WIRTSCHAFTS
UNIVERSITAT

WIEN VIENNA
UNIVERSITY OF
ECONOMICS

AND BUSINESS

Master Thesis

Categorization and comparison of
datasets across Open Data portals

Georg Prohaska

Date of Birth: 14.11.1983
Student ID: 0325904

Subject Area: Information Business

Studienkennzahl: J 066 925

Supervisor: Univ.Prof. Dr. Axel Polleres

Co-Supervisors: Dr. Jiirgen Umbrich, Dr. Javier D. Ferndndez

Date of Submission: 16. October 2017

Department of Information Systems and Operations, Vienna University of
Economics and Business, Welthandelsplatz 1, 1020 Vienna, Austria

DEPARTMENT FUR INFORMATIONS-
VERARBEITUNG UND PROZESS-
MANAGEMENT DEPARTMENT

OF INFORMATION SYSTEMS AND
OPERATIONS

Contents

1 Introduction

1.1 Research Question and Approach
1.2 Goals.
2 Theoretical foundations
21 OpenData.
2.1.1 Open Data Portals
2.1.2 Open Government Data
2.2 Linked Open Data
221 RDF
222 SPARQL.
223 DCAT
2.3 Natural language processing
2.3.1 Natural Language Generation
2.3.2 Natural Language Understanding
2.4 Word-sense Disambiguation
2.4.1 Supervised WSD L.
2.4.2 Unsupervised WSD
2.5 Entity Linking oo
2.5.1 Candidate Entity Generation
2.5.2 Candidate Entity Ranking
2.5.3 Unlinkable Mention Prediction
2.6 Text categorizationo
2.6.1 Naive Bayes Classifier
2.6.2 Decision Tree Classifiers
2.6.3 Support Vector Machines
2.7 Clustering e
2.7.1 Hierarchical Clustering
2.7.2 K-means Clustering

3 Related Work

3.1 BabelNet
3.2 Babelfy
3.3 Topic labelling using DBpedia
3.4 Other approaches to NLU

4 Categorizer: Overview and Methods
4.1 Omset
4.2 Solution overview

4.3 Methods and Tools
4.3.1 Portalwatch
4.3.2 BabelNet API
4.3.3 Babelfy API.

5 Categorizer: Architecture
5.1 The Framework
5.2 The Categorization Algorithm

5.2.1 Requirements, Input, Output

5.2.2 Scores
5.2.3 Annotation Confidence
5.2.4 Semi-automatic scoring
5.2.5 Conclusion.

6 Categorizer: Practical Implementation

6.1 Overview.
6.1.1 Language Detection . .

6.2 Adapted Categorization Algorithm
6.2.1 Most common-sense heuristic

6.3 User-Interface and Features .

6.3.1 Graphical User-Interface

6.3.2 UseCases
6.4 Limitations

7 Analysis
7.1 Statistics
7.2 Categorization of Datasets . .
7.2.1 Parameters
7.2.2 Categorization Results

7.2.3 Clustering of Open Data Portals.

7.2.4 Evaluation of Precision
8 Conclusion and Future Work
A List of Portals

B Class Diagrams

46
46
48
48
48
20
o1
52

53
93
24
95
95
26
26
60
61

62
62
67
67
69
70
7

78

86

90

List of Figures

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Country clusters based on Open Data Barometer Readiness

and Impact questions 5
The Linked Open Data cloud [4]. 8
Structure of the DCAT vocabulary 11
A conversation example with SHRDLU 13
A decision tree for period disambiguation [57] 15
The structure of an artificial neural network (ANN) [57] . .. 16
An example for the task of Entity Linking [61] 20
Rule-based classifier for the WHEAT category 24
Decision tree determining membership to the WHEAT category 26
Classification with a Support Vector Machine [60]. 27
An example for clustering [36]o 28
An example for hierarchical clustering [36]. 30
Lloyd’s algorithm [56]. 31
Example of the k-means algorithm converging to a local min-

IMUM oo 32
An overview of the construction of BabelNet [54] 34
An example result of the Babelfy process. 35
The Canopy framework [35]. 36
Bipartite graphs for every combination of senses [34]. 37
The merge of four sense graphs into a topic graph [35]. 38
The architecture of the prototype. 47
The main window of Categorizer. o8
The statistics window of Categorizer. 60
Distribution of datasets and languages. 63
Distributions of the number of charaters. 64
Distribution of keywords and concepts. 64
Occurrence of concept types. 65
Frequencies of categories among datasets. 70
Distribution of category confidence scores. 71
Variance explained by number of clusters. 71
Cluster centers of k-means. 72
Category distributions of all portals. 73
Category distribution of cluster 5. 74

Category distributions of cluster 3and 7. 75

List of Tables

1 Example WSD task for three target words [34]. 36
2 The set of 34 categories L. 44
3 Example dataset with concepts, scores and categories. 50
4 Categorization results for example dataset. 52
bt Key figures of the data corpus. 62
6 The most frequent concepts with a count of occurrence. 66
7 The most frequent named entities with a count of occurrence. 66
8 Categorization parameters used for analysis. 68
Listings
1 An RDF example in RDF /Turtle notation 9

2 A conversation example with CHAT-80 14

Abstract

The success of the Open Data movement which strives to pro-
vide free access to all kinds of data on the web has led to an in-
creased amount of available Open Data. The OpenData@WU project
is harvesting metadata of 260 portals that provide access to such data.
Among other aspects, this metadata contains the title, description and
keywords of each dataset. In our work we apply Babelfy, a state of the
art natural language processing technique, to these natural language
fields in order to gain insights into the current state of the content and
structure of Open Data. We present an approach to automatically
categorize datasets into one of 34 categories based on their textual
descriptions. Furthermore, we employ clustering techniques on the
results to classify Open Data portals and discover similarities among
them.

Zusammenfassung

Die Open Data Bewegung, welche den offenen Austausch frei nutzbarer

Daten anstrebt, hat zu einer grofsen Menge an verfiigharen Open Data
gefithrt. Das OpenData@WU Projekt sammelt Metadaten von 260
Open Data Portalen. Unter anderem enhalten diese Metadaten Titel,
Beschreibung und Schlagworte zu den jeweiligen Datensatzen. In der
vorliegenden Arbeit setzen wir Babelfy, eine moderne Natural Lan-
guage Processing Methode, ein um diese Texte maschinell zu verar-
beiten und dadurch Aufschlufs iiber die Inhalte und die Struktur von
Open Data zu erlangen. Weiters stellen wir einen Ansatz zur automa-
tischen Kategorisierung von Datensétzen in eine von 34 Kategorien
basierend auf deren textuellen Beschreibungen vor. Die Ergebnisse
dieses Kategorisierungsprozesses werden mit Hilfe von Clusteringver-
fahren untersucht um Ahnlichkeiten zwischen Open Data Portalen zu
finden.

Acknowledgements

I want to use this space to thank my supervisors Dr. Jiirgen Umbrich and
Dr. Javier David Fernandez Garcia. They always had time for me, answered
all my questions and gave me very helpful feedback and suggestions.

I also would like to thank my family for their moral support, especially my
wife Gabriele who is always there for me and helped me keep my motivation
up throughout this study.

1. Introduction Georg Prohaka (0325904)

1 Introduction

In the years to come, digitalization will impact our society as well as economy,
science and culture even further than it is today. Digital data has become
a modern commodity and technologies like Social Media, Big Data, Internet
of Things, Internet of Services and Open Data present completely new op-
portunities for designing services, developing business ideas and increasing
productivity.

In this thesis, we will focus on Open Data, which is a movement to make
more data publicly available. Open Data facilitates transparency as well as
improvements in effectiveness and efficiency of public administration and the
private sector [37]. It is a major source for innovation and can, therefore,
contribute to designing new and creative products and services. In recent
years, this concept of Open Data has become more and more relevant. Every
day an increasing amount of data is made available for the public to use.
There are various providers of Open Data: A lot of different governments
and international institutions, such as the EU, have been publishing their
data about numerous subjects including geography, transport, environment,
economics and many more. There are also private organizations and other
institutions, such as universities, that contribute further to the amount of
Open Data that is available for everyone to use. Usually, each of these par-
ties manages its own portal to provide access to their individual data sets.
Often there are even multiple portals within a country managing different
regions or themes of Open Government Data.

OpenData@WU! is a project of the Institute for Information Business at
the Vienna University of Economics and Business that is dedicated to re-
searching the various aspects of Open Data. In the course of this project
the Open Data Portal Watch framework is being developed, which provides
access to the metadata of over 260 Open Data portals [40]. This metadata
includes, among other attributes, the title, description and keywords of each
dataset of all covered portals. These fields contain mostly plain text written
by the publisher of the respective dataset. Since this kind of information is
intended to be read by a human user no machine-readable data can directly
be dervied from them. Hence, knowledge about the context and contents
of a dataset are not directly attainable for a computer, which increases the
difficulty of analysing and searching the available data. Full-text search is
the only method that could be applied directly to this metadata, however,
research shows that this is not a very effective way of searching because of
contextual ambiguity of simple search terms leading to low precision and re-

'http://data.wu.ac.at/opendata/

1. Introduction Georg Prohaka (0325904)

call for such methods [11]|. This is especially true for Open Data, since end
users often take a browsing or exploratory approach rather than looking up
specific information [67].

Translating the textual descriptions of datasets into information that can
be processed and analysed by a machine would open up various possibilities
ranging from advanced searching methods like faceted-search or concept-
based search to automatic classification of datasets and content-based com-
parison of Open Data portals.

1.1 Research Question and Approach

Natural Language Processing (NLP) is a field of research that aims to create
machines that are able to understand natural human language. This is a
complex task for which findings of linguistic science need to be combined
with the newest methods of computer science and artificial intelligence. For
this thesis, we will research methods of Natural Language Understanding
(NLU) and, consequently, apply them in order to extract processable seman-
tic information from the plain text descriptions of datasets. NLU involves
multiple challenges, the two main ones being polysemy — the same word can
have multiple meanings depending on the context - and synonymy — two or
more distinct words or phrases can have the same meaning [24].

Tackling the problem of polysemy involves identifying the specific meaning
of a word in context. In literature, this is known as word-sense disambigua-
tion (WSD). There are various approaches to solve this problem, including
dictionary-based, statistical and machine learning approaches, all of which
are going to be discussed thoroughly in this thesis [64]. The result of a NLU
algorithm, including proper WSD, is a semantic representation of a text that
can be interpreted by a computer. Such a meaningful representation must
be grounded on a structured lexical knowledge base. The creation of such a
resource is another very challenging aspect of NLP. While multiple sources
for lexical knowledge and ontologies such as Cyc [42] or WordNet [20] exist
our special focus will lie on BabelNet [54], since that is the resource that will
be used as a base for processing the descriptions of the datasets.

In order to achieve automatic understanding of natural-language text another
task needs to be performed and that is Entity Linking (EL)[19]. EL tries to
recognise entities within a text and link them to a reference knowledge base
such as, for instance, BabelNet. There, all possible entities are catalogued
and recorded together with their meaning. Additionally, BabelNet provides
semantic relations between the entities, such as is-a, instance-of or part-of
relations. We will discuss different approaches for WSD as well as EL in this
thesis. One particularly interesting approach that addresses both of these

1. Introduction Georg Prohaka (0325904)

issues is Babelfy [50]. It is a graph-based algorithm that provides disam-
biguated entity recognition of natural-language text. Babelfy utilizes the
BabelNet semantic network as a knowledge base. The state-of-the-art per-
formance of this algorithm together with the fact that BabelNet is currently
the largest multilingual knowledgebase lead us to the decision to directly ap-
ply Babelfy to the textual description of datasets and analyse the results.
In this thesis, we are first going to give an introduction to some NLP tasks,
namely WSD, EL and text categorization. Furthermore, we are going to dis-
cuss the clustering techniques which come back into use in the analysis part
of our work (section 7). Of course, related work of fellow researchers is going
to be outlined. Then, we are going to present a solution that makes use of the
Babelfy algorithm to achieve entity recognition in Open Datasets. Moreover,
a thorough analysis of the resulting data is going to be given. Here the focus
lies on comparing the outcome for different Open Data portals. These goals
can be summarised into a research question for this thesis as follows:

Can automatic entity recognition be used to discover the subject area of
Open Datasets?

Another aspect that makes NLP difficult is language diversity. Since the
Open Data movement has spread all over the globe there are an increasing
number of datasets available in various languages. The Open Data Portal
Watch project, which provides the required meta data for our research, covers
datasets published in over 20 distinct languages. This is another advantage
of BabelNet as well as Babelfy: they both cover all the required languages,
and many more.

There are multiple potential use cases for discovering entities (or concepts as
we will call them from here on out) in Open Datasets: The subject area of
datasets could be discovered and, by aggregating this information, the key
topics and themes of the portals themselves could be derived. These insights
could be used by portal administrators to better understand and improve
the structure of their content. Utilizing the concepts for improved search
is another interesting aspect. Since BabelNet provides multiple relations
between the concepts, an idea would be to leverage them to create a faceted
search hierarchy. A use case that we will investigate even further is automated
categorization of datasets. Many concepts in BabelNet belong to one of 34
distinct categories. We developed an algorithm that utilizes this information
to derive the category of a dataset. Results and comparisons for 150 portals
and over 170.000 datasets will be presented.

1. Introduction Georg Prohaka (0325904)

1.2 Goals

The overall goal of this study is to discover the potential of the semantic
information “hidden” in the natural language descriptions of open datasets.
After deciding for Babelfy as a NLU technique to achieve entity recognition
within the datasets we tried to explore the various possibilities these discov-
ered entities presented.

Initially, we investigated the use case of search, in particular facetted search,
since simply using the concepts as facets seemed reasonable at first glance.
However, the substantial number of distinct concepts found by Babelfy made
it clear that some sort of hierarchy or mapping between the concepts would
be necessary to achieve a useful solution. We decided that such a task is out
of scope for a single master thesis, especially because the semantic network of
BabelNet is very large and complex with over 30 different relations between
the concepts and no clear or easily derivable hierarchy. That said, this is
definitely an aspect that should be investigated further in future work, since
the potential for improving search over Open Data is unquestionable.
When reviewing the API of BabelNet we discovered that many of the con-
cepts are labelled with one of 34 categories. These categories range from
general ones like BUSINESS ECONOMICS AND FINANCE to more specific ones
line NUMISMATICS AND CURRENCIES. There is no hierarchy and the set of
categories is fixed, however, they provide a good basis for a high-level classifi-
cation of any content. This feature of BabelNet lead us to the idea to use the
discovered concepts indirectly to classify datasets into these 34 categories,
which hopefully would give a good overview of the content of the datasets.
Since the set of categories is fixed a comparison between portals was not far
to seek.

In summary, the goal was to (i) use Babelfy to discover the concepts of a
dataset, (ii) exploit the predefined categories of BabelNet concepts to classify
a dataset and (iii) to employ clustering methods to the results to find simi-
larities between Open Data portals. During the study, it became clear that
manual tweaking of parameters for such a categorization algorithm is some-
what necessary in order to achieve reasonable results. Therefore, we decided
to build a prototype called Categorizer that provides a graphical user inter-
face for parameter setting and exploration of the results of categorization.
Finally, of course, a thorough analysis of the outcome had to be conducted.

2. Theoretical foundations Georg Prohaka (0325904)

2 Theoretical foundations

In this section, we are going to discuss the theoretical foundations that are
necessary to tackle our problem. We are going to explain what Open Data
is exactly and what kinds of Open Data are distinguished. Furthermore, we
are going to take a look at the RDF data model, which is closely related to
Open Data. Then, we are going to explore natural language processing and
discuss some tasks specific to that area, namely word-sense disambiguation,
entity linking and text categorization. Finally, some clustering techniques
which were used for this study are going to be explained.

2.1 Open Data

Open Data refers to "A piece of content or data is open if anyone is free
to use, reuse, and redistribute it — subject only, at most, to the requirement
to attribute and share-alike.” [3] The motivation behind this idea is that
Open Data will facilitate innovation, creativity and new businesses, which
will consequently lead to economic growth. The amount of data that is
available is growing at an ever increasing rate. The Open Data Barometer
of 2015 [23] in Figure 1 shows that especially countries of the western world
have high capacity for Open Data, which means that they all have established
policies for this subject.

ngh capamty, Emergmg & advancmg

Capacity constrained, One sided initiatives

Figure 1: Country clusters based on Open Data Barometer Readiness and
Impact questions [23].

However, the availability of data alone does not contribute much to eco-

2. Theoretical foundations Georg Prohaka (0325904)

nomic growth. Creative individuals or businesses that take advantage of the
possibilities of Open Data are needed to achieve that goal. This is a process
that takes some time. Nevertheless, some believe that the number of individ-
uals and businesses that are already engaged in Open Data has reached the
critical mass necessary to trigger a set-change in business attitudes towards
this matter [29]. Goods and services are being enhanced by the use of Open
Data. Furthermore, more and more new businesses, like Duedil, i3 Educa-
tion Services, and more emerge that base their entire business model around
finding new ways to make use of the available data. Big players like Google
are also starting to open up their own data in order to increase customer
satisfaction and to facilitate easier supplier management. In the future Open
Data might have a significant impact on our society. Yet, this process is still
in its infancy and a lot of work remains to be done in order to reach the full
potential of the available possibilities.

2.1.1 Open Data Portals

Open Data is usually distributed over public websites which we are calling
Open Data portals. Thousands of distinct portals are currently available from
all over the world. There are many different approaches on how to present
the data to the user. A lot of portals provide interfaces that only allow
searching over the metadata of the datasets, while the actual data is stored
in downloadable files. There are numerous examples for this approach, one
would be the Open Data Portal of the Vienna University of Economics and
Business?. Other websites, such as Worldatlas®, provide a more integrated
type of interface that also utilizes some visualization techniques.

At this time, according to the Portal Watch project 260 Open Data portals
are active around the world. A large portion of these portals make use
either CKAN* or SOCRATA® two software frameworks that provide means
to publish and search Open Data. Apart from the evident title, description
and keywords most datasets include further metadata such as date of issue,
date of last update, type of license the dataset is published under, format of
downloadable files, name of the publishing organization, et cetera. It should
be clear, that, at this time, Open Data is rather scattered across numerous
access points, which is probably why little research has been conducted on
the content and structure of its entirety. With this thesis we try to make one
step into that direction.

’http://data.wu.ac.at/
3http://www.worldatlas.com/
‘http://ckan.org/
Shttp://socrata.com/

2. Theoretical foundations Georg Prohaka (0325904)

2.1.2 Open Government Data

Open Govenment Data (OGD) is that part of the worldwide Open Data that
is provided by different governments. The goal is to increase transparency
of government and administrative structures and to encourage citizens to
take part in the democratic process. This notion became increasingly popu-
lar around the world since the G8 leaders signed an Open Data Charter in
2013 where they agreed to "Establish an expectation that all government data
be published openly by default, ..." [2|. This lead many countries to launch
Open Data intitiatives publishing many different kinds of data. However,
some critizise that many countries have yet to open up significant core data
about government spending, company registers or public sector contracts,
which would contribute alot to transparency and consequently help reduce
corruption [23]. While, in many regions around the world, there is still a lot
of improvement possible in this matter, the trend seems to go into the right
direction. OGD is published mostly in formatted files. TSV, XML, JSON,
CSV are just some of the many different open formats that are currently
used to store the data. Evidently, this represents a considerable barrier for
the end user. A standard format has not yet been established. Further-
more, inconsistencies or poor description of the datasets is very common in
OGDJ40], which also renders searching the available data hard for the end
user. These issues are most likely not going to be solved by the providers of
the data in the near future, since, from a technical standpoint, government
institutions tend to improve rather slow. However, since OGD is in fact open,
third parties have the opportunity to reach improvements or rather to create
completely new solutions using OGD.

2.2 Linked Open Data

Linked Open Data (LOD) is another form of Open Data. It refers to data
that is organized in such a way that its meaning can be interpreted by a
computer and that it can be linked to other external data sets |[71|. This
concept was introduced by Tim Berners Lee in 2006 in a Web architecture
note [10]. The Resource Description Framework (RDF) [5], which is a data
model for describing relationships between resources, has become the de facto
standard for creating LOD. In recent years the lines between the Semantic
Web, which is a term that has been utilized frequently in the past, and LOD
have become blurred [71]|. The ultimate goal is to create the so called Web of
Data that can be read and interpreted by a machine. This is also commonly
called “The Linked Open Data Cloud”® which has been growing rapidly in

Shttp://linkeddata.org/

2. Theoretical foundations Georg Prohaka (0325904)

recent years. Figure 2 shows a graph of the current state of the LOD cloud.
Each circle represents a dataset and the radius depends on the number of
triples that source provides. DBPedia for example has about 3,000,000,000
triples. The arrows indicate the existence of at least 50 links between two
datasets [4]. It should be clear now that there is already a massive amount
of information out there and that the potential for innovative applications is
particularly high. However, because of the complexity and in-homogeneity
of the LOD cloud even a basic task such as searching poses major difficulties
for software developers. Hence, different research topics have emerged aside,
such as semantic search on LOD, integrating large number of linked data
sources, mining the web of linked data, quality evaluation of linked data, et
cetera. As a result, we are definitely going to see more and more diverse and
interesting applications being developed in the near future.

—]ncoming Links
——Qutgoing Links

Figure 2: The Linked Open Data cloud [4].

2. Theoretical foundations Georg Prohaka (0325904)

2.2.1 RDF

The Resource Description Framework (RDF) [5] is a model to express logical
statements about resources. A resource is something that is unique and that
one wants to make a statement about. It can be anything from a webpage to
a physical or abstract entity. Resources are identified by so called Uniform
Resource Identifiers (URI) which are unique strings of characters. Since a
lot of resources are in fact websites URIs are often denoted in the form of
Uniform Resource Locators (URL). However, URIs do not have to necessarily
be reachable on the web. In the latest recommendation of the RDF-model
the International Resource Identifier (IRI) has been introduced, which is a
generalization of the URI. It allows non-ASCII characters to be used in the
character string.

In the RDF-model each statement consists of three parts: subject, predicate
and object. The subject — a resource — is described using the predicate
and the object, which can be resources, just values expressed by literals or
even blank nodes. Blank nodes represent something that is not specified
concretely. They are used like simple variables in algebra [5]. The predicate
characterizes the relationship between the subject and the object. These
three units are called a RDF-triple. The RDF-model can be mathematically
understood as a labeled direct graph, where the directed arcs point from
subjects to objects via predicate labels with meaning. The following code
shows a simple example for three RDF triples:

Listing 1: An RDF example in RDF /Turtle notation

:datasetl
a dcat:Dataset ;
dct:title "Imaginary dataset';
dcat: keyword "water"

This defines "dataset1" as a dataset under the DCAT Vocabulary [17]. The
second triple states that the title of this specific dataset is "Imaginary dataset".
The quotations imply that the object is a literal. The last triple indicates
that the keyword for this dataset is "water", again a literal.

RDF was originally developed by the World Wide Web Consortium as a
standard to describe metadata. However, it has been widely employed for
building the Semantic Web i.e. the LOD. There are various common serial-
ization formats for RDF, namely N-Triples, N-Quads, JSON-LD, N3, RD-
F/XML and Turtle (see main RDF formats in [5]). They each have different
advantages, for example Turtle is often used by developers of the Semantic
Web since its syntax is very easily readable for a human.

By now, a lot of different RDF-vocabularies have been developed that define

9

2. Theoretical foundations Georg Prohaka (0325904)

various predicates and objects in order to provide a base line for formulat-
ing statements. For instance, the very commonly used FOAF vocabulary’
specifies characteristics of people and social groups, such as name, age or
title.

2.2.2 SPARQL

To query RDF-data the SPARQL language [63| has become the most com-
monly used standard. Tts syntax and structure resembles SQL. SPARQL has
been officially recommended by the World Wide Web Consortium in 2008. It
is based on graph pattern matching. A SPARQL query normally consists of
one or more sets of triple patterns. These patterns stand for the RDF subject,
predicate and object. The components of each triple may be replaced with
a variable instead of an IRI or literal. These patterns may also be joined in
order to create more complex queries. Consequently, these sets are matched
against the RDF data. The results of SPARQL queries can be result sets or
RDF graphs. SPARQL also supports aggregation, subqueries, negation, cre-
ating values by expressions, extensible value testing, and constraining queries
by source RDF graph [63].

2.2.3 DCAT

For this project we needed a way to describe the metadata of all the datasets
coming from different Open Data portals. For this purpose the Data Catalog
Vocabulary (DCAT) [17] was a good choice, since it covers everything from
title over keywords to a description of the catalog i.e. the portal. Figure 3
shows the structure of the DCAT vocabulary. It essentially consists of three
main classes:

1. dcat:Catalog
2. dcat:Dataset
3. decat:Distribution

A Catalog contains one or many datasets, in our case it translates to one
of the Open Data portals. In DCAT a Dataset is defined as a "collection
of data, published or curated by a single agent, and available for access or
download in one or more formats"[17], so it does not necessarily have to be
a downloadable file. However, in our project all datasets have that property.

"http://www.foaf-project.org/

10

2. Theoretical foundations Georg Prohaka (0325904)

dctype:Dataset |

foaf:Agent |1— dct:publisher ~——— dcat:Dataset o
dcat:Distribution
dct:title detote

dct:description dct:description

dct:issued i
skos:Concept deattheme o ;. i oy
detmafi detmadiid

dct:identifier det:license

dcat:keyword | dcat:distribution _]

det:publisher skos:inScheme J det:rights
dct:language ‘ deat:accessURL
dcat:contactPoint deat:downloadURL
dct:temporal i
dcat:mediaType
[skos:ConceptScheme l dct:spatial det:format s
/v dct:accrual Periodicity dcat:byteSize
dcat:landingPage .
dcat:themeTaxonomy ‘ gn £

foaf:primaryTopic

|

dcat:dataset

deat:Catalog dcat:CatalogRecord
dct:title
dct:description dct:title
det:issued dct:description
det:modified deat-record dct:issueld-
dct:language det:modified
dct:license
dct:rights
dct:spatial
foaf:homepage

Figure 3: Structure of the DCAT vocabulary [4]

Hence, each has a related distribution which represents the file itself. An-
other RDF-vocabulary that is employed for describing datasets is the VolD
vocabulary®. It was also created for expressing metadata about datasets,
however, it focuses mainly on RDF-datasets and most of the files managed
in this project are not actual RDF-files.

2.3 Natural language processing

Natural language processing (NLP) is a field in computer science that focuses
on digitally representing and processing natural languages such as English.
The enormous and ever-growing amount of human-written text that is avail-
able on the World Wide Web makes new methods for search and automatic
categorization necessary. NLP uses artificial intelligence methods to address
this problem. The goal is to enable a computer to communicate with a hu-
man via natural language, be it speech or written text. NLP may be divided
into two parts: Natural language generation (NLG) and natural language
understanding (NLU). In the following, we are going to discuss each aspect
in more detail.

8https://www.w3.org/TR/void/

11

2. Theoretical foundations Georg Prohaka (0325904)

2.3.1 Natural Language Generation

The goal of NLG is to automatically generate consistent and meaningful sen-
tences from some digital representation. The best possible outcome being
sentences that cannot be distinguished from ones that were produced by a
human. One of the main challenges of NLG systems is making choices [57].
Such a system has not only to decide what it puts out but also how. This con-
cerns for example the correct use of pronouns as the following example shows:

(1) (a) Niklas talks about Niklas.
(b) Niklas talks about himself.

Binding theory [14] is a method that could be used to come to the right
choice here. Another example shows that in other cases choices must be
made between two linguistically correct alternatives:

(2) (a) I bought a shampoo. T used it.
(b) T bought a shampoo. I used the shampoo.

Both possibilities are valid, however, a NLG system still has to decide which
one to take. This choice can be made for example based on readability fac-
tors, which would suggest the use of (2a). If the NLG system is used in a
more critical context such as medical manuals more precise language might
be required which would make (2b) the more appropriate choice.

Thus, a big part of NLG is concerned with making correct choices. Analyz-
ing specific decisions, aggregating them in a meaningful way and providing
methodologies for deducing rules and constructing choice-making systems are
some of the challenges of NLG. It is closely connected to linguistic research
and often makes use of techniques from the field of artificial intelligence.
An example for an application of NLG is generating textual weather forecasts
from digital data. Different meteorological statistics can be used to predict
temperature, wind speed /direction, rain probability, et cetera. SumTime [62]
is a NLG system that takes this data as input and generates textual weather
forecasts. Since the amount of available data is very large, the system first
must decide which information will be included in the text and how the doc-
ument will be structured. This step is called document planning. Then, the
appropriate words, syntax and sentences must be chosen. This is referred
to as microplanning. Finally, in the realization step, the order an applicable
form of the words must be selected.

NLG is applied in many other contexts as well. For instance, using numeric
data and event records to create summaries of medical, financial or sports
data. Generating document templates for legal, clinical or business docu-

12

2. Theoretical foundations Georg Prohaka (0325904)

ments based on a knowledge base is another application. NLG can even help
improving the lives of disabled people, for example, by aiding blind users in
exploring graphs [22].

In our work, we are interested in understanding the already existing text de-
scriptions of open datasets, which is why we focus on NLU, although, NLG
could be an interesting approach to explain the data content to users.

2.3.2 Natural Language Understanding

The ultimate goal NLU research is to create a machine that is able to under-
stand fluent text written in a natural language. This is an incredibly difficult
task due to the complexity and ambiguity of human language. In 1971, Terry
Winograd, a PhD student at MIT, made a first attempt at implementing a
NLU engine. The program called SHRDLU? could communicate with its
user in plain English. The knowledge of the system was limited to a small
world with different colored blocks that could be moved by giving commands.
Figure 4 shows an example of a conversation between SHRDLU and its user.

e

Green

Person: Pick up a big red block.

Computer: OK.

Person: Grasp the pyramid.

Computer: | don't understand which pyramid you mean.

Figure 4: A conversation example with SHRDLU

Between 1979 and 1982, Fernando Pereira and David Warren developed a
system called CHAT-80 that could answer questions posed in English about
a geographical dataset. The grammar of this system was based on logical
formulas that translated questions of the user to queries for the database.
Listing 2 shows some examples.

http://hci.stanford.edu/winograd/shrdlu/

13

2. Theoretical foundations Georg Prohaka (0325904)

Listing 2: A conversation example with CHAT-80

What is the capital of Upper Volta?

ouagadougou

Which country’s capital is London?

united kingdom

What are the capitals of the countries bordering the
Baltic?

denmark:copenhagen; east germany:east berlin;
finland : helsink; poland:warsaw; soviet union:moscow;
sweden :stockholm; west germany:bonn

Q: What coutries border Denkmark?

A: T don’t understand!

s QFLOFO

Of course, these were still very limited approaches. In recent years, the
interest in NLU has increased significantly in both academia and industry.
Availability of computing power and advances in artificial intelligence have
made many new applications possible: From voice-driven assistants such as
Apple’s Siri or Google Assistant, over natural-language search and question
answering to many others. A remarkable achievement in this field is for ex-
ample the win of the AT system “Watson” by IBM in the popular gameshow
Jeopardy in 2011.

NLU is currently very present in the realms of financial trading. Unstruc-
tured data such as news, tweets or analyst reports are processed by computers
which consequently conduct the appropriate trades. These transactions are
often executed within milliseconds. Leveraging these automated systems has
in some cases lead to very abrupt and unpredictable market movements. For
example, in 2013 the S&P 500 temporarily lost $136B in market capitaliza-
tion due to a hacked twitter feed of the Associated Press in the USA.

One issue that must be resolved by any NLU system is how to represent
natural language in a way that can be interpreted and manipulated by a
computer. A simple solution is the so-called bag-of-words approach, where
a text is represented as an unordered list of words. Statistical methods can
be used on these data structures to perform tasks such as search [9] or text
categorization [60]. The drawback of this approach is that it does not capture
any semantics which makes it unusable for many applications. Furthermore,
even for the task of text categorization it performs poorly as soon as the
input texts become short, which is why we refrained from using such tech-
niques in our approach.

Two fundamental challenges of NLU are synonymy, two different words that
have the same meaning, and polysemy, words that can have multiple mean-
ings in different contexts, e.g. the word “church” can refer to a building or

14

2. Theoretical foundations Georg Prohaka (0325904)

an organization. Latent Semantic Analysis (LSA) [18] is a mathematical ap-
proach that tries to find the main concepts of a document by manipulating
the term-document matrix. This matrix contains all documents of the base
corpus of text together with an entry for the frequency of each word in the
corresponding document. By applying singular value decomposition to this
matrix LSA is able to identify the most important concepts of the data. This
elegantly solves the problem of synonymy; however, polysemy remains an is-
sue.

Efforts have been made to create databases that store words or concepts and
their relations such as synonymy, hypernymy (type-of relation, e.g. “pigeon”,
“crow”, “eagle” are hyponyms of “bird”) or meronymy (part-of, e.g. “finger” is
a meronym of “hand”). BabelNet [54] is one of the biggest so-called knowl-
edge bases including over 14 million different concepts. Such knowledge bases
can be used for different NLU tasks such as word-sense disambiguation or
entity-linking. Since this is the approach we used we will discuss it in more
detail in a later section of this thesis.

Many NLP challenges can be reduced to a classification task. For instance,
in part-of-speech tagging each word must be assigned to a part of speech.
Word-sense disambiguation has to identify the correct meaning of a word
from a set of meanings. One method to solve such tasks are decision trees.
Figure 5 shows an example for disambiguation of periods. A period can

Is the period followed by
whitespace, a parenthesis

or a quotation symbol?

yes no
Is the period preceded by
a known abbreviation? part of a token
ves no
Is the period followed by a Is the period preceded
capitalized regular word? by a regular word?
ves no ves no
both part of a token | | punctuation | Is the period followed
by a lowercase word?
yes no
| part of a token | | punctuation |

Figure 5: A decision tree for period disambiguation [57]
either be the mark of the end of a sentence (“I drove home.”), part of an

15

2. Theoretical foundations Georg Prohaka (0325904)

abbreviation (“e.g.”) , or both (“It was proven by Brecht et al.”). The deci-
sion tree classifies periods into these three categories. A new classification
always starts at the root node. Each node represents a rule that leads to
a decision. The different classes lie at the leaves of the tree. Decision trees
can be automatically generated from already classified training data. This
data includes different features for each object and its corresponding class.
Different algorithms to recursively deduce decision trees from such training
data exist. The main drawback of this approach is that it needs a rather
large set of preclassified data, which is often hard to obtain just as in the
case of Open datasets. Furthermore, they often show weaker performance
for real data than other approaches like neural networks.

Artificial neural networks (ANNs) are networks that consist of multiple
so-called perceptrons [57|. A perceptron is an artificial neuron that maps
some input to a binary output based on a weight and a threshold. Multiple
perceptrons are connected to create an ANN that can learn from training
data. Such networks often have multiple layers of perceptrons between the
input and the output which allows more complex types of classification. Fig-
ure 6a shows an example of such a multi-layered perceptron. The hidden

[nput Output Input Output

Hidden Hidden
(a) A multi-layered ANN (b) A recursive multi-layered ANN

Figure 6: The structure of an artificial neural network (ANN) [57]

layers allow a mapping of the input space to a new space of features which
consequently can be used by the output layer. ANNs can even have multiple
interconnected hidden layers. Training such a network is done by adjusting
the weights of the perceptrons until the input leads to the desired output. In
feed-forward networks the directed graph of the perceptrons does not contain
loops, thus, the computation of the output can be achieved in a single pass.
Recurrent ANNs, on the other hand, can contain such loops. Figure 6b shows
an example. These are used when inputs and outputs are sequences with an
arbitrary length, e.g. the words in a sentence. Such feedback-loops provide
a “memory” to the network by connecting one position in the time sequence

16

2. Theoretical foundations Georg Prohaka (0325904)

with the subsequent position. ANNs show high performance for many clas-
sification tasks in NLU such as word-sense disambiguation or part-of-speech
tagging and they are currently in the focus of a lot of research.

2.4 'Word-sense Disambiguation

Word-sense disambiguation (WSD) has always been a topic of interest in the
research area of NLP. It is concerned with selecting the correct meaning of a
word in context. To clarify this, we look at the following two sentences:

(a) The suitcase is light.
(b) Please turn off the light.

The word “light” has two completely different meanings: In (a) it is an adjec-
tive meaning “easy to lift” and in (b) it refers to “illumination”. The meaning
is given by the context. It even has a different part of speech, although the
spelling is identical in both cases. This is a difficult problem for a NLP sys-
tem. It needs to process the unstructured text, convert it to some internal
representation and, subsequently, analyze it and thereby find a way to de-
duce the correct meaning from context. John Mallery identified WSD to be
an Al-complete problem [45], that means that it is as least as hard to solve
as other fundamental problems of artificial intelligence such as, for instance,
the Turing Test |68]. This is due to various factors.

First, it involves fundamental questions like how to represent word senses.
Example approaches for such representations are enumeration of finite set of
senses or automatic generation of senses based on certain rules. Furthermore,
it must be determined how fine grained the distinctions between senses are,
i.e. differences can be very subtle. WSD might be simplified if the domain
context of the input texts is known, of course, that is not the case for many
applications. In addition, selecting the set of words that need disambiguation
is a non-trivial task.

Another major aspect that makes WSD challenging is that it requires knowl-
edge. In fact, every WSD system needs some sort of knowledge in order to
select fitting senses for a word. In other words, the labels that are assigned to
words must be defined somewhere. Such knowledge can have various forms:
Text corpora with preliminarily annotated word senses are one possibility.
Over the last decades, some more structured machine-readable dictionaries
respectively semantic networks have been build. However, creating such re-
sources is a very difficult task in itself and it can never be fully completed
due to the ever-evolving nature of the world and human language. This fun-
damental problem is called knowledge acquisition bottleneck [25].

17

2. Theoretical foundations Georg Prohaka (0325904)

As mentioned before, the rapid growth of the World Wide Web has led to
an enormous amount of unstructured texts and data. Thus, means to pro-
cess this data automatically become increasingly necessary. Traditional tech-
niques, which are often based on lexicosyntactic analysis of text and do not
consider WSD at all, often perform poorly when applied to such vast amounts
of data [52]. WSD is a crucial step in solving multiple current NLP problems
and could contribute to realizing the Semantic Web.

Machine translation is an area where WSD plays an integral role. In fact,
it contributes significantly to the quality of results. For example, “penna”
in Ttalian can be translated as “pen”, “feather” or “author” depending on the
context. Clearly, choosing the correct sense makes a big difference for the
outcome of automated translation.

2.4.1 Supervised WSD

Supervised WSD makes use of a preliminarily classified training set, i.e. a
list words together with some defining features and the correctly assigned
word sense. This is called the ground truth from which supervised WSD
algorithms try to learn a classifier. Usually, these algorithms classify a single
word at a time. Various machine-learning techniques are used to achieve that
goal. Decision trees or artificial neural networks are two examples that were
already discussed in the previous section. Other methods include Naive Bayes
classifiers, Exemplar-Based Learning or Support Vector Machines. Again,
the common drawback of these approaches is the need for usually manually
created sets of training data.

2.4.2 Unsupervised WSD

Unsupervised WSD methods could be the answer to the knowledge acquisi-
tion bottleneck. The main idea of such approaches is that words with similar
senses will occur close to one another in a text. They use clustering to group
similar words, i.e. senses, in the input text and, subsequently, try to clas-
sify new occurrences into these induced clusters. Thus, no machine-readable
knowledge base is required for such methods. To be exact, an unsupervised
WSD system cannot perform the common WSD task of sense labeling, since
it has no knowledge about any specific word senses or labels. It accomplishes
word sense discrimination, i.e. it divides “the occurrences of a word into a
number of classes by determining for any two occurrences whether they be-
long to the same sense or not” [59]. Thus, such approaches usually do not
result in clusters that would be found in a dictionary, which makes them
hard to compare and evaluate. However, once found, such clusters can still

18

2. Theoretical foundations Georg Prohaka (0325904)

be reused at a later point of time. The currently most popular methods for
unsupervised WSD are:

o Context Clustering represents each word occurrence as a context vec-
tor. This vector contains all senses the corresponding word can have.
Clustering is used on such vectors to find groups of similar sense of the
target word.

e Word Clustering tries find to clusters based on words which have sim-
ilar meanings. Similarity between words is defined by occurrences of
syntactic dependencies (such as, subject-verb, verb-object, et cetera)
[52].

e (Cooccurrence Graphs are graphs that represent words as nodes and
syntactic relations as edges. To disambiguate a target word, a local
graph is built around it. Normalizing this graphs adjacency matrix
leads to a Markov chain which can, subsequently, be clustered using
the Markov clustering algorithm [69] to discover the word senses.

2.5 Entity Linking

In our work, we are interested in Entity Linking (EL). Recently, EL has
gained increased attention in the research area of NLP. It refers to the task
of identifying entities in a text and connecting them to an entry in a knowl-
edge base. Sometimes, it is also called record linkage, entity resolution or
entity recognition. Some of the numerous applications of EL include infor-
mation retrieval, information extraction or knowledge base population.

The available data on the World Wide Web is growing exponentially and a
big part of it is formulated in natural language. This includes many occur-
rences of named entities in various forms. Furthermore, a significant effort
has been made to create big knowledge bases such as Wikipedia as well as
machine-readable resources like DBpedia [8], YAGO [65] or BabelNet [54].
The goal of EL is to automatically establish correct connections between this
data and such knowledgebases.

Figure 7 shows an example of the task an EL system must solve. The pre-
liminarily identified named entity “Michael Jordan” needs to be linked to the
correct entry in the knowledge base. Very often multiple candidate entries
exist. In this instance, the Michael Jorden referred to in the text is an Amer-
ican scientist, whereas, in other texts the same name might be a mention of
a football player or a mycologist. Of course, the context in which an entity
is mentioned must be considered for making such a decision. This disam-
biguation task is one of the core challenges of EL and is very similar to WSD

19

2. Theoretical foundations Georg Prohaka (0325904)

Text Candidate entities

Michael Jordan N Michael J. Jordan

(born 1957) is \: ~

N
. Ay ~
\ N
an American “\ Michael I. Jordan
\
\

scientist, Y

[N
f , and "
projessor, an ‘-\ *){ Michael W. Jordan (footballer) J
A}

leading]
researcher in Y ¥] .
: \ Michael Jordan (mycologist)
machine \
\
learning and v
artificial \| (other different “Michael

Figure 7: An example for the task of Entity Linking [61]

where the possible senses of a word must be disambiguated. Furthermore,
an entity can have multiple name variations, for example abbreviations (e.g.
“USA” for United States of America) or nicknames (e.g. “Big Apple” for New
York City). Thus, simply matching the complete string will lead to many
missed potential links.

Deciding whether a mention of an entity actually has a corresponding entry
in the knowledge base or is unlikable, because no such entry exists yet, is an-
other challenging aspect. Coming back to the example in Figure 7; Suppose
the input text is about a Michael Jorden who is some politician for whom no
entry in the knowledge base has been created yet. An EL must determine
that none of the available entries are a match and, therefore, return a null
value. This becomes especially difficult when using large knowledge bases
with many potential matches.

Most EL systems consist of three major components: Candidate Entity Gen-
eration, Candidate Entity Ranking and Unlinkable Mention Prediction. The
following paragraphs will discuss each of them briefly.

2.5.1 Candidate Entity Generation

Candidate Entity Generation is the initial step for any EL approach. For
each mention m of an entity a set of entries in the knowledge base must be
generated that consists of all possible matches for m. Most approaches are
based on some sort of string comparison between the mention and names of
entities in the knowledge base. We are now going to discuss three of the most
used techniques:

e Name Dictionary Based Techniques make use of online resources (in
most cases Wikipedia) to create a name dictionary. Specifically, such a

20

2. Theoretical foundations Georg Prohaka (0325904)

dictionary is a key/value map where the keys are names and the values
are sets of possible entities. For example, the key “Micheal Jordan”
would map to the value {Michael Jordan (footballer), Michael Jorden
(mycologist), ...}. Furthermore, different keys can map to the same
value, thus, allowing entities to have multiple names, e.g. the key
“USA” as well as the key “America” have the value United States of
America. Such a dictionary can be constructed automatically from
Wikipedia by leveraging its entity pages and inter-article hyperlinks
[27].

e Surface Form Expansion from the Local Document is a technique that
tries to address the problem of acronyms and abbreviations. The goal is
to identify other mentions of the same entity within the input document
in expanded form (e.g. the full name of a person who was previously
mentioned using just initials). This information can then be leveraged
to generate more accurate candidate entity sets. Heuristic based meth-
ods use heuristic pattern matching to discover acronyms. For example,
a popular pattern is an entity followed by its acronym in parenthesis
(e.g. “New York City (NYC)”). Supervised learning methods can be
used to tackle more complex acronyms where some letters are changed
or missing (e.g.“Communist Party of China (CCP)”) [72].

o Methods Based on Search Engines try to take advantage of the capabil-
ities of modern search engines such as Google. The mentioned entity
is forwarded to the search engine, sometimes even together with its
context [30], and, subsequently, the results are searched for Wikipedia
references, which are then added to the candidate entity sets.

2.5.2 Candidate Entity Ranking

After the candidate entity set has been found for a particular mention the
candidates must be compared and ranked in order to be able to determine
the most appropriate link. Usually, the size of the candidate entity set is
significantly larger than 1, which would of course make this step trivial. For
instance, it has been shown that the average size of such sets for the TAC-
KBP2010 dataset (a benchmark dataset manually created by researchers) is
12.9 [38]. Therefore, this is a crucial step in EL. Methods to achieve such a
ranking can be divided into three categories [61]:

e Independent Ranking Methods refrain from the idea that different men-
tions of entities within a text are somehow related. They treat each

21

2. Theoretical foundations Georg Prohaka (0325904)

mention independently and mainly focus on similarities between the
entities and their surrounding text, i.e. the local context.

e (Collective Ranking Methods, in contrast, assume that entities within
a document mostly refer to a set of related topics. These approaches
link all entities of an input text in one pass, trying to leverage relations
between them.

e Collaborative Ranking Methods try to discover relationships between
entity mentions and their surrounding context across documents. Can-
didate entities are ranked based on the similarity of the mention and
its context with other mention-entity links that have been found pre-
viously in other documents.

2.5.3 Unlinkable Mention Prediction

When candidate entity ranking is complete, the top ranked entity may be
chosen to establish a link with the respecting mention. However, in real
world applications some entities will most likely not have corresponding en-
tries in the knowledge base. Especially when working with large amounts of
data such cases are inevitable. Therefore, such unlinkable mentions need to
be predicted. Many studies simply ignore this fact and work with the as-
sumption that the knowledge base contains all possible entities [61]. Others
only assign a null value whenever the candidate entity set is empty. Some
EL systems include a score in their method for candidate entity ranking
which can be used to establish a threshold for a link to be established. If
the score of the top ranked entity is below that threshold the null value is
returned instead. Other approaches use supervised machine learning to filter
out unlikable mentions [73].

2.6 Text categorization

Since we try to categorize Open datasets based on their textual descrip-
tions text categorization (TC) is an especially interesting research area for
us. The goal of TC is to automatically assign natural language texts to a set
of predefined categories. Sometimes the term TC is also used for automatic
discovery of such a set of categories based on a given text, however, here
we will focus on the former aspect. TC is essential for several higher-level
tasks ([41], [33], [70], [44]). Especially in the area of machine learning TC
has become a growing topic of interest. Much of the progress in this field
can be attributed to the availability of large test collections. These consist
of a multitude of documents which have been manually assigned to distinct

22

2. Theoretical foundations Georg Prohaka (0325904)

categories by human indexers. Such collections allow researchers to quickly
investigate novel approaches without the costly task of acquiring new training
data. Furthermore, they allow for quality assessment and meaningful com-
parison of different methods. Examples for such collections are OHSUMED
|32], a medical information database, TIPSTER [31], a collection of news
stories, and the Reuters Corpus Volume I [58], another large archive of over
800,000 categorized news stories.

The task of TC can have multiple properties based on the context of the its
application [60]:

o Single-label vs multi-label: Single-label categorization assigns exactly
one category to each text. Binary TC is a special case of single-label
TC where a text either belongs to a category or to its complement. In
multi-label TC, a text may belong to multiple categories. This means
that some categories overlap. Binary TC is the most general form; a
binary classifier may be used for multi-label classification by applying it
to every category and determining whether an input text belongs to it
or not. In contrast, multi-label algorithms cannot always be applied to
single-label problems, since the resulting categories do not necessarily
have to be ordered. Therefore, it cannot be directly determined which
of the categories is “most fitting”.

o Category-pivoted vs document-pivoted: Category-pivoted TC (CPV)
iterates over all available categories and tries to find all matches in a
given set of texts. Document-pivoted TC (DPC) on the other hand,
tries to find the appropriate category for every text given as an input,
thus, iterating over the texts. This is a rather subtle distinction; how-
ever, it can be important when for example the set of categories or the
set of input texts are not accessible in their entirety. DPC is usually
employed when the input texts become available at distinct points in
time, for example when filtering for spam e-mails. CPC is the appropri-
ate choice when the set of categories is subject to change over time, for
example when new categories are added after some texts have already
been categorized.

e Hard vs ranking: Depending on the application a TC algorithm must
produce a definitive true or false answer to the question whether a
text belongs to a category or not. This is called hard categorization.
Alternatively, an algorithm could just give a ranking of categories for
each input text. This approach is popular for semi-automated TC
where the final decision is taken by a domain expert. Such approaches

23

2. Theoretical foundations Georg Prohaka (0325904)

are useful when the expected quality of a fully automated system is low
due to limited training data.

In the 1980s, TC was addressed mostly using so called knowledge engineering
(KE) techniques. KE systems consist of a set of logical rules that were
manually created by domain experts. One rule of the following form is created
for each category:

if (DNF formula) then (category)

In such a system, a text belongs to a category if and only if the respec-
tive disjunctive normal form (DNF) formula evaluates to true. Figure 8
shows an example for such a rule. Such systems can be very effective for

if ((wheat & farm) or
(wheat & commodity) or
(bushels & export) or
(wheat & tonnes) or

(wheat & winter & — soft)) then WHEAT else — WHEAT

Figure 8: Rule-based classifier for the WHEAT category; key words are indi-
cated in italic [6].

specific domains; however, it should be clear that constructing them is very
labor-intensive and therefore costly. Moreover, this approach suffers from the
knowledge acquisition bottleneck, i.e. the whole systems needs to be adapted
manually whenever a category is added or for usage in a different domain.
Nowadays, almost all approaches to TC are based on machine learning (ML).
In general, these techniques include a so-called learner that automatically
constructs a classifier based on a set of preliminarily categorized training
data. Since the training data is usually manually created this is called super-
wised learning. The big advantage of this approach is that such a learner can
be applied to any domain if sufficient training data is available. Furthermore,
the categories themselves are not hard coded into the learner; therefore, it is
not necessary to update it whenever they change; just automatic retraining
with an updated set of training data is necessary. In the following sections,
we are going to review some of the most common ML approaches to TC.

2.6.1 Naive Bayes Classifier

Naive Bayes classifiers belong to the probabilistic classifiers and are based on
Bayes’ theorem from probability theory. Objects are assigned to categories

24

2. Theoretical foundations Georg Prohaka (0325904)

based on a probability that is computed from their feature vectors. The naive
assumption is that all features are independent from one another, which is a
necessity for the use of the Bayes’ theorem. This premise is mostly false in
practice, nonetheless, such classifiers still achieve reliable results as long as
the attributes are not strongly correlated.

Since filtering spam e-mails is a popular application of naive Bayes classifiers
we will use this context as an illustrative example [1|: An e-mail can either
be spam or not, so, our set of possible categories consists of two entries
C = {spam,spam}. The words {wy,...,w,} of an e-mail can be seen as
its feature vector. From the preliminarily classified training data we can
estimate the probability that a word w; appears in a spam e-mail or a non-
spam e-mail:

number of spam e-mails including w;
total number of spam e-mails

P(w;|spam) =
P(w;|spam) = 1 — P(w;|spam)

To classify a new e-mail E we must determine whether P(spam|E) < P(spam|E).
If this evaluates to true then E is not a spam e-mail. These probabilities can
be computed based on Bayes’ theorem:

__ P(spamnNE) __ P(E|spam)-P(spam)
P(spam|E) = PE = PE)
P(FE) is the probability that E occurs which is independent of P(spam|E)
and P(spam|FE) and is therefore negligible. Consequently, we just have to
evaluate the following expression:

Q _ P(spam|E) __ P(E|spam)-P(spam)
P(spam|E) — P(E[spam) P(spam)

Is @ > 1 then F is classified as spam, otherwise as non-spam. The probability
P(spam) can be again estimated from the training data:

number of spam e-mails
total number of e-mails

P(spam) =
P(spam) = 1 — P(spam)

In practice, it is more common to use a higher threshold like) > 10 to
make sure that only e-mails that are very likely to be spam are filtered
out and put into the spam folder. These classifiers learn by adjusting the
probabilities P(w;|spam), P(spam) whenever new training data is available.
Naive Bayes classifiers are popular because their evaluation only requires
linear time and they perform reasonably well even for small sets of training
data. A drawback is that they cannot be interpreted very easily by a human.
Due to the necessity of preclassified training data this approach is not feasible
for our particular situation and goals.

25

2. Theoretical foundations Georg Prohaka (0325904)

2.6.2 Decision Tree Classifiers

An approach that is more easily interpretable by a human are decision tree
(DT) classifiers. In this context, a DT is a tree where the edges are labeled
with words that may or may not appear in a text. The leaves of the tree
represent the categories a text can belong to. A DT classifier starts at the
root and tests which words appear in the input text. As soon as a leaf is
reached the corresponding category is assigned to the text. Figure 9 shows
an example for such a tree.

Such a DT for a category c¢ can be learned from training data 7" in the

farm Y bushels w
.) WHEAT WHEAT
cornrodity commodity export export
-

WHEAT WHEAT WHEAT

agriculture

-
WHEAT

onnes

winter winter

WHEAT soft \
WaEsT*®

Figure 9: A decision tree determining membership to the WHEAT category
(underline represents negation) [6].

WHEAT

following way:

1. If all elements in T belong to the same category (¢ or ¢) assign this
category to the leaf.

2. Otherwise, select a term ¢ and partition 7 into sets that have the same
value for t. Each of those sets is put into its own subtree.

This procedure is repeated recursively until each leave of the tree contains
a category. Here, the crucial part is the selection of the term ¢, since it

26

2. Theoretical foundations Georg Prohaka (0325904)

determines the partitioning. This is often based on a measure for information
gain or misclassification, e.g. Gini impurity. DT generated in such a way are
relatively prone to overfitting to the training data, which is why many DT
learning approaches include methods for trimming the tree, i.e. removing
some branches that are too restrictive.

A big advantage of decision trees is that it is easy for humans to work with
them. Very little explanation is necessary to interpret a visualization of a
DT. A drawback is that they are rather sensitive to changes in the training
data. A small adjustment in the training data may lead to a substantial
change in the tree [13].

2.6.3 Support Vector Machines

Support Vector Machines (SVM) were introduced to TC by Thorsten Joachims
in 1998 [39]. A SVM classifies a set of objects in such a way that the empty
margins between the classes are as wide as possible. This idea can be il-
lustrated well for linearly separable training data. Figure 10 shows such an
example. Fach training example is represented as a vector in the feature

'y

Figure 10: Classification with a Support Vector Machine [60].

space (crosses and circles represent the two classes). Various lines (decision
surfaces) could be chosen to separate the two classes. In a multidimensional
feature space the decision surfaces are hyperplanes. The SVM selects the
hyperplane (here the line 0;) with the largest distance to the nearest training
examples. The small subset of training examples that determine the decision
surface are called support vectors (indicated in the figure by little boxes).

This method is also applicable to datasets that are not linearly separable by

27

2. Theoretical foundations Georg Prohaka (0325904)

the use of the so-called kernel trick. This method entails transforming the
data to a higher dimensional space where it becomes linearly separable.
SVM are usually not prone to overfitting and are able to scale to a large num-
ber of dimensions. Furthermore, no parameter tuning is necessary to reach
optimal results [39]. A drawback of SVMs is their high resource consumption
in large-scale applications [66]

2.7 Clustering

One of the goals of our work is to find similarities between Open Data por-
tals and discover a possible contextual grouping of them. To that end we
employ clustering techniques on the results of the dataset categorization pro-
cess. The task of clustering is to assign objects to groups based on their
features. These groups or clusters should contain elements that are similar,
so, members of the same cluster should be more similar than members of
distinct clusters. Different clustering algorithms exist that find such clusters
automatically. Figure 11 shows an example; The input dataset (Figure 11a)

Y Y
4 4
X -
X X X 4 4 \\-
X 5
X X X X X 4 3 44 5 .
X]
X]
X _ x X 33 4
X ’ 4 4
% X . 4
X
X 4
X 4
X X X 44
X X X X 22 6 7
X X X X 22 [7
X X 6 T
\x\ X X lII & 7
X |
X 1
X (b) X

(a)
Figure 11: An example for clustering [36]
consists of multiple objects (points) which are defined by two features X and

Y. In this example (Figure 11b) clustering resulted in seven clusters denoted
by numbers from one to seven. Clustering algorithms are unsupervised which

28

2. Theoretical foundations Georg Prohaka (0325904)

means that they try to identify groups in unlabeled datasets, so, they do not
need any training data. On the other hand, in supervised classification, also
called discriminant analysis, clusters are given as an input and the task is to
assign a new object to one of them.

Clustering is an important tool for data analysis and data mining, especially
when working with large datasets. In fact, it is used in a wide variety of areas,
ranging from pattern-recognition in image processing over market segmenta-
tion and analysis to machine-learning applications like document retrieval or
decision-making. Clustering is especially useful when not much information
about the data under study is available. It is a great tool for exploring a
dataset and revealing its structure respectively the relations of its objects.
Since clusters should contain similar objects, it is essential to specify a calcu-
latable measure for similarity. Usually, this is done by defining the distance
between two objects in the feature space. The most common method for
computing the distance in a numeric feature space is the Fuclidean distance.
For two objects © = (1, x9,...,2,) and y = (Y1, Y2, ..., Ys) it is defined as
follows:

n

d(z,y) = (| > (i — y;)?

1=1

If the distance between two objects is small they are considered similar. The
Euclidean distance is best suited for datasets with “compact” or “isolated”
clusters [46]. Examples for other distance measures are the Mahalanobis
distance or the Hausdorff distance.

A wide variety of clustering techniques exist and they differ in various aspects

|36]:

o Agglomerative vs divisive: In an agglomerative approach, each object
is initially assigned to its own cluster. Subsequently, the clusters with
the smallest distance between them are joined together. This process
is repeated until it arrives at some stopping criterion. In contrast, a
divisive algorithm starts with all objects in a single cluster which is
then divided until reaching a stopping criterion.

e Polythetic vs monothetic: Polythetic algorithms consider all features
of an object to compute the distance. Thereafter, classification is con-
ducted based on this distance. A monothetic approach first divides
objects into clusters based on a single feature. The so-found clusters
are then further refined based on the second feature. This process is
repeated until all features are incorporated into the solution. Most al-
gorithms are polythetic, since monothetic approaches lead to clusters

29

2. Theoretical foundations Georg Prohaka (0325904)

that are often too small to be meaningful respectively interpretable
when applied to feature-rich datasets.

e Hard vs fuzzy: In hard clustering, each object is assigned to exactly
one cluster. Fuzzy techniques assign a score for every cluster to each
object. This score indicates the degree with which the object belongs
to the respective cluster. It can also be interpreted as a probability of
belonging to a cluster.

2.7.1 Hierarchical Clustering

Hierarchical Clustering can be agglomerative or divisive. In both cases the
result is a cluster hierarchy. Figure 12a shows an example of seven data
objects in three clusters. Results of hierarchical clustering can be visualized

e
g = w

Cluslcr!
Clyster2
(_‘luslerl

(a) An example dataset with three
clusters.

N

A B C€C D E F G

X

(b) Hierarchical clustering of the ex-
ample dataset. The dotted line repre-
sents the cut that results in the three
clusters.

Figure 12: An example for hierarchical clustering [36].

as a dendrogram. It shows the partitioning process for the dataset into smaller
and smaller subsets. The leaves of a dendrogram represent the data objects.
At each node, the two child subsets are combined to a new and more general
cluster. The height of the node is determined by the distance between the
combined clusters. “Cutting” the dendrogram at distinct levels of similarity
leads to a different number of clusters. Figure 12b shows a dendrogram for
the example dataset and a cut resulting in three clusters.

Hierarchical clustering can be used to find the appropriate number of clusters
for a dataset which is the method we use in our approach. The size of the
steps from top to bottom in the dendrogram can be seen as the percentage of

30

2. Theoretical foundations Georg Prohaka (0325904)

variance explained by the respective number of clusters. Therefore, as soon
as adding another cluster does not give a significantly better model for the
data the appropriate number of clusters is reached. This is known as the
Elbow method, since we look for an “elbow” in the plot of variance explained
vs number of clusters.

2.7.2 K-means Clustering

K-means Clustering is one of the most commonly used clustering algorithms.
It partitions a dataset into k£ clusters based on the distance between objects
and the mean of each cluster. The parameter k£ is an input parameter that
needs to be set manually. The algorithm tries to minimize the sum of squares
(variance) within the clusters. Formally, this means to find the minimum of
the following function:

V=3

k
=1

> Ny —all?

.%‘jESi

with the data objects z; and the cluster centers ¢;. Since ||z; — ¢;||? is the
squared Euclidean distance the k-means algorithm effectively assigns each
object to its nearest cluster center. Finding the optimal solution for this
problem is NP-hard [26], therefore, heuristic algorithms such as Lloyd’s al-
gorithm [43] are most commonly used (“Lloyd’s algorithm” and “k-means

algorithm” is mostly used synonymously). Figure 13 shows an example of
Lloyd’s algorithm.

® ®
o a o o
o) =] g o
[5) e o g
= o) °
@ o g :
ae oo
(a) (b)

Figure 13: Lloyd’s algorithm [56].

Initially (13a), the cluster centers are positioned randomly (colored dots).
Here, we have three centers (k = 3). Then, clusters are created by assigning
each data object to its nearest center (13b). In the next step, the centers are
moved to the mean of the clusters (13¢). Steps (13b) and (13c) are repeated
until the position of the centers remains stable.

31

2. Theoretical foundations Georg Prohaka (0325904)

Since the k-means algorithm is sensitive to the initial position of the centers,
different methods are used for initialization. Forgy and Random Partition
are most common [28|. The Forgy method randomly selects k£ objects of the
dataset and uses them as initial centers. In Random Partitioning, all objects
are assigned to a random cluster and the means of each of these clusters
is used as initial centers. The Forgy method usually distributes the centers
more evenly, whereas Random Partitioning favors the center of the dataset.
K-means is a heuristic algorithm, which is why, it can happen that a local
minimum instead of a global minimum is reached, depending on the posi-
tion of the initial centers. Figure 14 shows an example where the algorithm
converges to a local minimum, i.e. a “wrong” solution. A common solution

o0 ° . ° oo 3
Qfo* ® o S Qé)oo ° o* Q090$ ooo
L]
e %oo te o0 <+ og Q}o <
ooy ses, o8,
+
2 ° @)o] ° <} &]
#2 3 oo, o
P o 8 '8 4
<} OOB L] @
L
g
[[o
ape o wo o we o
@ $ o* of +° @y ® *;)O {}
eg _® @ @ ®
oooo(b Qooeq’ 0000%
<
4
L] @ @
» 5, #3 5. »35,
e e 8 s 8
o %’ ° o@* o 2 00‘30 <+ o o%
° *.e ° oF 0% oF o%°
L %% o wly ™ oy

Figure 14: Example of the k-means algorithm converging to a local minimum.
Figure created with [49]

for this problem is to repeat the whole algorithm multiple times with differ-
ent initializations and compare the achieved sum of squares. This is in many
cases possible, since the algorithm is usually very fast. Another disadvantage
of the algorithm is that the number of clusters must be set preliminarily. Of
course, this is problematic for an unknown dataset, making other techniques
for determining the appropriate number of clusters necessary. As for all other
clustering techniques, the quality of the results of the k-means algorithm de-
pends on the dataset. It performs well on datasets with spherical clusters of
the same size. It produces worse results when the density within the dataset
varies or the shapes of the real clusters are irregular.

32

3. Related Work Georg Prohaka (0325904)

3 Related Work

In this section, we are going to give an overview of the related work of our
concrete goal of categorizing short natural language texts, namely descrip-
tions of open datasets. Since they are the basis of this study we are first
going to give an introduction to the inner workings of BabelNet and Babelfy.
Then, we are going to present another very interesting approach to WSD
and topic labelling using centrality measures of sense graphs extracted from
DBpedia. At this time, there is no work that we are aware of that addresses
topic detection or other forms of NLU specifically on Open Data. Therefore,
in the last part, we are going to briefly discuss other approaches to NLU in
different contexts.

3.1 BabelNet

BabelNet was created in 2011 by Roberto Navigli and Simone Ponzetto at
the Sapienza University of Rome [54]. It is a very large multilingual lexical-
ized semantic network and ontology that was automatically generated ini-
tially by linking the web encyclopaedia Wikipedia with the electronic lexical
database WordNet. As of today, multiple other sources of knowledge, such
as Open Multilingual WordNet!® or GeoNames!! have been integrated into
the project'?. This is done automatically by estimating mapping probabili-
ties between the encyclopaediae and entries in the machine-readable lexica.
Multiple methods including bag-of-words approaches and graph-based tech-
niques are employed for this estimation. Machine translation is used when
encyclopaedia entries are not available in a specific language. The accuracy
of the WordNet-Wikipedia mapping in the current version (BabelNet 3.6)
has been evaluated to over 90% on open-text words [53]. Since their method-
ology is efficient and fully automated the researchers were able to build a
huge network with currently over 14 million entries, connected by multiple
semantic relations and covering 271 languages.

The semantic network of BabelNet is represented as a labelled directed graph.
The vertices of this graph represent concepts such as city and named entities
such as Vienna. They are called synsets in BabelNet. Translations for multi-
ple languages are stored for each synset. The edges of the graph are labelled
with one semantic relation that was found between the corresponding ver-
tices (synsets). WordNets lexical and semantic relations are directly assumed
(hypernymy, hyponymy, meronymy, ...), whereas for Wikipedia hyperlinks

Ohttp://compling.hss.ntu.edu.sg/omw/
Uhttp://www.geonames.org/
12For a complete list see http://babelnet.org/about

33

3. Related Work Georg Prohaka (0325904)

are the basis for relations. Multiple types of relations have been derived,
including is-a, part-of, similar-to, et cetera. Unspecified semantic relations
occur as well.

..the plays and novels of Samuel Beckett... I play,,, drama,,, obra,

...based on Shakespeare’s play Othello... o= TR = Biithnenwerk,,, obra,,,

dramattc media (plays, Rl etc)- % i o o < = Theaterstiick,, opera
2 Y - ~. [stage direction .. weatrale.. drt i
+ . theatre £ e eatrale,,, dramma,,,
1 . —

- _ piece de théitrey,
\J A B th
\ Musical™| -
. [y
N theatre "
o

I
’
< - —= (]ilerallure i
S BT = derived-from

...dramatic force in A. Miller’s play...
...as the play opens the audience...
...characters in the play take...

| Machine Translation system | Wikipedia WordNet
[

Figure 15: An overview of the construction of BabelNet [54]

Figure 15 gives an overview of how BabelNet is constructed. First, con-

cepts are extracted from WordNet senses and Wikipedia pages. Since these
resources overlap and duplicate synsets must be avoided merging becomes
necessary. This is done automatically via a mapping algorithm. Transla-
tion of the synsets is achieved by, firstly, using the inter-language links of
Wikipedia. Secondly, machine translation is employed to fill the remaining
gaps. SemCor [48], a sense-tagged annotated corpus for WordNet that was
manually created, and the Google Translation API'® served as resources for
this purpose.
The enormous size as well as the support for multiple languages makes Ba-
belNet the ideal knowledge base for applying NLP to Open Datasets. Fur-
thermore, the fact that it includes over 7.7 million named entities contributes
to this choice, since Open Datasets are often related to specific regions, cities,
institutions, landmarks et cetera. This is an assumption that will be inves-
tigated further in this study. That said, BabelNet is still an automatically
generated network, which means the contained relations and mappings are
not entirely accurate. This entails a natural boundary of correctness for the
approach that will be presented in this thesis.

3.2 Babelfy

In 2014 Roberto Navigli et al. presented Babelfy, a system that addresses
both Entity Linking (EL) and Word Sense Disambiguation (WSD) [50]. The
goal of their work is to automatically understand the meaning of text. Ba-
belNet serves as a knowledgebase. Figure 16 shows an example result of

13https://cloud.google.com/translate/

34

3. Related Work Georg Prohaka (0325904)

the Babelfy process. It annotates words or phrases in the input text with
disambiguated BabelNet concepts. It can detect concepts as well as named
entities such as (Nintendo). Sometimes, both a named entity and a standard
concept are assigned to one phrase, e.g. (Mario Kart 8) and (Kart) in this
example.

Nintendo announces new details on Mario Kart 8

announces details

Make known; make A small part that can

an announcement be considered

x separately from the
s TS TR whole
SN

Nintendo new Mario Kart 8
Nintendo is a Not of long duration Mario Kart 8 is
Japanese having just (or kart ra and
multinational relatively recently) the eighth major
consumer electronic come into being or installment in the

Kart

Kart racing or karting
is a variant of open-
wheel motorsport with

small, open, four-..
Figure 16: An example result of the Babelfy process.

Babelfy is a graph-based approach that uses random walks and a dens-

est subgraph heuristic to address WSD and EL simultaneously. In a first
step a semantic signature, that is, a set of related synsets, is created for
every synset in BabelNet. This is necessary because of data quality. Ba-
belNet synsets have an average of 50 incident edges, therefore, often edges
between semantically unrelated synsets exist. This is addressed by weighting
the different relations and, consequently, using random walks with restart to
establish a measure of relatedness between synsets. This procedure is just a
preliminary step and, therefore, not executed for every input text.
When an input text is provided, Babelfy extracts all text-fragments and
seeks out their possible senses in BabelNet. Consequently, a graph is con-
structed by relating these candidate meanings using the semantic signatures
mentioned above. This graph represents all possible meanings of the input
text. In a final step, a dense subgraph heuristic is used to derive the best
candidate meanings for each fragment.

3.3 Topic labelling using DBpedia

In 2013 Ioana Hulpus et al. presented a novel approach for automatically
finding appropriate topic labels for natural language input documents using

35

3. Related Work Georg Prohaka (0325904)

graph-based techniques and DBpedia as a knowledge base [35]. Their work
is part of a larger framework for automated topic analysis called Canopy.
Figure 17 shows an overview.

' Topic — = Word - sense
| extraction | disambiguation \

Documents Topics [

—

R\

-~

‘(____‘\ @ é_‘a Graph-based (_J
| labelling

u’/ Topic Labels

Graph ‘/’ DBpedia
extraction

Figure 17: The Canopy framework |35].

Topic extraction is achieved by applying Latent Dirichlet Allocation (LDA)
to the input documents [12]. LDA is a probabilistic model for text or image
corpora. In this model each document of the corpus is seen as a combination
of a small number of different latent topics. Furthermore, each word in the
document is probabilistically associated with one or more of these topics.
The number of topics per document is preliminarily defined and they explain
similarities between documents.

For WSD Canopy uses an eigenvalue-based approach that disambiguates all
words of a topic at the same time [34]. In that way relations between the
senses are leveraged to improve results. DBpedia is used as a knowledge
base to find candidate meanings and related words. Table 1 shows an ex-
ample to explain the process. In a first step, a bipartite graph is derived

Table 1: Example WSD task for three target words [34].

Target | Candidate | Related words
web web#1 computer, network, application
web#2 feather, net, flat, part
web#3 world, English, bible, work, public
internet | internel#1 | computer, connected, http, net
page page#1 computer, media, public
page#2 paper, flat, side
page#3 boy, work, knight, part

from the relations between the related words and the possible senses. One

36

3. Related Work Georg Prohaka (0325904)

graph represents one combination of meanings. Figure 18 shows all graphs
for our example. The weights of the edges are determined by the number
of other senses a sense shares the related word with. For instance, in the
top left graph web#1 shares the word “computer” with both internet#1 and
page#1, whereas in the top right web#1 shares it only with internet#1.
WSD is achieved by calculating the dominant eigenvalues for each adjacency
matrix of these graphs. The eigenvalue is used as a score for the sense com-
binations of all words. The graph with the highest eigenvalue contains the
senses with optimized relations between them. The apparent advantage of
this approach is that, in contrast to many other algorithms which score each
sense separately, it takes relations between senses into account. This is espe-

cially useful for disambiguating small set of words, such as the topics found
by LDA.

web#1 web#1 1 eb#1 1
) > computer | " > computer
internet#l computer interneti#l internet#1
page#l T page#2 T page#3 T
Apw' =12 Apw' =2 A =2
web#2 web#2 web#2
) net net net
internet#1 internet#l internet#1
computer 1 flat part
page#1 T page#2 . page#3 .
A =3 Apw' =3 A’ =3
web#3 1 web#3 web#3 1
) public :)
internet#1 internet#l internet#l 4 work
page#1 mm?“_te; page#?2 rog| Peeet A Te2
Aww - Aww - wWwW

Figure 18: Bipartite graphs for every combination of senses [34].

The result of WSD is a set of concepts C for each topic. In the next step,

a sense graph G; for each C; € C is extracted from DBpedia. This graph
is created by following certain edges, e.g. skos:broader, rdfs:subClass0f,
etc, from the seed concept C; and adding all nodes to GG; which are at most
two hops away. Subsequently, all sense graphs are merged into one topic
graph G. Figure 19 shows an example for four concepts.

Centrality measures are applied to GG to find an appropriate topic label.
The researchers experimented with several types of centrality measures. The
best results were achieved using the focused betweenness centrality, a slight

37

3. Related Work Georg Prohaka (0325904)

Sense Graphs

5%9530 Atoom - Electron
Energy 96 886 o0 €0 Quantum
o8 00.°° o o050 @
o8 €%, e 0° 0®® o o8
(T e &% o0 [
08800, e Seo8e §%5% %%O§§
= So0y W e
o0 00 % H
Y)
0 ©05%% o8%a2 8
80000%ge 8¢ X
S aeo%® L
03:2¢" © % 0g @
' o0 g0
O o
[]
ogo%%

Topic Graph 000 oo%e 9
o ® ©
Energy\r%%ﬁg Atom Q%po% (.

2 L) OOOO
°_'g L) [02,0
o® OOOOOO OOOOJ OO%J [0)576)
@
,—/’%‘

Electron o af 8 ®

0g0q @ 0,

®'a% oogooa/

Figure 19: The merge of four sense graphs into a topic graph [35].

variation of the betweenness centrality which assigns high scores to nodes
that are part of many distinct shortest paths.

An Evaluation based on human judgements of this method showed better
results than multiple standard text-based approaches. The advantage is a
very good exploitation of the knowledge base which leads to the ability to
identify broader labels. This is a very interesting approach that could po-
tentially be translated to the concepts of BabelNet in order to find suitable
labels for open datasets which is a promising possibiliy for future work.

3.4 Other approaches to NLU

Of course, there are various other approaches to NLU. For example, TagMe
[21] also tackles WSD and EL at the same time. It is able to annotate short
texts with corresponding Wikipedia pages. However, TagMe is limited to
English, German and Italian and is linked solely to Wikipedia as a knowl-
edge base. MetaMap [7] is another example, it was specifically developed to
identify concepts in a biomedical text and map them to the UMLS Metathe-
saurus'*. Of course, this is a very specific use of NLP techniques that would
not work in the context of this study.

R. Collobert et al. [16] take a completely different approach: The researchers
propose the use of a neural network to address the various NLP challenges,
including WSD, EL or part-of-speech tagging. All of these can be seen as the
task of assigning labels to words. The developed system is able to learn on

“http://umls.nlm.nih.gov/

38

4. Categorizer: Overview and Methods Georg Prohaka (0325904)

the basis of largely unlabelled test data, and, therefore, does not need a big
man-made knowledge base. This a very interesting and cunning approach
that has achieved remarkable results. It should be investigated further in
future work.

4 Categorizer: Overview and Methods

In this section, we are going to give an overview of our solution and the
methods that were used to develop it. First, we will give a brief introduction
to the initial situation and a rough overview of the problems that needed
to be solved. Second, an overview of the accomplished solution, including a
formal description, is going to be discussed. Finally, we are going to present
the methods and tools that have been employed to attain the solution.

4.1 Onset

The starting point for this thesis was the Open Data Portal Watch project of
the Vienna University of Economics and Business. The question was how the
harvested metadata could be meaningfully exploited in order to gain insights
into the structure and content of currently available Open Data. Since the
most interesting information about each dataset, i.e. its context and content,
is only available in the form of natural language text it was clear that some
sort of natural language understanding (NLU) technique was going to be nec-
essary to automatically access and process it. The limited time frame of a
master thesis plus the fact that multiple very effective and publicly available
methods for NLU already existed lead us to the decision to simply apply one
of them instead of developing something from scratch. Our requirements for
such a method were that (i) it performs well on short texts, (ii) it supports
multiple languages, (iii) it provides references to many named entities, (iv) it
is publicly available and free. Since a lot of open datasets have rather short
descriptions (median of 144 characters for the 150 portals in this study) (i)
was necessary to achieve meaningful results. Portal Watch covers Open Data
portals from all over the world, which is why the textual data comes in a
multitude of languages. We could have restricted our analysis to just a few
portals using a single language, however, when working with Open Data the
multilingual aspect is immanent. Therefore, we looked for an approach that
supports (ii). Another aspect of Open Data is that it is often related to
named entities such as regions, cities, institutions or organizations, which is
why we included (iii). Of course, the financial means of a student are lim-
ited which made (iv) a practical necessity. The Babelfy framework paired

39

4. Categorizer: Overview and Methods Georg Prohaka (0325904)

with the BabelNet knowledgebase fulfil all the requirements above with some
slight limitations regarding accessibility. We are going to discuss how we ap-
plied these methods later in section 4.3.

One can think of various possible use cases for machine readable open datasets.
Apart from the possibilities for the Portal Watch project to dig deeper into
their metadata collection it could be used to develop a concept based search
engine, compare portals based on content and discover categories for datasets
and even portals. In the course of getting familiar with the chosen frame-
works we decided to focus on the last two points. They seemed feasible within
the given time frame and available resources.

4.2 Solution overview

We are now going to present a general overview of our approach given the
input data described above.

Management of input text There are three fields of the metadata of a
dataset that contain natural language text:

1. Title: The title usually contains a brief description of the dataset (with
a median of 40 characters for the datasets in this study). It usually
that text that is displayed in the list of search results for most Open
Data portals.

2. Description: The description is usually more detailed and often, in
contrast to the title, contains full natural language sentences. For the
datasets in our study the median of the number of characters in the
description is 144. Often, descriptions are only displayed in full when
navigating to the webpage specific to the dataset.

3. Keywords: Keywords are mostly single words or tags that should de-
scribe the content of a dataset. Most Open Data portals use keywords
directly as facets to limit search results. Datasets in this study contain
on average 4.5 keywords.

All three fields contain information about the same dataset, hence, in a first
step, the three fields are concatenated into a single string. That way, a
word sense disambiguation algorithm applied to this string can leverage the
context of the description to disambiguate the keywords as well. Keywords
are simply concatenated and separated by whitespaces. Since keywords are
in a way more important than other words in the description and title —
they are supposed to concisely describe a dataset — we want to distinguish

40

4. Categorizer: Overview and Methods Georg Prohaka (0325904)

between concepts that were discovered in the keywords and concepts that
belong to the rest of the string. Therefore, we insert a delimiter, in the
form of a special character, between the keywords and the rest. Thus, the
final string s; that is sent to Babelfy for each dataset d looks as follows:
“keywords™ " title description”.

Language detection In order to be able to employ the disambiguation
service of Babelfy we first have to discover the language of each dataset.
This is necessary since Babelfy requires the language of the input text as a
parameter. Many Open Data portals provide all datasets in a single language,
however, there are some portals that offer datasets in different languages.
The portal of the Netherlandish government for example'® includes datasets
in Dutch as well as English. Therefore, the second step is to automatically
discover the language of each dataset. We achieve this by forwarding the
string s4 to an external open source library that provides language detection
based on naive Bayesian filters [51].

Multi-concept detection Formally, Babelfy provides us with a mapping
between d and a set of concepts C' = {c1, co, ..., c,} with all concepts ¢; € B
the semantic network of BabelNet. However, strictly speaking C' is not a
regular subset of B. While Babelnet is a set of distinct concepts (synsets)
a synset can occur multiple times within the natural language text of a
dataset. For example, if the state of New York is mentioned in the title as
well as the description the concept (New York) will appear twice in C. Using
the delimiter mentioned above we can divide C' into two sets C} for concepts
discovered in the keywords and C; for concepts in the description and title.
We will use this distinction later for categorization.

Relevance score Babelfy provides a set of scores for each discovered con-
cept in C' that reflect how important it is in the given input text. These
scores are delivered together with each discovered concept. After receiving
them from Babelfy results are saved to a database. The essential information
that is stored about each dataset includes the title, description and keywords
as well as the two sets C; and C} of discovered concepts together with their
respective scores. This data represents the basis for our categorization algo-
rithm which will be described in detail in section 5.

Category assignation To give a rough overview of our approach: Ba-
belNet provides a mapping from synset to one of 34 fixed categories. This

5 https://data.overheid.nl/

41

4. Categorizer: Overview and Methods Georg Prohaka (0325904)

mapping exists for about 2.7 mio of the 14 mio synsets in the network, which
is still enough to arrive at leastwise a few concepts with associated cate-
gories for most datasets. The idea is to leverage the relevance scores of the
concepts, the frequency of occurrence of a category as well as the distinction
between concepts in the keywords and concepts in the rest of the input string
in order to compute a confidence with which a dataset belongs to each of the
34 categories. Based on this confidence the categories can be ranked and
the one with the highest scores is selected as the categories of the dataset.
Some categories overlap semantically, e.g. ANIMALS and B1IOLOGY. Further-
more, it can be argued that a dataset belongs to multiple categories, e.g. a
dataset about state production of crops could be assigned to FARMING as
well as POLITICS AND GOVERNMENT. Therefore, it makes sense to estab-
lish a threshold and assign all categories that receive a score higher than
the threshold to each dataset. This threshold determines how selective the
various categories are in respect to the complete set of datasets.

Due to the limitations of Babelfy, i.e. the limit of 15.000 API calls per day,
we were not able to run all datasets provided by the Portalwatch project
through the entity recognition process. However, we reached a high enough
number of dataset and portals to conduct a meaningful analysis. In partic-
ular, the data for this study contains over 174.000 datasets in 24 different
languages belonging to 150 Open Data portals.

4.3 Methods and Tools

We will now have a look at the methods and tools that were used to create
our solution called Categorizer. BabelNet and Babelfy are the two main tools
our solution relies on for any NLP task. All input data is stems from the
Portalwatch project.

4.3.1 Portalwatch

The Open Data Portal Watch project provides quality assessment and moni-
toring of 260 Open Data Portals. Snapshots of the metadata of all portals are
taken regularly. This information is made publicly available through a REST
API'. Tt provides operations to retrieve information about specific datasets
in different formats, e.g. DCAT or Data Quality Vocabulary (DQV)'" which
is a vocabulary to express data quality. Furthermore, the API provides ac-
cess to information specific to a portal respectively all the snapshots of it
that have been made. This includes a list of datasets, some portal specific

http://data.wu.ac.at/portalwatch/api
https://www.w3.org/TR/2015/WD-vocab-dqv-20150625/

42

4. Categorizer: Overview and Methods Georg Prohaka (0325904)

information as well as aggregated dataset quality measures for the portal. Of
course, operations to access the set of all portals in the system are available
as well. Finally, some functionality to search over resources and metadata is
provided, also via a REST call. Results for any API call are packaged into
the common data exchange format JSON.

We wrote a short Python script to access the metadata per portal. We wanted
to cover as many portals as possible hoping to gain interesting insights dur-
ing analysis, e.g. finding common themes of Open Data portals or clusters in
category distributions at the portal level. For this reason, together with the
fact that Babelfy API calls were limited, we decided to first sort the list of
portals ascendingly with respect to their number of datasets. Subsequently,
the datasets were downloaded per portal. This process takes up quite a bit of
time since a separate API call is necessary for every single dataset, however,
since access is not limited it was still possible to download enough data in a
couple of days.

4.3.2 BabelNet API

BabelNet provides access to its services via a HTTP/REST API, a Java API
and a SPARQL endpoint. Since we worked solely with the Java API we are
not going to discuss the other options in detail. Unsurprisingly, parameters
and capabilities of all three options are very similar. In order to use any of
the APIs one must first register at the BabelNet homepage'®. Subsequently,
a key which identifies the account is sent to the registered e-mail address.
This key must be inserted into a specific configuration file located in the
working directory of the project where BabelNet is to be used.

The number of queries to BabelNet is limited to 1.000 for an account regis-
tered this way. However, for research purposes, i.e. when affiliation with a
research institution can be demonstrated, this limit is increased by the devel-
opers. Alternatively, under the same precondition, the complete BabelNet
indices (with a size of 16 Gigabytes) are available for download. We elected
this option because once the indices are downloaded there are no more re-
strictions regarding API calls.

One class that is implemented following the singleton pattern, i.e. only one
instance of it is allowed at the time, serves as entry point to all functionality
of BabelNet. Synsets are represented by a class which encapsulates a lot
of information including an alphanumeric ID that identifies it, its part-of-
speech, its relations to other synsets, whether it is a named entity, et cetera.
A synset contains one or more senses, i.e. terms that can express the respec-

8http://babelnet.org/

43

4. Categorizer: Overview and Methods Georg Prohaka (0325904)

tive synset in a given language. For example, the synset (Car) contains the
English senses “automobile”; “car”, “auto”, “machine” and “motorcar”. Senses
are language specific, so (Car) contains many more senses in different lan-
guages (e.g. “PKW”, “Wagen”, et cetera for German). This is how synonymy
is modelled in BabelNet.
The framework also covers polysemy. In fact, the same term can appear
in multiple senses belonging to different synsets. For instance, the term
“church” can be a sense of the synset for the building as well as the synset
for the Christian church or the church service. Functionality is provided to
retrieve all possible synsets a given term belongs to. This is the point where
word-sense disambiguation becomes necessary. BabelNet does not provide
any means to rank or score the results of a query for a word.
Another aspect of BabelNet that is important for this study is the map-
ping between synsets and categories. The version of BabelNet (3.7) which
was used in this study did contain this mapping already. However, the re-
searchers who developed BabelNet put out a newer, more precise mapping in
the form of a downloadable list. This list contained over 2,7 mio synset 1Ds
together with the associated category and a confidence score of the category
annotation. A small number of synsets had more than one category label
which was the case when the confidence for these secondary categories was
close to the main category. Since this represented the most accurate mapping
we decided to use it as a basis for our categorization approach.

Table 2 shows a complete list of the 34 available categories. The origin of

Table 2: The set of 34 categories

Animals Art, architecture, and archaeology Biology
Business, economics, and finance Chemistry and mineralogy Computing
Culture and society Education Engineering and technology
Farming Food and drink Games and video games
Geography and places Geology and geophysics Health and medicine
Heraldry, honors, and vexillology History Language and linguistics
Law and crime Literature and theatre Mathematics
Media Meteorology Music
Numismatics and currencies Philosophy and psychology Physics and astronomy
Politics and government Religion, mysticism and mythology Royalty and nobility
Sport and recreation Textile and clothing Transport and travel
Warfare and defense

these is the Wikipedia featured articles page!® plus FARMING and TEXTILE
AND CLOTHING which were added by the authors. This page provides a set
of links to associated Wikipedia articles for every category (127 on average).

Yhttps://en.wikipedia.org/wiki/Wikipedia:Featured_articles

44

4. Categorizer: Overview and Methods Georg Prohaka (0325904)

This resource together with some graph based heuristics was the basis for
the automatic mapping of synsets to categories [15].

4.3.3 Babelfy API

Accessing the services of Babelfy works the same as for BabelNet: First, one
must register at the webpage?® and then, upon arrival of the key, the API is
open to use. As a standard, the number of calls to the API is again limited
to 1.000. There is no downloadable version for Babelfy. Hence, we requested
an increase of the daily limit for research purposes. Luckily, the developers
were kind enough to grant this request and increase the limit to 15.000.
The entry point for Babelfy is — the same as Babelnet — a single class follow-
ing the singleton pattern. Passing it a string and a parameter that specifies
the language results in a list of semantic annotations. Each annotation con-
tains an ID that identifies the respective sysnet, an attribute that marks the
position of the annotated text fragment in the input string. Furthermore,
Babelfy provides three separate scores for all discovered synsets:

1. Disambiguation score: Since Babelfy does not do just Entity Link-
ing but Word Sense Disambiguation as well a score is given for every
mapping between a word or phrase and the chosen concept (synset) in
BabelNet. This score reflects the confidence for the selected sense of
the word.

2. Coherence score: The coherence score measures the level of connect-
edness of the disambiguated synset in context. It is computed based
on the number of connections that the synset has with other synsets in
the same text.

3. Relevance score: The relevance score measures the relevance of the
concept within the input document. This is solely dependent on the
position of the node in the graph representation of the text, it has
nothing to do with respective synset itself.

Babelfy has quite a few parameters that can be changed. For this study, we
used mostly the standard settings. We selected the option that makes Babelfy
interpret all adjectives as nouns to reduce the number of distinct synsets in
the results. An important parameter is whether Babelfy considers only exact
matches or both exact and partial (e.g. “Donald” leading to (Donald Trump)
as a potential match) matches for disambiguation. After some debate, we
opted for the stricter option (only exact matches) since it reduces noise in
the results.

20nttp://babelfy.org/

45

5. Categorizer: Architecture Georg Prohaka (0325904)

5 Categorizer: Architecture

In this section, the architecture of our approach is going to be presented.
First, we are going to give an overview of the framework and discuss its
internal and external components. The second part will give a detailed de-
scription of the categorization algorithm we developed, including a discussion
about all its parameters.

5.1 The Framework

The framework we developed consist of two main components: One that im-
ports the data from Portalwatch and performs language as well as concept
detection to the datasets. This component is called Concept Finder. The
second component is called Categorizer. It uses the pre-processed data to
perform categorization. It also provides a graphical user interface for param-
eter setting and result visualization.

Figure 20 shows an overview of the architecture of our framework. The

starting point are the Open Data portals from where Portalwatch harvests
all available metadata of open datasets. After their metadata is semantified
into the DCAT format the datasets serve as an input for the Concept Finder
component. Here, the string that serves as input for the next steps is as-
sembled. Furthermore, this component is responsible for parameter setting
of the external libraries for language detection and concept detection. More-
over, it can detect the language and discover the concepts of a dataset via
these libraries. Also, it creates the necessary data structures that represent
the annotated datasets.
The second component, named Categorizer, receives the annotated datasets
by portal. This process is initiated by the user who selects the desired portals.
Categorizer allows the user to navigate through the datasets and displays the
relevant fields as well as all concepts, scores and respective categories belong-
ing to each dataset. At this point, the knowledgebase is used to establish
the mapping between concepts and categories. Furthermore, this component
manages setting parameters and executing the categorization process. More-
over, it enables the user to manually define weights for specific concepts as
well as edit the confidence scores and category for them. All settings of the
applications can be saved to and loaded from a file by the user. Finally, it is
possible to apply categorization using the current parameters to any set of
portals and export the resulting category distribution, i.e. the frequency of
each category for every portal in the set.

46

5. Categorizer: Architecture Georg Prohaka (0325904)

Open Data Metadata Semantification of__,
portals crawling ~ Portalwatch dataset metadata DCAT
Language
Detection W _
4>{ Concept Finder J
Concept
Detection
————— =) Concept annotation
Knowledgebase ‘
Concept categories
v
> r . |
- Iy - Dataszeis
+ r| Categorizer }47,3\!, Portai Annotated
//\\ | Datasets
User
Manual correction
Settings Category
Distribution

Figure 20: The architecture of the prototype.

5. Categorizer: Architecture Georg Prohaka (0325904)

5.2 The Categorization Algorithm

The prototype we build during this study is based on the algorithm that is
going to be discussed in the following. Its purpose is to derive a set (map)
of relevant categories M for a dataset d with M C K where K is the set of
the possible categories. Furthermore, every entry in M has a corresponding
score indicating the relevance of the respective category for the dataset.

5.2.1 Requirements, Input, Output

A prerequisite for application of this algorithm is that concepts have been dis-
covered and scored for the input dataset and that a mapping between concept
types, i.e. synsets, and categoires is available. In principle, this approach
does not require Babelfy and BabelNet, which we used in our implemen-
tation, as resources for concept detection. If a different entity recognition
service would provide a similar structure, i.e. concepts, scores and category
mapping, then it could be used just as well.

Algorithm 1 shows a pseudocode representation of our approach. The input
is a single dataset d and a set of parameters that affect the outcome of the
categorization process. The output is a map S that contains all categories
relevant for d together with scores indicating their relevance. The first step
is to initialise M and gather all concepts discovered for the dataset (Line 3).
Next, we iterate over all concepts of d. Here, we check whether the current
concept belongs to a category. If it does not we move to the next concept
(Line 6) since no categorical information can be gained. Table 3 shows an
example dataset providing some employment statistics about the Australian
Capital Territory Public Service (ACTPS). We can see that for this dataset
seven concepts were discovered in total, with six having an associated cate-

gory.

5.2.2 Scores

For concepts where relevance- and coherence-scores are available our confi-
dence score (score) is initialised by a weighted average between them (Line 8).
The parameters w, and wy, determine these weights. Their sum is required
to be 1 to ensure that score is in [0, 1] (relevance- as well as coherence-scores
are also in [0, 1]). The values of w, and wj, are not strongly influential on the
outcome of the algorithm since relevance- and coherence-scores are somewhat
strongly correlated (correlation coeflicient = 0.65 in the data of this study).
However, we still kept them as parameters because we deem both scores rel-
evant and found identifying an optimal set of weights out of scope for this
thesis.

48

5. Categorizer: Architecture Georg Prohaka (0325904)

Algorithm 1 Categorization of a dataset

Input: dataset d;
weights for relevance score w, and coherence score wy;
weight wy, for concepts found in keywords;
weight w, for category confidence;
map S containing weights for concept types (synsets)
Output: map M containing a set of categories with scores
Require: w, +w, = 1;V20 < S[z] < 1
1: function CATEGORIZE(d, w,, wy, Wy, We, S)

2: M:=0;N:=0

3: C' := concepts(d) > all concepts discovered for d
4: for each c € C' do

5 if category(c) = () then

6: continue

7: end if

8: score := relevance__score(c) - w, + coherence _score(c) - wy,
9: if keyword concept(c) then

score - wy - (1 + category _confidence(c) - w,)

10: score = .
11: else .

- seope = SC0TE” (1 + category_con fidence(c) - we) S1d

wy - (14 w,)

13: end if

14: if category(c) € M then

15: Mcategory(c)] = M|category(c)] + score

16: Nlcategory(c)] = N|category(c)] + 1

17: else

18: M = M U (category(c), score)

19: N = N U (category(c),1)
20: end if
21: end for
22: for each k ¢ M do
23: MIk] = MIk] > Normalize scores

' NI

24: end for

25: return M
26: end function

5. Categorizer: Architecture Georg Prohaka (0325904)

Table 3: Example dataset with concepts, scores and categories. Bold indi-
cates keyword concepts.

Title ACTPS Workforce Indicators
Description | Statistics on employment in the ACT Government

Public Service from 2007-present
Keywords ACTPS, employment

Concept Rel. | Coh. Category Conf. | Weight

(Employment) | 0.01 | 0.2 BUSINESS, ECONOMICS |) 9g5 1.0
AND FINANCE

(Indez) 0.02 | 0.4 | BUsINESS, ECoNOMICS |) g 1.0
AND FINANCE

(Statistics) 0.08 | 0.7 MATHEMATICS 0.389 0.0

(Act) 0.02 | 0.4 | PVIBLOSOPIY AND g 496 | 10
SYCHOLOGY

(Governance) | 0.01 | 0.8 EOLITICS AND 0.931 1.0
OVERNMENT

(Service) 0.2 0.8 | BUSINESS, ECONOMICS | g7y 0.3

AND FINANCE

(Public) 0.03] 03

The next step is to check whether the current concept ¢ was found in the
keywords of the dataset (Line 9). In the example dataset only the concept
(Employment) was found in the keywords. When that is the case score is
multiplied by the parameter w; which indicates the influence of concepts
found in the keywords compared to concepts found in description and title.
Usually, wy should be larger than 1 since the nature of a keyword is that it
is supposed to concisely describe the content of a dataset. A value for wy
between 1.5 and 3 is recommended in order to not discard the information
of the other fields completely.

5.2.3 Annotation Confidence

The category confidence(c) of a concept ¢ is the confidence score for the
mapping from concept type to concept and is provided by the knowledgebase.
It is in [0,1] as well and reflects the precision of the category annotation
(Conf. column in Table 3 for the example dataset). The influence of this
confidence value on score is determined by yet another parameter, namely
w.. For BabelNet the method to acquire the categories and confidence scores

20

5. Categorizer: Architecture Georg Prohaka (0325904)

performs well [15], however it is still automatic and far from perfect. The
parameter w, is intended as another means to reduce variance in the output.
However, it is still recommended to keep category confidence(c) in the
calculation since these scores vary quite a bit (standard deviation 0.28 in
our data) and it is reasonable to include a measure of “correctness” of the
category annotation into the equation.

5.2.4 Semi-automatic scoring

During experimentation, we found that some concept types are very frequent
and at the same time general. For instance, the concept type (Data) appears
in over 24% of all datasets which is not surprising considering the Open Data
context. At the same time, this is a very general concept, i.e. it does not
reveal much information about the content of an open dataset. Therefore,
its annotated category COMPUTING should perhaps not be considered when
deciding on the category label for a dataset. There are numerous other exam-
ples of inherently general concepts such as (Year), (Type) or (Information).
When we first tested our approach the frequency of category labels like COM-
PUTING and PHYSICS AND ASTRONOMY was rather high and often inaccu-
rate. On closer inspection, we discovered the reason to be precisely these
general concepts that occurred frequently and brought categories into the
equation that had little to do with the context of the dataset. Furthermore,
we noticed some relevant and recurrent concepts with annotated categories
which were clearly suboptimal. For example, the concept (Politics) was
labelled with the category PHILOSOPHY AND PSYCHOLOGY although POL-
ITICS AND GOVERNMENT is certainly the better option. It was clear that
some manual correction would be necessary to achieve reasonable results.
For the reasons just discussed we introduced another parameter, namely S,
that allows to adjust the influence of specific concepts on the confidence score
(score) for category annotation of datasets. S is a map that contains an in-
dividual weight for every concept type, i.e. synset. This weight is applied
after normalization to every score of the respective concept type. For exam-
ple, if we set S[(Year)] = 0 then any concept for year will always receive a
score of 0 no matter what values any of the remaining parameters have. For
the example dataset this is indicated in the Weight column. We see that
(Statistics) is disabled completely and the influence of (Service) is reduced
by 70%.

o1

5. Categorizer: Architecture Georg Prohaka (0325904)

5.2.5 Conclusion

Once the score of a discovered concept is calculated it is added to the result
map M. If the category of the current concept has not occurred before it
is simply added to the map together with the score. Otherwise, the current
entry of that category is increased by the value of the score. Thus, categories
for a dataset earn higher scores if many concepts associated with that cat-
egory are found or if the score of a particular concept is high due to high
relevance, being a keyword concept, et cetera. In this way, a ranking of cat-
egories is created. In a last step, to put out comparable result maps M is
normalized by the number of contributing concepts (Algorithm 1 line 23).
Table 4 shows the results of the categorization process when applying the
parameters we used in the analysis part of our work (i.e. w, = 0.8, w, = 0.2,
wr = 2.5, w, = 0.5; see section 7 for more details) on our example dataset
from Table 3. As we can see the manual correction of the concept type
(Service) has quite an influence on the result; This concept detected in the
description has rather high scores in every aspect, however, we felt that its
generality warrants an influence reduction. Our approach results in a rea-
sonable category selection for this example dataset.

Table 4: Categorization results for example dataset.

Concept Category score
(Governance) PoLiTics AND GOVERNMENT 0.0937
(Employment) | BUSINESS, ECONOMICS AND FINANCE 0.0365
(Service) BUSINESs, ECONOMICS AND FINANCE 0.0345
(Act) PHILOSOPHY AND PSYCHOLOGY 0.0319
(Index) BUSINESS, ECONOMICS AND FINANCE 0.0313
(Statistics) MATHEMATICS 0.0
Resultmap

Category Final score
PoLiTics AND GOVERNMENT 0.0937
BUSINESS, ECONOMICS AND FINANCE 0.0341
PHILOSOPHY AND PSYCHOLOGY 0.0319

We want to note that it is intentional that the resulting map M does not
contain an entry for every possible category. Only categories that are associ-
ated to at least one concept in the dataset appear in M. Thus, a distinction
can be made between categories with a score of 0 and categories that do not
occur in M at all. This distinction can be useful for cases where the input

02

6. Categorizer: Practical Implementation Georg Prohaka (0325904)

text, i.e. description, title and keywords, is very short. In such cases where
only a handful of concepts are detected it can happen that just one category
with a score of 0 is found in total. Then it is advantageous to have at least
some hint where the dataset might belong to, although the precision of the
result is of course expected to be low.

This algorithm is tailored specifically to categorize open datasets, however,
the general idea of using entity recognition and leveraging them for cate-
gorization could be easily adapted to other input documents. Of course,
categorization only makes sense when applied to more than a single dataset.
It should be clear that the same values must be used for all parameters when
using this approach on multiple datasets. Since we have not found optimal
values for any of the current parameters yet manual adjustment is going
to be necessary depending on the use case. This was the main reason for
building the Categorizer prototype, a graphical interface for fine-tuning pa-
rameters and visualizing results. It is going to be discussed in detail in the
next section.

6 Categorizer: Practical Implementation

In this section, we are going to present the Categorizer component of our
prototype. First, we are going to give a brief overview of the means we used
for implementation. Second, we are going to present the adaptions to the
categorization algorithm discussed in the previous section that were necessary
for practical implementation. Then, the graphical user interface is going to
be shown and its functionality is going to be discussed. Finally, we are going
to explain the current limitations of the solution.

6.1 Overview

The Java programming language was used to create our prototype due to
personal preference and the availability of Java APIs for Babelfy and Ba-
belNet. The most important the design principles that we tried to follow
include minimal complexity, ease of maintenance, loose coupling, extensibil-
ity, reusability and information hiding [47|. Proper modelling of the system
using the Unified Modelling Language aided in reaching these goals. These
class models can be reviewed in the appendix of this thesis. One general goal
was to design the classes and their interdependencies in such a way that re-
placing the services of Babelfy and BabelNet with some other form of entity
recognition framework would require as little change to the code as possible.
For that reason, popular design patterns such as the factory pattern and

23

6. Categorizer: Practical Implementation Georg Prohaka (0325904)

other information hiding techniques were used to encapsulate all code spe-
cific to those APIs. Of course, there are quite a few aspects that are rather
specific to Babelfy, e.g. the most-common sense heuristic, and still had to
be integrated deeper into the system, so, we do not claim to have reached
complete lose coupling of the different components. Hopefully, this will still
enable relatively quick testing of other resources and knowledge bases.

We used a relational database management system (PostgeSQL 8.4) to store
all relevant data. Connection from the java program to the database was
established via the current version (42.0.0) of the PostgreSQL JDBC Driver
which allows for rather uncomplicated submitting of queries and retrieving of
results. The database schema consists of two main and three auxiliary tables.
The first main table stores all information about a dataset including its 1D,
title, description, keywords, language, portal and a column for its categories.
In general, the ID of a dataset is also the URL where it can be found on
the web. The second main table stores all concept related data. Here, an
entry is made for every concept that was detected. Of course, a reference
to the dataset the concept was found in is stored, as well as the synset-1D
and the three scores provided by Babelfy (disambiguation-, relevance- and
coherence-score). Furthermore, a tag is kept that encodes whether the con-
cept was detected in the keywords and whether it is a named entity. The
auxiliary tables store the mapping between synsets and categories as well
as a short name for each synset. These were created to limit the calls to
BabelNet in order to increase performance of the application.

The JavaFX framework was used to create the graphical user interface of
Categorizer. A big advantage of JavaFX is that it is portable to a wide
variety of operating systems such as Windows, Linux and macOS without
the need of any adjustment. It is designed to completely replace Swing as
the standard GUI library for Java SE. The framework provides easy to use
functionality for visualizing data in the form of a table, which we employed
for our prototype. Performance stays at a very high level even when the un-
derlying data structures grow large. Furthermore, JavaFX includes FXML,
a declarative XML-based markup language that offers an alternative way of
defining the scene graph of a user interface.

6.1.1 Language Detection

We use an open-source Java library written by Shuyo Nakatani for language
detection [51]. It is based on naive Bayes filters and comes with profiles,
i.e. training data, for 53 languages, covering all languages we needed for
this study. It is very easy to use: Simply passing a string that contains the
text to a language-detection object results in the language code of the most

24

6. Categorizer: Practical Implementation Georg Prohaka (0325904)

likely match. Tt is possible that no matching language is found, however,
this happened rather rarely for our data. Nonetheless, false positives were
quite frequent, especially when the input string was short and contained
many uncommon words. There seems to be a little bias towards Afrikaans
and Romanian, which were the most frequent wrong mappings. Overall
this method worked reasonably well, although some manual corrections were
necessary. Still, for future work and larger scale application of our approach
we would recommend a commercial service, e.g. Google’s Translation APT?!.
The simple reason being that all wrong classifications at this level lead to
poorer results at the next stages and precision of commercial products is
expected to be much higher. Furthermore, manual checking of results uses
up quite a bit of time that could be better spend elsewhere.

6.2 Adapted Categorization Algorithm

The categorization algorithm described in the previous section is, in princi-
ple, independent of the method for concept detection and the knowledgebase.
Employing Babelfy for concept detection makes a small adaption to the al-
gorithm necessary due to the so-called most common-sense heuristic it uses.

6.2.1 Most common-sense heuristic

Babelfy offers an option to enable the so-called “most common-sense heuris-
tic” (MCS) which finds additional concepts in the input string (it is enabled
as a standard in the Babelfy API). Unfortunately, there is no clear description
in the documentation of Babelfy what this heuristic actually does. However,
when experimenting with this setting we found out that this heuristic dis-
covers a lot of appropriate and therefore valuable concepts, which is why we
decided to utilize it.

The problem with the MCS heuristic is that it does not provide any scores
for the concepts it discovers, i.e. disambiguation-, coherence- and relevance-
score are all 0 for every concept it finds. Since these scores are the basis for
the calculation of our category confidence scores some sort of replacement for
concepts found by the MCS heuristic is necessary. Unfortunately, we could
not find a way to correctly determine these missing scores, which is why we
decided to shift this decision to the user of our algorithm via a parameter,
namely s,,. Algorithm 2 shows the adapted categorization algorithm we used
in our implementation. This parameter sets the score that is used for every
concept found by the MCS heuristic (Line 9). It is required to be in the

https://cloud.google.com/translate/docs/detecting-language

95

6. Categorizer: Practical Implementation Georg Prohaka (0325904)

interval [0, 1] since that is the range of relenvance- and coherence-scores.

Sm determines how strong the influence of concepts found by the MCS heuris-
tic is when calculating the confidence scores for categories of a dataset. This
parameter has a substantial impact on the outcome of the algorithm since
almost half of all discovered concepts are found by this heuristic. This was
the case for our data, however, there is no reason to believe this would change
for other input texts. When using our approach for categorization one should
take particular care when choosing s,,. Experimenting with different values
and checking samples of datasets is in order to get a sense of the quality of
concepts the MCS heuristic finds. Simply turning it off by setting s, = 0 is
also a viable option when less ambiguous results are sought-after.

6.3 User-Interface and Features

Categorizer is a desktop Java application that can load open datasets from a
local PostgreSQL database. The code is open source and available online??.
It has no dependencies other than the Java Runtime Environment 8. This
application is intended to provide a user interface for the categorization algo-
rithm described in the previous section. It allows to fine-tune any parameter
and to explore an arbitrary set of datasets and the concepts that have been
discovered for them by Babelfy. Furthermore, some statistics about aggre-
gated datasets and categories can be reviewed as well as individual settings
saved to and loaded from a file.

6.3.1 Graphical User-Interface

Figure 21 shows a screenshot of the main window of the application. In the
top part (A) we see a couple of textfields where all the parameters can be
adjusted. Most of them have been discussed thoroughly in the previous sec-
tion, so, here only the four fields in the middle are going to be explained.
In the first version of our categorization algorithm an additional parameter
was implemented that decreased the influence of concepts that recurred in a
dataset. However, during testing we discovered that such a weighting does
not improve the results and, therefore, unnecessarily increases complexity.
Although this is the case the current version of Categorizer still offers this
parameter for testing purposes.

The categorization algorithm as described in section 5.2 results in a map
of categories and associated scores. This application is intended as a tool to
apply this algorithm to a set of datasets and study the results. In many cases

2nttps://github.com/Gepro83/MasterThesis

o6

6. Categorizer: Practical Implementation Georg Prohaka (0325904)

Algorithm 2 Categorization of a dataset

Input: dataset d;

default score s, for the most common-sense heuristic (MCS);
weights for relevance score w, and coherence score wy;
weight wy for concepts found in keywords;

weight w,. for category confidence;

map S containing weights for concept types (synsets)

Output: map M containing a set of categories with scores
Require: w, +w, =1;0<'s, < 1;Vz0 < S[z] <1
1: function CATEGORIZE(d, Sy, Wy, Wh, W, We, S)

—_
W N =

H
e

15:
16:

17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

27:

28:
29:

[
TR

M:=0;N:=0
C' := concepts(d) > all concepts discovered for d
for each c € C' do
if category(c) = () then
continue
end if
if MCS(c) then > concept was found by MCS heuristic
score := Sp,
else
score := relevance_score(c) - w, 4+ coherence _score(c) - wy,
end if
if keyword concept(c) then
score - wy, - (1 + category _con fidence(c) - w,)

g ° S
score o (Lt w0) [c]
else
score - (1 + category _confidence(c) - w,)
score = - S[d]
wg - (1 +w,)
end if

if category(c) € M then
Mlcategory(c)] = Mlcategory(c)] + score
Nlcategory(c)] = Nlcategory(c)] + 1
else
M = M U (category(c), score)
N = N U (category(c), 1)

end if
end for
for each k£ € M do
M[k] = % > Normalize scores
end for
return M

30: end function

57

6. Categorizer: Practical Implementation Georg Prohaka (0325904)

File
Confidence score = data_burlingtonvt_gov
MCS score [0,1] data_cityofboston_gov
I 0.15 data_cityofnewyork_us
or
Relevance score * —_—
(07 IEREE [+ (1 + confidence of concept category *| 0.5)
+ (if keyword concept)
. -
‘M‘ ‘ Load Portal{s) | ‘ Remove Portal ‘
03 -
(Sum of weights must be in [0,1]) 9629 Datasets loaded.
Repeated concepts are weighted by‘ 1.0 | Minimum numberofrategunes:‘ 1 | Maximum number chategurles:‘ 3 | Minimum category score‘ 0.02 | ‘ Categorize! ‘ | Statistics ‘
Portal Title Keywords Categories. Scores Name Re... Coher Category Conf Wei...
TG e
» service request .. \CI usherfn#3 0.0 0.0 MUSIC 0571 1.0 2
data_cityofne... school Demographics » schaol » GEOGRAPHY_AND_PLACES » 0200097 | education#n#1 0.14 0.78 EDUCATION 1.0 099
2006 - 2012 * lifelong learning + BIOLOGY +0.12855(WIKI:EN:Sch... 0.0 0.11 EDUCATION 0.67 1.0
* accountability * EDUCATION * 0.12347. school#nt#1 00/ lolo"lEbucaTion 20)
» demographic
Hn#
data_cityofne... Project » famil guide - LANGUAGE_AND_LINGUISTICS » 0.20827¢ | |'2Pguage#n#1 0.09 0.61 LANGUAGE AND LING.. 0525 1.0
+ education + GEOGRAPHY_AND._PLACES »0.205141 Department_... 0.0 0.0 0.0 1.0
> school > EDUCATION > 015231, | | pran#nif 0.0 00 PHILOSOPHY AND PSY.. 0208 00
* language
'doeg d WIKI:EN:Life... 0.02 0.39 EDUCATION 0311 1.0
* program learn#v#1 0.0 00 0.0 1.0
- "fT'U“Q 22ming uniform_res.. 0.01 028 COMPUTING 0673 1.0
> url
» info information.. 0.12 0.67 PHILOSOPHY_AND_PSY... 0.153 0.2
data_cityofne... all cb 12 data + all service request » GEOGRAPHY_AND_PLACES »0.15184¢ | |Project#ns#l 002 033 00 10
> sociglservices » COMPUTING » 014538 | New York Cit.. 008 067 GEOGRAPHY AND_PLACES 04 099 1
3N » POLITICS_AND_GOVERNMENT » 0.08045. _
= family#n#2 003 044 PHILOSOPHY_AND_PSYC.. 0286 10
* City government
T sonan s ¥ | usher#ng# 00 00 MUSIC 0571 10 £
Keyword concept
4465 Datasets displayed Filter for: ‘ GEOGRAPHY_AND_PLACES = | Found by most-common-sense heuristic

Figure 21: The main window of Categorizer

just a subset of all categories that have been discovered for a dataset will be
of interest to a user. Usually, the top ranked categories will be selected or
some threshold for the confidence score will be defined. Categorizer allows
to specify these settings by adjusting the corresponding parameters in the
middle of the window. The first one determines the minimum number of
categories a dataset will be annotated with. In fact, the only way that a
dataset receives less distinct category labels than that threshold is that not
enough categories were found for the respective dataset, which is rarely the
case for a minimum of 1 or 2. The next parameter specifies how many differ-
ent categories a dataset can be maximally assigned to. The last field allows
the user to set a score threshold. Only categories that earn a score above
this threshold are assigned to a dataset with the exception that the minimum
number of categories cannot be reached. In such a case category labels are
assigned until the minimum number of categories is reached regardless of the
achieved score.

The application allows to load datasets based on a portal. When a selection is
made from the list of available portals the corresponding datasets are loaded
into the application. The set of portals the user can chose from depends on
the data that has been stored preliminarily in the database, since datasets,

o8

6. Categorizer: Practical Implementation Georg Prohaka (0325904)

concepts as well as the list of portals are obtained directly from it. Portals,
i.e. their datasets, can also be removed by clicking the respective button.
Once a portal has been loaded into Categorizer the table in the bottom left
(B) shows a list of all corresponding datasets. Each row in the table rep-
resents a single dataset displaying the name of the portal it belongs to, its
title and keywords, its categories and corresponding scores. The columns for
the categories and scores are initially empty. They are filled once a catego-
rization process has been executed by clicking on the “Categorize!” button.
The displayed datasets can be filtered by selecting a category from the com-
bobox at the bottom of the window. As soon as a selection is made only
datasets that belong to that category are displayed. By pressing ctri+c on
the keyboard the ID of the currently selected dataset is copied to the system
clipboard. This presents an easy way to navigate to the dataset on the web,
since, in almost all cases, this ID is a valid URL to the respective dataset.
When a dataset is selected the table on the bottom right (C) displays all
concepts that were discovered for it. The names of the concepts stem from
BabelNet, including the code for the part-of-speech (“n” for noun, “v” for
verb). Relevance- and coherence-scores as well as categories and confidences
scores are displayed. The “Weight” column contains the user defined weight
for the corresponding concept type (the parameter S described in the previ-
ous section). Concepts that were detected in the keywords are marked with a
bold font. Furthermore, concepts that were found by the most common-sense
heuristic are indicated by the colour blue. Concepts whose values have been
manually changed by the user are marked with a grey background.

A click on the “Categorize!!” button first triggers a parameter validity-check
and then initiates the categorization process, which is usually completed
within a few seconds. The “Statistics” button opens another window of the
application (Figure 22). Here, some statistics about the loaded datasets are
given (A). The left table (B) shows as list of all categories that were as-
signed during categorization. The second column contains the frequency of
the category, i.e. the fraction of datasets that belong to it. In this instance
47.9% of the loaded datasets are labelled with PoLiTics AND GOVERN-
MENT. The table on the right (C) shows a list of all concept types that occur
in the loaded datasets. Again, the frequency column indicates what frac-
tion of datasets contain a corresponding concept. The columns “AvgRel” and
“AvgCoh” contain the average relevance- and coherence score of each concept
(concepts found by the MCS heuristic are taken out of this calculation since
they always have scores of 0). These can be interpreted as an indicator of
the average importance of a concept type.

The columns for the category, the annotation confidence and the weight are
editable by the user. This represents our realization of the semi-automatic

29

6. Categorizer: Practical Implementation Georg Prohaka (0325904)

Statistics for 9629 datasets:

Average number of concepts per dataset: 32276

Number of distinct concepts: 5850 ‘ Apply weights

Number of distinct categories: 34

‘ Category ‘ Freq K Concept | Freq ‘ Category ‘ Conf ‘ AvgRel | AvgCoh ‘ Weight |
POLITICS_AND_GOVERNMENT 479% = |service#n#l 50.7 % BUSINESS ECONOMICS... 0.871 0.019 0.344 0.99 "—\l
BUSINESS_ECONCMICS_AND_FI.. 47.6% | info#n#1 458 % 0.0 0.0 0.0 1.0 1
GEOGRAPHY_AND_PLACES 464 % status#n# 1 449 % LAW AND_CRIME 0.571 0.002 0.131 0.1
COMPUTING 26.7% | | |petition#n#1 41.2% POLTICS_AND_GOVER.. 0536 0025 0473 099
LAW_AND_CRIME 144 % |WIK\1Ethift,(... 394 % LAW_AND_CRIME 0422 0.008 0.271 10
PHILOSOPHY_AND_PSYCHOLOGY 120% WIKEEN:KYW... 39.2 % MEDIA 0.4 0.001 0.088 1.0
RELIGION_MYSTICISM_AND_MY.. 9.7 % daily#r#l 389 % 0.0 0.001 0.056 10
TRANSPORT_AND_TRAVEL 8.6 % automatically... 38.2 % 0.0 0.0 0.057 1.0
MUSIC 8.3 % WIKEEN:City 35.8% GEOGRAPHY_AND PLA.. 0492 0075 0.629 10
CHEMISTRY_AND_MINERALOGY 7.7 % update#v#1 31.8% 0.0 0.0 0.0 1.0
HEALTH_AND_MEDICINE 6.9 % New York Cit... 28.7 % GEOGRAPHY AND PLA.. 04 0.138 0.722 0.99

AMMCUACC AMD LIMCLICTISC sz | datatng] 203 % COMPUTING 0352 0071 0.51 0.0

& 5 s

Figure 22: The statistics window of Categorizer.

scoring described in the previous section. Again, concepts that have been
altered manually are marked with a grey background. Furthermore, it is
possible to reset a concept to its standard values via the context menu. The
“Apply weights” button is just a shortcut; it has the exact same function-
ality as the “Categorize!” button. Selecting a row in the concept table and
pressing ctri+c copies an URL to the system clipboard that leads to the
corresponding BabelNet page which includes all available information about
the concept. This also works in the concept table of the main window.

All settings, including the adjustments of parameters of specific concept
types, can be saved to and loaded from an external file. Furthermore, a
possibility is provided to generate a CSV file containing the category fre-
quency distributions of a set of portals that is selected by the user. To create
this file the categorization algorithm is applied to each portal using the cur-
rent settings. The CSV file contains one column for the name of the portal
plus a column for every category indicating its frequency in the datasets of
the portal (The same values that are displayed in the left table of the statis-
tics window). This CSV export feature as well as saving and loading settings
can be accessed via the menu bar at the top of the main window.

6.3.2 Use Cases

Initially, Categorizer was intended to facilitate easy testing of different pa-
rameter values for our categorization algorithm. When it became clear that
editing the categories and weights of individual concepts would be necessary
we decided to invest a little more effort into building a proper application.

60

6. Categorizer: Practical Implementation Georg Prohaka (0325904)

Furthermore, just looking at aggregated statistics does not suffice for deter-
mining the impact any of the parameters has on the outcome of the cate-
gorization process. The application provides a means for inspecting specific
datasets and quickly analysing why certain category labels were assigned to
it. The statistics window provides an easy way to determine which concepts
are most influential and, if necessary, adjust some of their parameter values.
Apart from the obvious task of automatically categorizing large numbers of
datasets we think this application provides a good opportunity for Open
Data portal administrators to analyse the quality of their metadata. If the
outcome of the categorization process does not align with the expectations
of someone who knows the content of the datasets some investigation could
help to uncover datasets with insufficient descriptions or ambiguous key-
words. Using the filter option datasets belonging to a specific category can
be located quite quickly.

Another use case for Categorizer is the comparison of Open Data portals.
Exporting category distributions provides a decent possibility to compare
the content of multiple portals, which is exactly what we did in the analy-
sis phase of this study (for a through discussion refer to section Analysis).
Furthermore, the possibility of loading multiple portals at once allows to
compare whole sets of portals. Moreover, the statistics window gives a good
overview of the most influential concepts, thus, giving some insight into the
general content of the datasets.

6.4 Limitations

Categorizer has been developed in the course of this master thesis with the
specific goal to test and apply our approach of using the services of Babelfy
and BabelNet to categorize open datasets. Therefore, some aspects of the ap-
plication are rather limited and many potential improvements remain future
work. For example, the process of loading datasets from the database into the
application is relatively slow. Depending on the hardware it can take several
minutes to load all datasets if their number increases over 20.000. This is
due to the large number of concepts that must be loaded from the database
(32 concepts per dataset on average). Certainly, some restructuring of the
database or optimization of the code could improve performance, however,
since the focus of this study lies on entity recognition and categorization only
moderate efforts have been made to address this issue.

A missing aspect that becomes apparent quite fast when using the application
is the lacking navigational link between the concept types in the statistics
window and the loaded datasets. Locating datasets that contain a certain
concept type would be a useful feature. Utilizing the concept types as facets

61

7. Analysis Georg Prohaka (0325904)

to filter the displayed datasets would be an efficient way to improve usability
of the application.

Of course, the need of having the data that is used pre-processed in a very
specific way that is not publicly available and stored in a custom format in a
database can be viewed as a limitation as well. Moreover, one can easily think
of additional useful features and improvements. However, Categorizer was
developed in the course of this master thesis, thus, the scope of possibilities
is inherently limited.

7 Analysis

In this section, we are going to present the findings of this study. First, the
data corpus we used is going to be described. Then, we are going to look
into some statistics and present some visualizations of different frequency
distributions for concepts, scores and categories. Of course, we are going to
explain which parameter values for the categorization algorithm we decided
upon and why those choices were made. Furthermore, we are going to apply
k-means clustering to the category frequency distributions of all Open Data
portals in our data and try to find contextual similarities at the portal level.
Finally, an evaluation of the precision of the algorithm is going to be pre-
sented. To that end, we conducted a survey were participants were asked to
manually categorize datasets. The results are going to be discussed in the
last part of this section.

7.1 Statistics

Table 5: Key figures of the data corpus.

Occurrences | Types

Portals 150 Concepts 5,091,871 52,476
Datasets | 174,308 || Named entities 467,763 27,088
Languages 24 Total 5,559,634 79,564

Table 5 shows the key figures of our data corpus. All data originates
from the Portalwatch project?®*. We managed to appropriately pre-process,
i.e. run through Babelfy, a total of 174,308 dataset. These belong to 150
different portals (a full list is provided in the appendix). Figure 23a shows
the distribution of the count of the datasets per portal. We can see that

Bhttp://data.wu.ac.at/portalwatch/

62

7. Analysis Georg Prohaka (0325904)

most portals contain less than 1,000 datasets and only a few with a signif-
icantly higher amount are part of this study. We selected the small portals
intentionally because of the limitations of Babelfy, i.e. only allowing to pro-
cess a fixed number of datasets per day. Since one of our goals was to find
contextual similarities among portals we decided to process all small portals
first to cover as many as possible.

Figure 23: Distribution of datasets and languages.

50

40

30

Other

Frequency

20
!

10

o fm mo oo a Oon a

T \ \ T] NL m
1000 3000 6000 10000 12000 S
(b) Distribution of languages of
Number of datasets
datasets.
(a) Distribution of the number of datasets per
portal.

A total of 24 distinct languages were detected in the datasets. Figure
23b shows their distribution. We can see that over half of the datasets have
English descriptions. With English being the most popular language in the
Web this result is not surprising, however, its dominance is still remarkable.
One of the goals of Open Data is to make it easily accessible for a big au-
dience, which is probably another reason why the English language is often
chosen as a means of communication.

The amount of textual information that is available for each dataset is,
of course, crucial for our study. Figure 24 shows the distributions of the
number of characters for titles and descriptions of the datasets. Titles are in
general much shorter - most of them contain less than 100 characters with the
median at 40. Descriptions contain more characters, 63.6% of datasets have
descriptions between 50 and 500 characters long, with a median at 144. The
tail of the distribution for descriptions is noticeably longer. There are quite a
few datasets that have lengthy descriptions, 6.6% of them include over 1.000

63

7. Analysis

Georg Prohaka (0325904)

Frequency
10000 15000 20000 25000

5000
|

0
L

f T T T T T T T T 1
0 50 100 150 200 250 300 350 400 450

Number of characters in title

Figure 24: Distributions of the

20000 30000
| |

Frequency

10000
|

0
L

f T T T T T 1
0 500 1000 1500 2000 2500 3000

Number of characters in description

number of charaters.

characters. Furthermore, it is noteworthy that the fraction of datasets that
contain less than 10 characters for the title is 6.4% and for the description
8.2%. Some of the datasets (2.4%) even contain less than 20 characters for
title and description combined. Clearly, such datasets pose a great challenge
for any categorization algorithm due to the limited amount of information

to work with.

Figure 25: Distribution of keywords and concepts.

25000 35000
I 1 1 1

Number of datasets
15000
|

5000

0
L

e

9 10+

Number of keywords

(a) Distribution of the number of key-
words.

Frequency
1 I 1

5000 10000 15000 20000 25000

0
L

T T T T 1
100 200 300 400

o

Number of concepts

(b) Distribution of the number of de-
tected concepts.

Another interesting aspect is the number of keywords since concepts de-

64

7. Analysis Georg Prohaka (0325904)

tected in this field are valued higher by our categorization approach. Figure
25a shows their distribution. The median number of keywords is 3. Interest-
ingly, over 20% of the datasets do not contain any keywords. This is not due
to some portal leaving out this field; 138 out of the 150 portals contain at
least some datasets without any keywords, thus, this seems to be a common
phenomenon.

Now, we are going to analyse the concepts discovered by Babelfy. A total
of 5,559,634 concepts were detected in our data corpus. Figure 25b shows
the distribution of concepts per dataset. Of course, it looks similar to the
distributions of title and descriptions since the length of the input string and
the number of detected concepts is highly correlated. The median for the
number of concepts is 21. For almost all datasets (99.2%) at least one con-
cept could be detected. The distribution of distinct concepts, i.e. excluding
duplicate types, looks almost identical, it has its median at 15.

60000
1

1000 10000
1

0o

1

Number of occurrences

20
|

0 20000 40000 60000 80000

Concepts
Figure 26: Occurrence of concept types.

Figure 26 shows a plot of the rate of occurrence of each distinct concept,
i.e. concept type (multiple occurrences within a single dataset are included

65

7. Analysis Georg Prohaka (0325904)

here). A total of 79,564 distinct concepts have been detected. It is remarkable
that the vast majority of concept types occur only a few times; 88.6% of
concept types only appear 50 times or less, whereas a few types are extremely
frequent. Research shows that word frequencies in natural language follow a
similar distribution known as Zipf’s law [55]. As the evidence suggests, this
translates to the frequency of concept types. The most frequent types are
very generic, which is why we disabled their influence on our categorization
process. Table 6 lists the ten most frequent concept types with their total
occurrence-count.

Table 6: The most frequent concepts with a count of occurrence.

Concept Type | Count

data 72,222
service 595,995
data point 53,412
year 34,809
petition 34,050
data set 30,406

information 28,019
department 27,615
municipality 21,997

map 21,423

Table 7: The most frequent named entities with a count of occurrence.

Named Entity Count
KYW News Radio 20,965
New York City 10,190
Engineering and Physical

Scignces Regsearch CZuncil 5,093
Los Angeles 4,768
Aragon 4,173

Journal of Chemical Physics | 3,926
City Of (Tv show) 3,690
Spain 3,631

Dallas Police Department 3,319
StatBank 3,088

In BabelNet synsets that represent named entities, e.g. (Vienna) or (Bob
Dylan), are marked as such. Around 8.4% of the discovered concepts in

66

7. Analysis Georg Prohaka (0325904)

our data are named entities. Interestingly, these are comprised of 27,088
distinct entities, thus, 34% of the total concept types are named entities.
This indicates that a lot of variation in the content of Open Data is due
to the focus on a multitude of different named entities. The distribution
occurrences of named entities follows Zipf’s law as well. Table 6 shows the
ten most frequent named entities. Some of them seem peculiar, e.g. the most
frequent named entity being a news radio station. Investigation revealed that
these are indeed almost entirely false positives, the same is true for (City Of)
which refers to the name of a TV show. Babelfy seems to have a bias for some
synsets. This goes to show that the Babelfy algorithm is far from perfect and
that at least some human inspection of the results is appropriate.

Out of the 79,564 concept types (synsets) 42,168 (53%) possess an annotated
category label. Thus, a dataset contains approximately 10.5 concepts on
average that can contribute to the categorization process. The percentage
of labelled synsets is significantly higher than the percentage for BabelNet
as a whole; About 2.7 mio out of the 14 mio total, i.e. only around 19%,
synsets possess category labels. Presumably, this discrepancy stems from the
fact that Open Data is generally described using rather common language,
whereas BabelNet includes a large amount of very specific synsets which are
often skipped by the automated label annotation process |15].

7.2 Categorization of Datasets

Now, we are going to discuss the results of applying our categorization al-
gorithm to the data corpus. Our approach is tailored specifically for Open
Datasets and, unfortunately, there are no publicly available annotated datasets
which could be used as a reference set. Therefore, we had to manually choose
all the parameters. Due to the scope of a master thesis we did not have
enough time to invest the amount of effort that would be necessary to find
the optimal values. This will remain future work for the time being. Never-
theless, we tried to select reasonable values which we are going to argue for
in the following.

7.2.1 Parameters

Our selection of parameter values is based on experimentation and manual
inspection of categorization results. Table 8 shows the settings we selected to
conduct the analysis of this section. The first one is the default score for the
MCS heuristic. This parameter is at the same time very impactful and hard
to select. Almost half (49%) of all detected concepts were found by the MCS
heuristic, which is why, this parameter influences the categorization of almost

67

7. Analysis Georg Prohaka (0325904)

Table 8: Categorization parameters used for analysis.

Parameter Value

default score for MCS (s,,) 0.07
weight for relevance score (w;) 0.8
weight for coherence score (wp,) 0.2
weight for keyword concepts (wy) 2.5
weight for category confidence (w.) | 0.5
minimum number of categories 1

maximum number of categories 3

minimum category score 0.1
number of edited concept types 232

every dataset. On analysing various samples, we discovered that relevance of
the concepts detected by the MCS heuristic to the context of a dataset varies
just as much as for the other concepts. Unfortunately, there is no way to
determine the relevance of such a concept from the information made avail-
able by Babelfy. The only solution other than disabling the heuristic, which
would entail a substantial information loss about the datasets, was to choose
some value that aligns with the relevance and coherence scores of the other
concepts. Therefore, we chose the value for s, close to the weighted average
relevance (0.025) and coherence scores (0.279). This reflects our assumption
that on average concepts detected by the MCS heuristic are as relevant as
concepts detected the standard way.

Although the possible range of the relevance score for a concept is [0, 1], in
general, this number is very low for concepts detected by Babelfy in our data.
In fact, the average relevance score is only 0.025 and only 1.7% of datasets
contain a concept with a score above 0.5. We were not able to determine the
reasons due to limited access to the inner workings of Babelfy. Still, the score
reflects the relevance of concepts in the input text which is why we wanted to
keep it in the calculation. The coherence score is distributed more normally
in its range. Since this score is based on the connectedness of the synset it
favours concepts like (Nation) or (Water) which have many relations to other
concepts. Although we consider both scores evenly important we opted for
a weighting that favours the relevance score in order to achieve a somewhat
even influence of both of them on the categorization process.

Our selection of weights for keyword concepts (wy) and the category confi-
dence of concept types (w.) is based on experimentation with different sam-
ples of datasets. Of course, the information quality of keywords is quite
variable; However, in general, most publishers of Open Data try to use them

68

7. Analysis Georg Prohaka (0325904)

correctly as concise descriptors of the context. Thus, we selected a value for
wy, that reflects the importance of keywords while not rendering the concepts
detected in the description insignificant. Since we found that it contributes
quite a lot to variance in the results we reduced the influence of the category
confidence by 50% to maintain a balance between variance and precision.
We opted for a range of the possible number of category labels that anno-
tates datasets with one to three labels. We wanted to maximise the number
of datasets that receive at least one label while keeping the categories well
defined. Thus, we selected a relatively strict threshold for the category score
but still allowing up to three labels per dataset. The fact that 0.1 is a high
value is due to the general low values for relevance and coherence scores as
well as the low value of s, which lead to small numbers for the category
confidence score of our algorithm.

In total, we edited 232 concept types using our Categorizer prototype. This
was done by going through the most frequent types and making adjustments
where they felt appropriate. In most cases, we simply disabled very gen-
eral concepts such as (Number) or (Year). In addition, some adjustments
of category labels were made such as changing the category of (Politics) to
PoLiTics AND GOVERNMENT from PHILOSOPHY AND PSYCHOLOGY. We
tried conduct such overrides only for very clear cases. Lastly, the influence
of some very frequent concept types such as (Data) was decreased in order
to achieve higher selectivity of the different categories.

7.2.2 Categorization Results

Applying our categorization algorithm using the parameters discussed above
to our data corpus results in the distribution of categories depicted in Figure
27. At least one category was found for 98.3% of all datasets. We can see,
that the most frequent category label is GEOGRAPHY AND PLACES. This
result is plausible considering the fact that a lot of Open Data, especially
Open Government Data, is published by authorities responsible for certain
regions, e.g. cities, resulting in datasets that contain information related to
these regions. COMPUTING being a frequent category stems from frequent
mentions of data related terms in descriptions as well as many datasets con-
taining statistical information which often entails concepts with this category
label. In addition, the portal of the University of Bristol?* is included in our
data and it provides over 12.000 datasets of research data, 5224 of which
belong to this category. POLITICS AND GOVERNMENT as well as BUSINESS
EcoNoMIcs AND FINANCE being part of the four most frequent categories

Ynttps://data.bris.ac.uk/data/

69

7. Analysis Georg Prohaka (0325904)

is also very probable since most of the datasets are Open Government Data.

GEOGRAPHY_AND_PLACES
COMPUTING
POLITICS_AND_GOVERNMENT
BUSINESS_ECONOMICS_AND_FINANCE
PHYSICS_AND_ASTRONOMY |
LAW_AND_CRIME |
CULTURE_AND_SOCIETY |
BIOLOGY |

CHEMISTRY_AND_MINERALOGY
EDUCATION
HEALTH_AND_MEDICINE
MATHEMATICS
PHILOSOPHY_AND_PSYCHOLOGY
TRANSPORT_AND_TRAVEL
FARMING
HISTORY
RELIGION_MYSTICISM_AND_MYTHOLOGY
ANIMALS
ENGINEERING_AND_TECHNOLOGY
ART_ARCHITECTURE_AND_ARCHAEOLOGY
LANGUAGE_AND_LINGUISTICS
MEDIA
MUSIC
WARFARE_AND_DEFENSE
GEOLOGY_AND_GEOPHYSICS
SPORT_AND_RECREATION
FOGD_AND_DRINK
LITERATURE_AND_THEATRE
NUMISMATICS_AND_CURRENCIES
METEOROLOGY
TEXTILE_AND_CLOTHING
ROYALTY_AND_NOBILITY
GAMES_AND_VIDED_GAMES
HERALDRY_HONORS_AND_VEXILLOLOGY

_uuuuuuuuuuuutJHHHHHHHHH“{

T T T T T \ T T T T T
0.00 0.02 0.04 0.06 0.08 0.10 012

Frequency
Figure 27: Frequencies of categories among datasets.

Figure 28 shows the distribution of the category confidence score per
label assigned. Most of the datasets (87.2%) receive just a single label due
to the threshold at 0.1. Still, close to half (46%) of the labels only achieve
a confidence score between 0.05 and 0.1. These are only assigned because of
the condition for the minimum number of categories. The mean lies at 0.123.
As mentioned above, this is due to the generally very low values of relevance,
coherence and MCS scores which influence the final score the most.

7.2.3 Clustering of Open Data Portals

We employed k-means clustering in order to find contextual commonalities
between the 150 Open Data Portals in our data corpus. As a basis, we
utilized the category distributions our prototype is able to produce: A portal
is represented as a 34-dimensional vector that contains the frequencies of
each of the 34 possible categories. Thus, any two of these vectors can be

70

7. Analysis Georg Prohaka (0325904)

40000 60000 80000
1 1]

Number of datasets

20000
1

T T T T T T T T 1
00 01 02 03 04 05 086 07 08

Category confidence score
Figure 28: Distribution of category confidence scores.
compared to each other. Since this is purely numerical data and the ranges

of all dimensions are equal, i.e. the Euclidean distance is a sensible distance
measure in this vector space, k-means is a suitable clustering method.

05 08
1

Percent of Variance Explained
04

03

Number of clusters

Figure 29: Variance explained by number of clusters.

71

7. Analysis Georg Prohaka (0325904)

The elbow criterion discussed in section 2.9.1. was used to find an ap-
propriate number of clusters. Figure 29 shows a plot of the percentage of
variance explained by the number of clusters. Unsurprisingly, there is no
clear elbow in this plot which is often the case for real-world data. We chose
a number of clusters that explains close to 50% of the variance while resulting
in relatively distinct clusters with clear contextual focuses.

Biology
Art, Architecture
and Archaeology

Textile and Clothing
Farming

® Cluster 1 (27)
Cluster 2 (7)
Cluster 3 (2)

® Cluster 4 (17)

® Cluster 5 (76)
Cluster 6 (8)

® Cluster 7 (13)

Animals

Business Economics

- Warfare and Defense
and Finance

Numismatics Games and Video Games
and Currencies
Chemistry
and Mineralogy

Transport
and Travel

Computing Sport and Recreation

Culture and Society Royality and Nobility

Religion Mysticism

Education and Mythology

Politics and
Government

Engineering and
Technology

Food and Drink Physics and Astronomy

Geography and Places

Geology and Geophysics

Health and Medicine

Heraldry Honors
and Vexillology

History

Philosophy and
Psychology

Music

Meteorology

Media

Mathematics

Language a"dLaw and Literature

Linguistics e and Theatre

Figure 30: Cluster centers of k-means.

The centers of the seven clusters found by k-means is are depicted in a
radar chart in Figure 30. One can immediately see that most clusters have
tendencies towards certain categories while one (cluster 5) has relatively even
distribution of categories. The plot of all 150 portals in Figure 31 reveals a
moderate amount of variance remaining within the clusters, yet, the cluster
centres seem to represent the focus of the portals quite well.

The one cluster that stands out is cluster 5 having no clear categorical ten-
dency. In fact, looking at Figure 32 which depicts all portals belonging to
cluster 5, we can see that there are only a few portals in this cluster that
exceed the 30% mark for any single category. Moreover, this cluster is the

72

7. Analysis Georg Prohaka (0325904)

Biology Textile and Clothing
Animals Art, Architecture Farming

Business Economics and Archaeology

- Warfare and Defense
and Finance

Numismatics

N Games and Video Games
and Currencies

Chemistry Transport

and Mineralogy and Travel

Computing

Culture and Society

Education

Engineering and
Technology

Food and Drink

Geography and Places

Geology and Geophysics Music

Health and Medicine Meteorology

Heraldry Honors
and Vexillology
History . Mathematics
Language andL nd Literature
Linguistics and Theatre

Media

Crime

Figure 31: Category distributions of all portals.

® Cluster 1 (27)
© Cluster 2 (7)
Cluster 3 (2)
® Cluster 4 (17)
© Cluster 5 (76)
Cluster 6 (8)
® Cluster 7 (13)

°

Sport and Recreation

Royality and Nobility

Religion Mysticism
and Mythology

Politics and
Government

Physics and Astronomy

Philosophy and
Psychology

73

7. Analysis Georg Prohaka (0325904)

largest one; It contains over half of all portals of our data corpus. This
data indicates that our algorithm produced categories with a high selectivity
for the portals in this cluster which is in general a desired outcome for any
automatic categorization algorithm.

Biology Textile and Clothing

Animals Art, Architecture Farming

Business Economics and Archaeology

N Warfare and Defense
and Finance

Numismatics

N Games and Video Games
and Currencies

Chemistry Transport
and Mineralogy and Travel
Computing Sport and Recreation

Culture and Society Royality and Nobility

Religion Mysticism

Education and Mythology

Politics and
Government

Engineering and
Technology

Food and Drink Physics and Astronomy

Philosophy and

h Pl
Geography and Places Psychology

Geology and Geophysics Music

Health and Medicine Meteorology

Heraldry Honors
and Vexillology
History _ Mathematics
Language and, 5. ang Literature
Linguistics and Theatre

Media

Crime
Figure 32: Category distribution of cluster 5.

Let us inspect two of the smaller clusters, namely cluster 3 and cluster 7.
Figure 33 shows a plot containing all portals of these two clusters. Cluster 3
contains two portals that each contain datasets belonging mainly to two cat-
egories: COMPUTING and PHYSICS AND ASTRONOMY. The two portals are
(i) an American government portal providing data about the energy sector?
and (ii) the portal of the University of Bristol* which provides mostly scien-
tific research data. While the categorization results for these specific portals

Zhttps://data.energystar.gov/
nttps://data.bris.ac.uk/

74

7. Analysis

Georg Prohaka (0325904)

are not very useful due to the low selectivity of the categories, the clustering
is certainly sensible. Both portals offer similar content, i.e. analytical data
based on physical science.

Computing

Culture and Society

Education

Engineering and
Technology

Food and Drink

Geography and Places

Biology Textile and Clothing o Cluster 7 (13)

Animals Art, Architecture Farming
and Archaeology ® Cluster 3 (2)
Warfare and Defense

Business Economics
and Finance

Numismatics

N Games and Video Games
and Currencies

Chemistry \ Transport
and Mineralogy and Travel

Sport and Recreation
Royality and Nobility

Religion Mysticism
and Mythology

Politics and
Government

Physics and Astronomy

Philosophy and
Psychology

Geology and Geophysics Music

Health and Medicine Meteorology

Heraldry Honors
and Vexillology
History 3 Mathematics
Language and, ,, anq Literature
Linguistics and Theatre

Media

Crime

Figure 33: Category distributions of cluster 3 and 7.

The emphasis of cluster 7 lies on BUSINESS ECONOMICS AND FINANCE.
Although there are a few portals with over 50% of datasets in that category
most of the portals have somewhat wider category distributions. The focus
on the main category is still noticeable for all of them, i.e. at least 20% of
the datasets of all portals were assigned to it. Examples of this cluster are
(i) the Cook County government portal?”, (i) the portal of Culver City in
USA California?® and (iii) the Open Data portal of the Vienna University
of Economics and Business®. At this time, (i) provides 528 datasets out
of which 172 are classified under “Finance & Administration” by the portal

2Thttps://datacatalog.cookcountyil.gov/
Zhttps://data.culvercity.org/
Yhttp://data.wu.ac.at/portal

7. Analysis Georg Prohaka (0325904)

administrators which indicates a correct cluster allocation. All of the cate-
gories (“Payroll”, “Expenditures”, “Revenue”, “City Businesses”) advertised on
the website of (ii) are business or finance related, thus, it represents another
correct allocation.

Since we are familiar with the content of the portal we can state that this
category label is a false positive for all datasets of (iii). The majority of
datasets are about lectures and events and have little to do with economics
or finance. The reason for this categorization result is the mention of the full
name of our university in the rather brief descriptions of almost all datasets.
The name contains the terms “economics” and “business” which are discov-
ered as concepts by Babelfy and tagged with the BUSINESS ECONOMICS AND
FINANCE label. A much more appropriate category for these datasets would
be EDUCATION which is at least the second most frequent (28%) category
assigned by our algorithm; However, the frequency was not high enough to
allocate the portal to its “correct” cluster, namely cluster 6 with a focus on
education. This goes to show much influence single concepts can have on the
categorization process.

| hHN_L Ev h = =
r T T T T T T 1 r T T T T 1
00 01 02 03 04 05 06 07 00 01 02 03 04 05
Percentage of datasets in Geography and Places Percentage of datasetsin Poitics and Government

(a) Distribution of the frequency of GE- (b) Distribution of the frequency of POL-
OGRAPHY AND PLACES per portal. ITICS AND GOVERNMENT per portal.

The second biggest cluster is cluster 1 with a focus on GEOGRAPHY AND
PLACES. As mentioned before this is also the biggest category at the dataset
level. Reviewing the distribution of the frequency of this category per portal
in Figure 34a we see that most portals have at least a few percent of datasets
labelled with that category. The mean is 17%, i.e. on average each portal has
17% of datasets in that category. Most concept types that represent some
geographical region, e.g. cities, are labelled with GEOGRAPHY AND PLACES.
In addition, concepts like (Municipality) and (Area) are very frequent and
belong to this category as well. That said, this label is somewhat general,
i.e. it does not convey a lot of information about the content of a dataset
other than that the data is specific to a region. However, this confirms our

76

7. Analysis Georg Prohaka (0325904)

assumption that a lot of Open Data is associated to a corresponding geo-
graphical area.

Although not as much as GEOGRAPHY AND PLACES another frequent cat-
egory is POLITICS AND GOVERNMENT. Figure 34b shows its distribution.
The mean here is at 9.7%. The majority of portals have at least 5% of
datasets in that category which is expected since Open Government Data is
a significant part of Open Data. The most frequent concept types of this
category are (Petition), (Governance) and (FElection).

It is noticeable that some of the categories such as Music, TEXTILE AND
CLOTHING or FOOD AND DRINK are very infrequent. This is an indication
that such contexts are currently not covered by Open Data, at least for the
portals in this study. Confirming this assumption for all existing portals will
remain future work.

7.2.4 Evaluation of Precision

Since no reference dataset for Open Data exists it is very hard to properly
verify these results. Manual investigation indicates a reasonable level of
precision. Moreover, the distribution of categories seems very plausible. Still,
at this point, we are merely able to formulate educated guesses about the
content and structure of the analysed open datasets. Nevertheless, we tried to
evaluate our approach with means that are in the scope of a master thesis: We
drew up a questionnaire asking participants to assign up to three categories
to datasets based on the title, description and keywords. Naturally, the set of
possible categories was the same as the one used throughout this study. No
information about the categories other than the labels was provided. The 100
datasets in the questionnaire were selected randomly from 5 different portals.
In total 8 participants with basic knowledge in Open Data took part in this
evaluation. Each dataset was categorized by two participants.

To calculate the precision, we took the union of the categories for each dataset
and compared this set to the results of our approach. Using the parameters
discussed above we reached a precision of 59.6% and a recall of 27.8%. The
low recall stems from the rather strict minimum category score which leads
to a single category label for most datasets. In contrast, participants mostly
chose different sets of categories for any dataset. In fact, only for 17 out of
the 100 datasets two participants chose the exact same set of categories. This
goes to show how subjective such a categorization can be, thus, rendering
evaluation of an automatic approach difficult.

Decreasing the minimum category score to 0.06 lead to a recall increase to
41.4% while decreasing precision to 50%. Of course, the size and type of
this evaluation does not permit any definite conclusions about our approach,

7

8. Conclusion and Future Work Georg Prohaka (0325904)

however, it indicates that it is at least reasonable and valid. The evaluation
set and results can be reviewed online®.

8 Conclusion and Future Work

Open Data is a growing movement dedicated to making various kinds of data
available to the public. Multiple countries have launched Open Data initia-
tives leading to serval institutions providing access to their data via Open
Data portals. Since all of these portals have their own web pages, i.e. points
of access the entirety of currently available Open Data is rather scattered.
The OpenData@WU project has harvested the metadata of over 260 portals
making the study of Open Data as a whole possible.

In this study, we applied a state-of-the-art entity recognition technique to
the natural language descriptions of open datasets. We utilized the concept-
category mapping of BabelNet to develop a heavily parameterized categoriza-
tion algorithm. To be able to test various parameters values we developed
a prototype that provides a graphical user interface for the algorithm and
means to explore detected concepts and categorization results. Yet, finding
the optimal set of parameters turned out to be a very difficult task and re-
mains future work. Nevertheless, we conducted an analysis of over 170.000
datasets from 150 Open Data portals using a set of parameters that yielded
satisfactory results.

We found the most frequent categories to be GEOGRAPHY AND PLACES,
COMPUTING, PoLiTics AND GOVERNMENT and BUSINESS ECONOMICS
AND FINANCE. While the high amount of datasets in COMPUTING is at-
tributable to two larger portals providing primarily statistical research data
the other three categories occur frequently in most Open Data portals. Since
most concepts representing cities and regions are labelled with GEOGRAPHY
AND PLACES our findings confirm the assumption that Open Data is often
specific to a geographical region. BabelNet offers further data such as the
geolocation for many of these concepts. An interesting aspect for future work
would be utilizing this information to analyse the geographical distribution
of Open Data.

Employing clustering techniques on the categorization results at the portal
level we were able to find groups of portals with different contextual focuses.
The largest cluster containing over half of the portals showed a rather bal-
anced category distribution which indicates high selectivity of the category
labels derived by our approach. The other clusters show clear emphasis on a
single category. Here, the most frequent categories were GEOGRAPHY AND

3Onttps://goo.gl/xJJLUK

78

REFERENCES Georg Prohaka (0325904)

PLACES, POLITICS AND GOVERNMENT and BUSINESS ECONOMICS AND
FINANCE. While these results may not be surprising the complete lack of
presence of other categories is noteworthy. Our findings indicate that, at this
time, Open Data is contextually limited to a few key topics. Data associated
to themes like music, food or sports seem to not have found their way into
Open Data yet.

Other than the categorization approach presented in this thesis the concepts
detected by Babelfy open up a variety of possibilities to analyse Open Data.
Ioana Hulpus et al presented an interesting graph-based technique to achieve
topic labelling. Applying their approach to the concepts we discovered in
open datasets could provide more nuanced insights into the content structure
of Open Data. Moreover, leveraging the concepts for search, e.g. building a
facet hierarchy, is an interesting aspect for further research.

Overall, this study, and the presented categorization of open datasets, con-
stitutes a first step in the analysis of the content and structure of Open Data,
an open, interesting and timely challenge which deserves further research and
efforts.

References

[1] Spam oder nicht spam? ¢’t, 17:150-153, 2003.

|2] G8 open data charter and technical annex. URL: https:
//www .gov.uk/government/publications/open-data-charter/
g8-open-data-charter-and-technical-annex, 2013. [Online;

accessed 06-August-2017].

[3] The open definition. URL: http://opendefinition.org/, 2016. [On-
line; accessed 25-July-2017].

[4] Paul Buitelaar Anja Jentzsch Andrejs Abele, John P. McCrae and
Richard Cyganiak. The linking open data cloud diagram. URL:
http://lod-cloud.net/, 2017. [Online; accessed 25-July-2017].

[5] Andrew Wood Antoine Isaac, Pierre-Antoine Champin and Sandro
Hawke. Rdf 1.1 primer. URL: https://www.w3.org/tr/2014/
note-rdf11l-primer-20140624/, 2014. [Online; accessed 30-July-2017].

[6] Chidanand Apté, Fred J. Damerau, and Sholom M. Weiss. Automated
learning of decision rules for text categorization. ACM Trans. Inf. Syst.,
12:233-251, 1994.

79

REFERENCES Georg Prohaka (0325904)

7l

8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Alan R. Aronson and Frangois-Michel Lang. An overview of metamap:
historical perspective and recent advances. Journal of the American
Medical Informatics Association : JAMIA, 17 3:229-36, 2010.

Soeren Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard
Cyganiak, and Zachary G. Ives. Dbpedia: A nucleus for a web of open
data. In ISWC/ASWC, 2007.

Ricardo A. Baeza-Yates and Berthier A. Ribeiro-Neto. Modern infor-
mation retrieval. 1999.

Tim Berners-Lee. Linked data. URL: https://www.w3.org/
designissues/linkeddata.html, 2006. [Online; accessed 08-August-
2016].

David C. Blair and M. E. Maron. An evaluation of retrieval effectiveness
for a full-text document-retrieval system. Communications of the ACM,
(3), March 1985.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet
allocation. Journal of Machine Learning Research, 3:993-1022, 2003.

Olivier Bousquet, Stéphane Boucheron, and Gabor Lugosi. Introduc-
tion to statistical learning theory. In Advanced Lectures on Machine
Learning, 2003.

Daniel Biiring. Binding Theory. Cambridge University Press, 2005.

Jose Camacho-Collados and Roberto Navigli. Babeldomains: Large-
scale domain labeling of lexical resources. 2017.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray
Kavukcuoglu, and Pavel P. Kuksa. Natural language processing (almost)
from scratch. Journal of Machine Learning Research, 12:2493-2537,
2011.

Richard Cyganiak. Data catalog vocabulary. URL: https://www.w3.
org/TR/vocab-dcat/, 2014. [Online; accessed 25-July-2017].

Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W.
Furnas, and Richard A. Harshman. Indexing by latent semantic analysis.
JASIS, 41:391-407, 1990.

80

REFERENCES Georg Prohaka (0325904)

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

Paul McNamee Delip Rao and Mark Dredze. FEntity Linking: Finding
Extracted Entities in a Knowledge Base, pages 93-115. Springer Berlin
Heidelberg, 2013.

Christiane Fellbaum. WordNet: An Electronic Lexzical Database. MIT
Press, 1998.

Paolo Ferragina and Ugo Scaiella. Tagme: on-the-fly annotation of short
text fragments (by wikipedia entities). In CIKM, 2010.

Leo Ferres, Gitte Lindgaard, Livia Sumegi, and Bruce Tsuji. Evaluating
a tool for improving accessibility to charts and graphs. ACM Trans.
Comput.-Hum. Interact., 20:28:1-28:32, 2010.

World Wide Web Foundation. Open data barometer global report.
URL: http://opendatabarometer.org/, 2015. [Ounline; accessed 25-
July-2017].

Evgeniy Gabrilovich and Shaul Markovitch. Wikipedia-based seman-
tic interpretation for natural language processing. Journal of Artificial
Intelligence Research, March 2009.

William A. Gale, Kenneth Ward Church, and David Yarowsky. A
method for disambiguating word senses in a large corpus. Computers
and the Humanities, 26:415-439, 1992.

M. R. Garey, David S. Johnson, and Hans S. Witsenhausen. The com-
plexity of the generalized lloyd - max problem. IEEE Trans. Information
Theory, 28:255-256, 1982.

Stephen Guo, Ming-Wei Chang, and Emre Kiciman. To link or not to
link? a study on end-to-end tweet entity linking. In HLT-NAACL, 2013.

Greg Hamerly and Charles Elkan. Alternatives to the k-means algorithm
that find better clusterings. In CIKM, 2002.

Richard Hammell. Driving growth, ingenuity and innovation. Technical
report, Deloitte LLP, 2012.

Xianpei Han and Jun Zhao. Nlpr_ kbp in tac 2009 kbp track: A two-
stage method to entity linking. In In Proceedings of Test Analysis Con-
ference 2009 (TAC 09). MIT Press, 1999.

81

REFERENCES Georg Prohaka (0325904)

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Donna Harman and Mark Liberman. Tipster complete 1dc93t3a. URL:
https://catalog.ldc.upenn.edu/LDC93T3A, 1993. [Online; accessed
25-July-2017].

William R. Hersh, Chris Buckley, T. J. Leone, and David H. Hickam.
Ohsumed: An interactive retrieval evaluation and new large test collec-
tion for research. In SIGIR, 1994.

José Maria Gomez Hidalgo, Guillermo Cajigas Bringas, Enrique Puertas
Sanz, and Francisco Carrero Garcia. Content based sms spam filtering.
In ACM Symposium on Document Engineering, 2006.

Ioana Hulpus, Conor Hayes, Marcel Karnstedt, and Derek Greene. An
eigenvalue-based measure for word-sense disambiguation. In FLAIRS
Conference, 2012.

Ioana Hulpus, Conor Hayes, Marcel Karnstedt, and Derek Greene. Un-
supervised graph-based topic labelling using dbpedia. In WSDM, 2013.

Anil K. Jain, M. Narasimha Murty, and Patrick J. Flynn. Data cluster-
ing: A review. ACM Comput. Surv., 31:264-323, 1999.

Marijn Janssen, Yannis Charalabidis, and Anneke Zuiderwijk. Benefits,
adoption barriers and myths of open data and open government. IS
Management, 29:258-268, 2012.

Heng Ji, Ralph Grishman, and Trang Dang. Overview of the tac2011
knowledge base population track. 2012.

Thorsten Joachims. Text categorization with support vector machines:
Learning with many relevant features. In ECML, 1998.

Sebastian Neumaier Jiirgen Umbrich and Axel Polleres. Quality assess-
ment € evolution of Open Data portals. In IEEE International Confer-
ence on Open and Big Data, Rome, Italy, August 2015, Rome, Italy,
2015.

Wai Lam, Miguel E. Ruiz, and Padmini Srinivasan. Automatic text
categorization and its application to text retrieval. IEEE Trans. Knowl.
Data Eng., 11:865-879, 1999.

Douglas Lenat. Cyc: A large-scale investment in knowledge infrastruc-
ture. Communications of the ACM, 38:33-38, 1995.

82

REFERENCES Georg Prohaka (0325904)

[43]

[44]

[45]

|46]

[47]

48]

[49]

[50]

[51]
[52]

[53]

[54]

Stuart P. Lloyd. Least squares quantization in pcm. IEEFE Trans. In-
formation Theory, 28:129-136, 1982.

H J Lowe, I Antipov, W Hersh, C A Smith, and M Mailhot. Automated
semantic indexing of imaging reports to support retrieval of medical im-
ages in the multimedia electronic medical record. Methods of information
in medicine, 38 4-5:303-7, 1999.

John C. Mallery. Thinking about foreign policy: Finding an appropriate
role for artificially intelligent computers. In Master’s thesis, M.I.T.
Political Science Department, 1988.

Jianchang Mao and Anil K. Jain. A self-organizing network for hyper-
ellipsoidal clustering (hec). IEEE transactions on neural networks, 7
1:16-29, 1996.

Steve McConnell. Code complete - a practical handbook of software
construction, 2nd edition. 2004.

George A. Miller, Claudia Leacock, Randee Tengi, and Ross T. Bunker.
A semantic concordance. 1993.

E.M. Mirkes. K-means and k-menoids applet. [Online; accessed 20-June-
2017].

Andrea Moro, Alessandro Raganato, and Roberto Navigli. Entity Link-
ing meets Word Sense Disambiguation: a Unified Approach. Transac-
tions of the Association for Computational Linguistics (TACL), 2:231—
244, 2014.

Shuyo Nakatani. Language detection library for java, 2010.

Roberto Navigli. Word sense disambiguation: A survey. ACM Comput.
Surv., 41:10:1-10:69, 2009.

Roberto Navigli, David Jurgens, and Daniele Vannella. Semeval-2013
task 12: Multilingual word sense disambiguation. In SemFval@NAACL-
HLT, 2013.

Roberto Navigli and Simone P. Ponzetto. Babelnet: The automatic
construction, evaluation and application of a wide-coverage multilingual
semantic network. Artificial Intelligence, 193:217-250, December 2012.

83

REFERENCES Georg Prohaka (0325904)

[55]

[56]
[57]

[58]

[59]

[60]

[61]

[62]

|63]

[64]

|65]

|66]

[67]

Steven T Piantadosi. Zipf’s word frequency law in natural language: a

critical review and future directions. Psychonomic bulletin & review, 21
5:1112-30, 2014.

K. Reghunath. Real-time intrusion detection system for big data, 2017.

Ehud Reiter. The Handbook of Computational Linguistics and Natural
Language Processing, chapter Natural Language Generation. Wiley-
Blackwell, 2010.

Tony Rose, Mark Stevenson, and Miles Whitehead. The reuters corpus
volume 1 -from yesterday’s news to tomorrow’s language resources. In

LREC, 2002.

Hinrich Schuetze. Automatic word sense discrimination. Computational
Linguistics, 1998.

Fabrizio Sebastiani. Machine learning in automated text categorization.
ACM Comput. Surv., 34:1-47, 2002.

Wei Shen, Jianyong Wang, and Jiawei Han. Entity linking with a knowl-
edge base: Issues, techniques, and solutions. [IEEE Transactions on
Knowledge and Data Engineering, 27:443-460, 2015.

Somayajulu G. Sripada and Tan Davy. Sumtime-mousam: Configurable
marine weather forecast generator. 2003.

Andy Seaborne Steve Harris and Eric Prud’hommeaux. Sparql 1.1
query language. URL: https://www.w3.org/TR/sparqlll-query/,
2013. [Online; accessed 02-August-2017].

Mark Stevenson and Yorick Woliks. Word-sense Disambiguation, pages
249-262. Oxford Handbooks, 2005.

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: A
core of semantic knowledge unifying wordnet and wikipedia. 2007.

Basu S. Micchelli C. Vandewalle J. Suykens J.A.K., Horvath G. Ad-
vances in Learning Theory: Methods, Models and Applications. 10S
Press, 2003.

M. Swamiraj and L. Freund. Facilitating the discovery of open govern-
ment datasets through an exploratory data search interface. 2015 Open
Data Research Symposium, Ottawa, Canada, 2015.

84

REFERENCES Georg Prohaka (0325904)

|68] A. M. Turing. Computing machinery and intelligence. 1950.

|69] S. van Dongen and Stijn van Dongen. A cluster algorithm for graphs.
2001.

|70] Mark Wasson. Large-scale controlled vocabulary indexing for named
entities. In ANLP, 2000.

[71] Liyang Yu. A Developer’s Guide to the Semantic Web. Springer, 2010.

[72] Wei Zhang, Yan Chuan Sim, Jian Su, and Chew Lim Tan. Entity linking
with effective acronym expansion, instance selection, and topic model-

ing. In IJCAIL 2011.

|73] Wei Zhang, Chew Lim Tan, Yan Chuan Sim, and Jian Su. Nus-i2r:
Learning a combined system for entity linking. In TAC, 2010.

85

A. List of Portals Georg Prohaka (0325904)

A List of Portals

bristol.azure-westeurope-prod.socrata.com
gisdata.mn.gov

data.nj.gov
data.providenceri.gov
www.yorkopendata.org
ckan.odp.jig.jp
opendata.socrata.com
data.oaklandnet.com
data.vermont.gov
data.kingcounty.gov
data.openva.com
www.civicdata.io
dados.recife.pe.gov.br
opendata.rubi.cat
data.somervillema.gov
data.gov.sk
performance.smcgov.org
data.mo.gov

opendata.hu

datos.gob.es
data.nsw.gov.au
dati.lazio.it
gobiernoabierto.valencia.es
data.openpolice.ru
datamx.io
opendata.opennorth.se
data.wu.ac.at

data.gv.at

data.nola.gov
data.redmond.gov
data.illinois.gov.champaign
rdw.azure-westeurope-prod.socrata.com
hampton.demo.socrata.com
opendata.go.tz
WWW.opengov-muenchen.de
data.cityofnewyork.us
data.gov.hk.en

86

A. List of Portals

Georg Prohaka (0325904)

data.kcmo.org

data.zagreb.hr

datacatalog.cookcountyil.gov

donnees.ville.montreal.qc.ca

controllerdata.lacity.org

data.illinois.gov.belleville

www.opendataforum. info

www.odaa.dk

www.dallasopendata.com

www.data.vic.gov.au

data.ohouston.org

dati.trentino.it

opendata.ayto-caceres.es

data.kk.dk

healthdata.nj.gov

data.edmonton.ca

data.stadt-zuerich.ch

stat.cityofgainesville.org

data.hawaii.gov

data.dcpcsb.org

opendata.awt.be

data.hartford.gov

data.baltimorecity.gov

data.gov.bf

www.opendataportal.at

opendata.aragon.es

data.cityofboston.gov

data.surrey.ca

opendata.government.bg

bythenumbers.sco.ca.gov

data.medicare.gov

finances.worldbank.org

data.act.gov.au

130.179.67.140

www.rotterdamopendata.nl

data.qld.gov.au

data.graz.gv.at

data.gov.hr

87

A. List of Portals

Georg Prohaka (0325904)

data.sa.gov.au

nycopendata.socrata.com

data.oregon.gov

performance.westsussex.gov.uk

performance.chattanooga.gov

opendata.bayern.de

data.overheid.nl

www.opendataphilly.org

datos.codeandomexico.org

drdsi.jrc.ec.europa.eu

dati.toscana.it

annuario.comune.fi.it

data.sfgov.org

data.ct.gov

data.grcity.us

catalogodatos.gub.uy

datosabiertos.malaga.eu

datameti.go.jp.data

dados.rs.gov.br

data.ug

datos.alcobendas.org

data.acgov.org

nats.demo.socrata.com.login

opendata.comune.bari.it

www.edinburghopendata.info

data.austintexas.gov

data.wa.gov

data.gov.ie

dati.lombardia.it

data.illinois.gov

beta.avoindata.fi

data.honolulu.gov

portal.openbelgium.be

www.dati.friuliveneziagiulia.it

linkeddatacatalog.dws.informatik.uni-mannheim.de

opendata.caceres.es

data.maryland.gov

data.upf.edu.en.main

38

A. List of Portals

Georg Prohaka (0325904)

ckan.okfn.gr

dados.al.gov.br

data.bris.ac.uk.data

data.seattle.gov

africaopendata.org

www.opendata-hro.de

westsacramento.demo.socrata.com

data.winnipeg.ca

opendata.lasvegasnevada.gov

data.energystar.gov

data.datamontana.us

opendatahub.gr

www.nosdonnees.fr

data.montgomerycountymd.gov

dados.gov.br

www.hri.fi

opencolorado.org

datosabiertos.ec

rs.ckan.net

data.nhm.ac.uk

health.data.ny.gov

data.gov.ro

dati.veneto.it

daten.buergernetz.bz.it.de

danepubliczne.gov.pl

data.cityoftacoma.org

oppnadata.se

gavaobert.gavaciutat.cat

data.illinois.gov.rockford

data.culvercity.org

data.raleighnc.gov

tourisme62.opendatasoft.com

opendata.terrassa.cat

bronx.lehman.cuny.edu

data.burlingtonvt.gov

datos.gob.mx

data.michigan.gov

89

B. Class Diagrams Georg Prohaka (0325904)

B Class Diagrams

B3 stringanalysis

1

E selectPortalWindow

=] Conceptid
£ babelnet
= = «Interface» H BabelConceptCreator
<Lnumeration [categorizerCallback 5 Globals
BabelDomain
«Interface»
1 N Concept 1
} 1 A A
! | 1 |
: 1 1
! * 1 ‘
i 1 1
| ! :
! 1 use
1 1
L ol Y ;
I 1 1
* i i N i 1 B storage
H StatisticsWindow L 1 1 -
- H categorizerwindow H categorizerApp
1 1 1 H Database
—————
H TextEditingCell 1 ; 1
H ChoiceEditingCell '<T—_ H ConceptTableCell g
T T
o 1 B BERE A
| § |
1
!) vooo ke 5l HExportCsvWindow use !
! import [e i
use ! R
1
! : A]
© dataset| ! Vi '
I 1
v 1 1 1 | use
1
= Conceptfeatures = Categorizer H Dataset !
g |
i
1

90

B. Class Diagrams Georg Prohaka (0325904)

T dataset B babelnet 3 storage

H DatasetManager <Enum erations El Database

BabelDomain

1 A 1
N | N
| | use |
: ! :
| i
: 1 i 1 import !
I
| import E Conceptfinder |- - - - - - - - — -] = Globals
! use
R —— bbb b =
1
" T
S Rdfid| |1 |
|
! -
| import

B3 stringanalysis v

1 1 1
H ConceptText «Interface» «Interface»
& ConceptDetector i ConceptCreator

91

B. Class Diagrams Georg Prohaka (0325904)

£ babelnet
=l «Enum erations H ConceptFeatures E Configuration
= BabelDom ain use 1
qE [y SR —
1
1 A fi\
; | use
. use |
I I
1 * I L
i B storage
O Dataset use = Categorizer
e e 1

1 E Database

» = DatasetManager
1 T T 1

1 . 1 i

! * | i

| I

| |

| I

i i use H categorizerSettings
B3 stringanalysis LTI —

|
1 1 i
«Enumerations S Concept |
use
= | anguage [PR

B B stringanalysis
babelnet H DatasetSearchMask
«Enum eration» «Enum eration»
BabelDomain = Language
/7\ use
I
/}\ | use
| !
I
— | H Database 1 «Interface» = conceptid
B javaxjson Lo wse]] ConceptCreator
1
——————————— =
T .
import
i B "
import !
| import P | X tse
I I
. | !
H JsonlLdFile B3 dataset \1‘/ !
H CategorizerSettings
"""" = H Configuration 1
import
1
1| = Conceptid

H Conceptfeatures

92

B. Class Diagrams

Georg Prohaka (0325904)

=] LanguageDetector
=] ConceptText
T
1
use
v o
«Enum erations
= | anguage \
oy
1 «Interface»
Concept

=] Conceptid RN

1

1 /:\ !

1 | :

| create !

I [l

1 :
«Interface=»
E ConceptScores| ConceptCreator

<Interface» g
Babelfyer
use = Cone eptDetector bl
. import
<l----4 F---na
|
=777 I
1 1
T | T |
create i ! 1 !
I
! ! | import !
[ttt create ! I
1
: : '
1 1
| ! |
I i Elbabelfy |
H BabelConcept <= - - - - - |
|
--------- oo
import i i
I
A 1 ;
|
create £ babelnet
use |
""““““'i """"""" | «Enumeration»
. BabelDom ain
=] BabelConceptCreator

93

