweighing the disadvantages ("los-
ing" 10-20 Open Data portals with working APIs), especially since one main
goal is to collect as many Open Data portals as possible and there are some
interesting portals in the list of portals broken by the prefix removal, like the
Open Data portals of Bahrain, Wallonia, Corsica and the City of Dallas.

Instead, any remaining duplicates that appear with and without "www."
are removed from the list of portals with working APIs near the end of the
pipeline, after the validation step. See the portal handler for details.

An alternative solution would have been to request every URL with and
without the "www." prefix, similar to the already implemented function that
performs an HTTPS request and, if necessary, an HTTP request to deter-
mine the best available protocol. However, this would have lead to multiple
additional requests for many of the approximately 5000 sites as multiple com-
binations of HTTP or HTTPS and WWW or no WWW would have had to
be tried out and would have vastly exceeded the reduction in requests from
removing just over 100 duplicates.

73

A.7.2 Validating Opendatasoft file export formats

This experiment, which informed our decision on always assuming the avail-
ability of CSV, was already described in detail in section 4.3 of the thesis.

A.7.3 Validating railway and university portals

We deployed our portal handler to validate different Open Data portals of
railway companies and universities at the request of interested colleagues.

Our validation of the given railway portals showed 2 working CKAN
portals and 3 working Opendatasoft portals which are now also included
in our main portal list. The portal of Deutsche Bahn (DB) is supposed
to be based on CKAN, but the endpoints do not work, while the portal of
the Austrian Federal Railways (ÖBB) is not using CKAN, Opendatasoft or
Socrata. For Prorail, there is a portal that is based on ArcGIS and thus out of
scope currently, but there is also some Prorail data in the Dutch government’s
Open Data portal20 which has a working CKAN API but contains much more
than just railway data.

Only two of the given educational organizations have a working API that
is based on one of the portal software options we support (CKAN, Open-
datasoft, Socrata). Of those two, one is the US Department of Education,
the other is California State University and both of them use CKAN.

A.7.4 Validating the ODPW list

This experiment, in which we validated the portals on the ODPW list, pro-
vided new data for our analysis of the list’s evolution from 2016 to 2023. The
full methodology can be found in section 4.4 of the thesis and the results are
presented in section 5.2.

A.7.5 Checking false positives of marker validation

On some sites, validation markers can be found in the first part of the vali-
dation step, but no working API is located subsequently. Given the chosen
approach of only testing the API functionality on sites for which the valida-
tion marker search has been successful, these cases, which could be described
as false positives, are worth investigating. We wrote some very short and
simple code to display such cases that can be used as a starting point for
future work in this area and is also located in the experiments notebook.

20https://data.overheid.nl/data

74

A.7.6 Checking DCAT extension on CKAN portals

CKAN offers an extension that enables the retrieval of metadata using the
Data Catalog Vocabulary (DCAT). The code provided in the experiments
notebook shows how to check the availability of this extension as well as the
TTL / RDF catalog for all CKAN portals on the list. More details can be
found in section 4.4 of the thesis and the results are shown in section 5.2.

75

A.8 Extending the system
Since users of the Data Portal Tracker may want to add support for further
portal software other than CKAN, Opendatasoft and Socrata, this section
details the required steps to make the relevant modifications.

1. (Optional:) Firstly, when including a different portal solution, it may
make sense to consider this change already in the very first part of the
pipeline, the search engine portal discovery. Searches are currently
being carried out via the Crawley command line tool, see crawley-
lite/README.md and the relevant sections above in the thesis and
documentation. The search terms used are manually entered - some
suggestions and previously used examples can be found in the values
of the "search" keys in crawley-lite/config.json. To improve the end re-
sults and get more portals with a validated, working API, search terms
should include relevant keywords like "Open Data Portal + [Name of
API software]". However, the current list of potential portals is al-
ready very long (more than 5500 websites), so that most large portals
on the web should already be included, they just couldn’t be validated
successfully yet as they do not use CKAN, Opendatasoft or Socrata.
Therefore, this step is optional.

2. To adapt the first validation step, edit the crawley-lite/config.json file
and add a top-level JSON key with the name of the software (this will be
used in multiple locations throughout Data Portal Tracker, thus being
consistent is recommended) whose value is an object containing the keys
"search" and "validate", each with an array of strings as their value.
Identify validation markers (HTML elements that can be frequently
found in the HTML code of portals using the relevant software) by
using the developer tools of any web browser and searching for keywords
like the name or an abbreviation of the software. These markers must
go in the array belonging to "validate", while "search" does not need
any values. Listing 27 below shows an extract of config.json with these
mentioned additions at the end. Note: values for the three "search"
keys were omitted in the listing because they are currently not used by
any script.

1 {
2 "CKAN": {
3 "search": [
4],
5 "validate": [

76

6 "img/ckan.svg",
7 "CKAN

API",,!

8 "CKAN
API",,!

9 ">CKAN API",
10 "<form id=\"ckan-dataset-search\"",
11 "<a id=\"ckan_de\"",
12 "<a id=\"ckan_en\"",
13 "header_od_ckan.en",
14 "/ckan/organization",
15 "ckan-footer-logo",
16 "wpckan_dataset",
17 "id='ckan_base-js'",
18 "<meta name=\"generator\" content=\"ckan",
19 "ckan.ico",
20 "href=\"/ckan/dataset",
21 "Powered by",
22 "alt=\"CKAN\"",
23 "alt=\"CKAN logo\"",
24 "href=\"/fanstatic/ckanext-harvest",
25 "href=\"/data/fanstatic/ckanext-scheming",
26 "href=\"/ckan/fanstatic/ckanext-geoview",
27 "href=\"/ckan/fanstatic/ckanext-harvest"
28]
29 },
30 "OpenDataSoft": {
31 "search": [
32],
33 "validate": [
34 "BRAND_HOSTNAME: \"opendatasoft.com\"",
35 "ods.core.config",
36 "ods.minimal",
37 "ods.core.config",
38 "ods.core",
39 "ods.core.form.directives"
40]
41 },
42 "Socrata": {
43 "search": [
44],

77

45 "validate": [
46 "<!-- Start of socrata Zendesk Widget script -->",
47 "var socrata",
48 "window.socrata",
49 "<!-- \n Powered by Socrata",
50 "<!-- Powered by Socrata",
51 "<!--Powered by Socrata",
52 "<!--\n Powered by Socrata",
53 "www.socrata.com\n -->"
54]
55 },
56 "Name of new API software": {
57 "search": [
58 "No need to add anything here - 'search' values are

currently unused!",!

59],
60 "validate": [
61 "Some HTML element",
62 "Another HTML element",
63 "A third HTML element"
64]
65 }
66 }

Listing 27: How to extend the crawley-lite/config.json file

3. In the second validation step, add code that validates the function-
ality of the new software’s API to the validate_list function of the
data_portal_tracker/portal_handler.(ipynb|py) script. The relevant sec-
tion of the function is shown in listing 28 below (code shortened, see the
script for all details). On the same indentation level as the three com-
ments "# Checking portals with (CKAN|Socrata|Opendatasoft) mark-
ers" and the subsequent code blocks started by if-statements matching
the "suspected_api" field of the prefixed_portals DataFrame, add an-
other comment and if-statement for the new software. Research the
new API to find a method that returns general information about the
API like the supported methods, any extensions, the status, the current
API version and any older supported versions. Save the version infor-
mation to the "api_version" field and the information whether the API
could be validated and is working (as determined by the request giving
the expected result) to the "api_working" field of the prefixed_portals

78

DataFrame. If there is no suitable API method, perform any general re-
quest to the API (for example a "help" method) and, using a try/except
block, try to access a known field of the response - if there is no error,
mark the API as working, otherwise as not working. The exact code
will vary depending on the API and will require some experimentation.

1 # Verifying that the detected API is available and working

2 if prefixed_portals.loc[index, "suspected_api"] is not None and
prefixed_portals.loc[index, "suspected_api"] != "Unknown":,!

3

4 # Checking portals with CKAN markers

5 if prefixed_portals.loc[index, "suspected_api"] == "CKAN":
6 # Resetting version variable

7 ckan_version = None
8

9 try:
10 api_url = base_url + "/api/3/action/package_search"
11 response = requests.get(api_url, timeout = 15)
12 if json.loads(response.text)["success"] == True:
13 print("CKAN API working")
14 prefixed_portals.loc[index, "api_working"] =

True,!

15 # Checking the API version

16 try:
17 api_version_url = base_url +

"/api/3/action/status_show",!

18 response = requests.get(api_version_url,
timeout = 15),!

19 ckan_version =
json.loads(response.text)["result"]["ckan_version"],!

20 prefixed_portals.loc[index, "api_version"]
= ckan_version,!

21 except Exception as e:
22 prefixed_portals.loc[index, "api_version"]

= "Unknown",!

23 log(e)
24 except Exception as e:
25 print("CKAN API not working")
26 prefixed_portals.loc[index, "api_working"] = False
27 log(e)

79

28

29 # Checking portals with Socrata markers

30 elif prefixed_portals.loc[index, "suspected_api"] ==
"Socrata":,!

31 [...]
32

33 # Checking portals with Opendatasoft markers

34 elif prefixed_portals.loc[index, "suspected_api"] ==
"OpenDataSoft":,!

35 [...]
36

37 # Checking portals with [Name of new software] markers

38 elif prefixed_portals.loc[index, "suspected_api"] == "[Name
of new software]":,!

39 [...]

Listing 28: How to extend the validate_list function

4. For the analysis step in which statistics about each validated portal
list are displayed and saved, edit and extend the function analyze_list
of the data_portal_tracker/portal_handler.(ipynb|py) script. Add two
new columns to the code creating the "statistics" DataFrame at the
beginning: one for the portals suspected to be using the new software
(based on the results of marker-based validation) and one for the portals
confirmed to be using the new software (based on the results of the
API validation). For both of these subsets of portals, add code that
counts, displays and saves them. As a reference and template, take the
code for CKAN (shown in listing 29 below) or Opendatasoft or Socrata
(omitted below), just with "CKAN/Opendatasoft/Socrata" replaced
by the name of the new software in every string and variable name.

1 # Creating a DataFrame for the statistics

2 statistics = pd.DataFrame(columns = ["file", "total", "active",
"inactive", "validated", "unvalidated",
"subpage_endpoints", "no_markers", "ckan_suspected",
"ckan_working", "opendatasoft_suspected",
"opendatasoft_working", "socrata_suspected",
"socrata_working", "name_of_new_software_suspected",
"name_of_new_software_working", "timestamp"])

,!

,!

,!

,!

,!

,!

3 [...]

80

4

5 # Suspected CKAN portals (validation markers found or API

manually checked),!

6 ckan_markers_portals =
validated_portals[validated_portals["suspected_api"] ==
"CKAN"]

,!

,!

7 ckan_markers_portals.columns.name = "Suspected CKAN portals"
8 statistics.loc[0, "ckan_suspected"] = len(ckan_markers_portals)
9 if show is True:

10 display(ckan_markers_portals)
11

12 # Portals with working CKAN API

13 ckan_working_api_portals =
ckan_markers_portals[ckan_markers_portals["api_working"] ==
True]

,!

,!

14 ckan_working_api_portals.columns.name = "Portals with working
CKAN API",!

15 statistics.loc[0, "ckan_working"] =
len(ckan_working_api_portals),!

16 if show is True:
17 display(ckan_working_api_portals)
18

19 # Suspected Opendatasoft portals (validation markers found or

API manually checked),!

20 [...]
21

22 # Portals with working Opendatasoft API

23 [...]
24

25 # Suspected Socrata portals (validation markers found or API

manually checked),!

26 [...]
27

28 # Portals with working Socrata API

29 [...]
30

31 # Suspected [Name of new software] portals (validation markers

found or API manually checked),!

32 [...]
33

34 # Portals with working [Name of new software] API

81

35 [...]

Listing 29: How to extend the analyze_list function

5. Extend the data_portal_tracker/portal_crawler.(ipynb|py) script by adding
a function that crawls all dataset URLs, metadata URLs and source
URLs of portals based on the new software and model it after the
existing functions. This is likely the most time-intensive step, as the
API structure may deviate from those of the CKAN, Opendatasoft and
Socrata APIs. Try to find out as much as possible about the new API
and take the most suitable of the four finished functions as a template:

• If datasets contain resources and the metadata API supports or
requires pagination: crawl_ckan function.

• If datasets are resources and the metadata API supports or re-
quires pagination: crawl_socrata or crawl_opendatasoft_v1 func-
tion.

• If datasets are resources and the metadata API offers a JSON
metadata catalog of all datasets: crawl_opendatasoft_v2 function.

• In any other case, a combination of the relevant code sections
might be helpful.

Then, when adapting the chosen code for the new platform, it is advis-
able to first comment out most lines except for the very start and work
your way forward line by line. In any case, when modifying the code
and possibly altering loops or removing sleep calls, definitely initially
comment out any HTTP requests and calls of the handle_dataset func-
tion imported from data_portal_tracker/archiver_connector.py to pre-
vent accidental denial-of-service attacks on WU’s or external servers -
see listing 30.

1 response = json.loads(requests.get(api_request_url).text)
2 [...]
3 archiver.handle_dataset(resource_url, metadata_url,

source_url, log_file_success, log_file_fail),!

4 [...]

Listing 30: Code to comment out when testing an adapted crawling script

82

