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Abstract

Since its inception, Wikidata has grown into a vast Knowledge

Graph, housing extensive information across diverse topics. The Wiki-

media Foundation, as the driving force behind Wikidata, aims at

providing knowledge in a collaborative, community-driven manner,

specifically through Wikidata as a central place for structured, eas-

ily attainable and semantically re-usable information. In this thesis,

we analyse Wikidata specifically in terms of its community aspect,

with respect to vocabularies used by di↵erent communities on dif-

ferent domains. We describe the datasets extracted for this purpose

and provide re-usable scripts with adaptable parameters to (re-)create

them. Our approach should enable researchers to carry out detailed

analyses of Wikidata’s communities and possibly their evolution over

time, surpassing the capabilities of currently existing solutions. The

primary outcome of our study comprises a preliminary analysis of two

critical networks for community analysis, one focusing on the domains

of entities user communities are contributing to, and the other focus-

ing on vocabulary similarities. In summary, our preliminary analysis

paints a picture of several highly distinct communities editing on spe-

cial domains, therefore being almost exclusively responsible for its

contents. The vocabulary similarities still require some work. To this

point in time, the results are inconclusive. Looking ahead, we suggest

enhancing the two networks with advanced filtering- and weighting al-

gorithms. Additionally, we see immense value in further developing a

“pipeline-approach”, allowing easy parameter adaptations to identify

optimal combinations of parameters, filters, and weighting algorithms.

By exploring the intricacies of Wikidata’s community dynamics and

vocabulary utilization, this thesis contributes to a deeper understand-

ing of collaborative knowledge creation. . .

7



1 Introduction

Wikidata has spiked in accumulative knowledge stored in the past years. It is
now the most comprehensive community-driven aggregation of semantically
stored information, holding data on more than 100 million concepts indi-
vidually featuring the edits of over 560.000 editors [Vrandečić et al., 2023].
Wikidata is the collaborative Knowledge Graph (KG) brought to life by the
Wikimedia Foundation in 2012. The Wikimedia Foundation is also the cre-
ator of the online collaborative encyclopedia Wikipedia. The main distinction
of Wikipedia to Wikidata is that it stores semantic information, rather than
just information.

Knowledge Graphs are in general a technology that is used to add context
to data, originally developed by Google. They are mostly used to describe
real-world entities using attributes and relationships [Cimiano and Paulheim,
2017]. Figure 1 illustrates a basic example of a Knowledge Graph focusing
on the earth and the moon.

Figure 1: Basic Knowledge Graph example
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The entities are the big circles describing real-world entities and the ar-
rows illustrate the relationships, further referenced as properties. Note that
the arrows are directed, always having a clear starting entity, the subject,
and an ending point, the object.

To illustrate these terms further in a Wikidata example, Figure 2 shows
the Wikidata page of one of the first real-world entities added to Wikidata,
the planet we all live on1.

Figure 2: Wikidata Page for entity Earth (Retrieved on 3rd July 2023 from
https://www.wikidata.org/wiki/Q2)

Augmented in the picture is the page title “Earth” with a “(Q2)” behind
it. Q2 would be the identifier for the entity earth. Below that there are the
statements, which add information and relation. The first statement shown
can be translated to the sentence “Earth is an instance of terrestrial planet”,
where the sentence follows the order: subject, property, and object. The
properties are used to provide context and relation to the object, whereas
the object might again be an entity or just a value (e.g. simple text). Every
entity has a unique identifier starting with a Q, and every property has a
unique identifier starting with a P. The highlighted “instance of” property
has the identifier P31 for example.

1https://www.wikidata.org/wiki/Q2
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The base idea of Wikidata is that users can contribute entities and then
use properties to relate information or other items to them.

Without going into more detail on how Wikidata works or how the knowl-
edge is structured, we will first quickly point out two points concerning Wiki-
data that are important to understand the goals of the thesis:

Wikidata has no fixed ontology. This might be explained more simply
as: there is no fixed structure. It relies completely on its users’ contributions
to ensure some level of structure and completeness. Every piece of knowledge
might be structured in completely di↵erent ways, even though expressing
the same thing [Farda-Sarbas and Müller-Birn, 2019]. However, community
guidelines and community projects try to establish consensus on how to do
certain things (and how not to).

Everybody can edit (almost) everything in Wikidata. Wikidata al-
lows anonymous edits, as well as bot edits, and seldomly restricts edits.
Again, a wrongful/harmful contribution or a contribution in violation of
community guidelines might still be performed. To change/delete that, other
users have to fix it.

Summed up, both points illustrate that Wikidata is really fully community-
driven, with all the pros and cons that arise with this decision. It is reliant
on the continuous improvement of its contents, which on a time scale, can
be called “evolution”.

The (sub-)schema mentioned in the title of the thesis relates to a concept
incepted by [Baroncini et al., 2022] derived from [Piscopo and Simperl, 2018].
It can be defined as “the set of properties and the set of items that are used as
classes, i.e. those that are the object of instance of (P31), or subject/object of
subclass of (P279)” [Baroncini et al., 2022]. Leaving out the edge cases where
items (= entities) are used as classes, the schema can be naively defined as
the set of properties used. The schema is therefore very important as it can
be used to identify which information is stored and which relations are used.
We coined another term - vocabulary, whereas the set of all vocabularies
used is the schema. The di↵erence between property and vocabulary is that
it may include additional information on the set of entities that are used as
classes, e.g. the vocabulary for property P50 might just be defined as P50,
but for P31 it includes also the object e.g. Q500. This gives us the freedom to
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define our own vocabulary definition and avoids misunderstandings. Figure 3
illustrates this.

Figure 3: Schema and Vocabulary definition

1.1 Research Questions and Motivation

Moving on from the introduction, we know that Wikidata’s entities and
properties are the core information structure (excluding values or other data
types). The schema can then be characterized as the set of relations used to
model some information, whereas a single element of the schema is called vo-
cabulary. The users are not technically prohibited from using any vocabulary
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other than by some community guidelines; everybody can edit everything.
This leads to the fact that Wikidata relies on users enforcing its guidelines
to get to a useful ontology.

[Baroncini et al., 2022] proposed an approach to analyse the evolution
of community-driven (sub-)schemas within Wikidata, focusing on one of the
more interesting and yet mostly (to the best of our knowledge) untouched
questions: “How did Wikidatas (sub-)schema emerge and who is responsible
for it?”. It outlines a conceptional approach to do exactly that, by proposing
a structured approach with the key steps proposed being:

1. Identify the domain

2. Identify the community

3. Identify the community-driven (sub-)schema

4. Analysing the schema and the community (additionally over time) and
then comparing the schemas among communities

The domain can be described as a topic, for example, Computer Science
or Physics. In the paper, the domain definition is proposed to be executed
manually by experts.

This direction of research tackles many dimensions of Wikidata’s evo-
lution, the community aspect as well as the ontology/schema/vocabulary
aspect, even when skipping the evolution aspect. It could lead to resourceful
insights into Wikidata and its evolution, possibly uncovering cues to make
Wikidata even better. It could also uncover implicit di↵erences in the way
people contribute to Wikidata, specifically in the region’s domain and usage
of vocabulary.

Contributing to the way along the use case, this thesis answers the over-
arching research question: “Can we show a topicwise modularisation of Wiki-
data by clustering users by their used vocabulary?”. The question also holds
an implicit hypothesis, namely that there should be topicwise modularisa-
tion, mainly because di↵erent topics/domains describe di↵erent entities and
relations. For example, there would be no value in using a property “date
of birth” for buildings. However, comparable domains like for example Ital-
ian museums and Greek museums should, in theory, almost use the same
vocabularies and not have significant di↵erences. Di↵erences in comparable
domains would lead to a reduced value of the information stored, as it would

12



reduce the expressiveness and comparability.

A more thorough example is: two users might use di↵erent properties to
describe the cost or price of an object. Wikidata features two properties:

• cost (P2130)

• price (P2284)

Both could potentially be used as synonyms2. A person wanting to com-
pare prices for public buildings in Tokyo versus New York might just query
for one of the two properties and therefore only get results for one of the two
properties. This is per se no problem, but if the experts on buildings in Tokio
use a di↵erent property/vocabulary for the information than the experts on
buildings in New York, the retrieved information might be not as valuable
as it could be. In a research example, this might be no problem, since the
researcher will probably react to this quickly if it happens at a large scale
(if he notices it). However, in a (semi-)automated setting where Wikidata is
used as a data source for e.g. an unsupervised AI like ChatGPT, this leads
to problems, as the relation used is not the same. Therefore, the similarity
of vocabulary is an important measure, especially within certain compara-
ble domains. Additionally, the focus on the users in terms of a community
structure might bring additional results, since di↵erent people might use dif-
ferent terms to express the same thing. And this might uncover possible
community-wise modulation.

A quite similar phenomenon was studied by [Krabina and Polleres, 2021].
They focused on certain financial properties within Wikidata and found that
“Many items exist, some with very ambiguous or unclear meaning.”. Their
work demonstrated a lack of uniformity and ongoing discussions about how
to represent certain aspects in Wikidata.

To sum up, two quite separate streams are examined, illustrated by two
maybe less formal research directions:

1. domain similarity of users

2. vocabulary/schema similarity of users

2
Search result on properties for “cost”: https://www.wikidata.org/w/index.php?

search=cost&title=Special:Search&profile=advanced&fulltext=1&ns120=1
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Direction 1 holds enormous value for the use case described by [Baroncini
et al., 2022], since they rely on manual expert definitions of the domain. The
proposed clustering might eliminate this need and might enable research to
use the unsupervised clustering for various applications. It also uncovers
whether users really have some particular focus on some domains, which
might also be seen as a starting hypothesis.

Direction 2 is then more focused on the use case of looking into the
schemas and comparing them, on a per-user basis. The results might uncover
vast di↵erences in the vocabulary used by di↵erent communities, which could
possibly be a bad thing for Wikidata as a whole. It can lead to cues whether
vocabulary is somewhat standardized among users as well.

The specifics regarding the similarity aspect and measure are introduced
in section 5, after getting to know more about the data we are looking at and
the network analysis approach. However, the similarity measure might just
be simply viewed as the weight of users A and Bs jointly used vocabulary
or entity, where the weight is high if they use the same vocabulary/entity a
lot. The entity here can be viewed as part of a certain domain. In general,
this approach of omitting massive amounts of data and looking at the whole
edit history, focusing on the simplified results, is novel (to the best of our
knowledge). This has multiple reasons, one is the fact that general knowl-
edge graph-focused research does not like omitting data in the way Network
Science usually does. However, sometimes we need to just simplify data to
be able to look into complex systems like editor communities.

Overall, both directions could then be combined in order to answer the
overarching question: “Can we show a topicwise modularisation of Wikidata
by clustering users by their used vocabulary?”, adding valuable information
to the current Wikidata-focused research. Summed up, the research model
might be formulated as follows:

• Overarching Research Question: “Can we show a topicwise modulari-
sation of Wikidata by clustering users by their used vocabulary?”

– Direction 1 - domain similarity of users

∗ RQ: Can we find a community-clustered structure that maps
users to domains?

14



∗ Hypothesis: Users have a very distinct focus on one or several
domains

– Direction 2 - vocabulary/schema similarity of users

∗ RQ: Can we find a community-clustered structure that maps
users according to vocabulary similarity?

∗ Hypothesis: Users have a very distinct vocabulary, but it can
be put into a community structure

1.2 Approach

For tackling the proposed research question, there is an inherent need for data
on what each of the users contributed to Wikidata. In the web application,
each user can look at the revision history, which is quite synonymous to edit
history. Figure 4 shows the revision history of entity earth. In each revision,
a user might add/change/delete multiple statements and other data.

Figure 4: Wikidata Revision History for entity Earth (Retrieved on 16th June
2023 from https://www.wikidata.org/w/index.php?title=Q2&action=
history)

For the research question, we essentially need information on the user and
the statements that he/she added, along with a potentially useful timestamp
of the edits. This data can altogether be found in the shown revision history.

In general, Wikidata o↵ers a lot of APIs and ways to query Wikidata.
For full images, the so-called dumps3 are the most preferred choice, as they
contain all the data currently stored in Wikidata. There are multiple dump
formats specifically designed for di↵erent use cases, each being created and
uploaded periodically. For our use case, the “pages-meta-history” branch of

3https://dumps.wikimedia.org/
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the dumps is most interesting, as it contains the full revision history in JSON
BLOB format. With this, we are able to calculate the added/changed/deleted
statements. The dump in use contains all the revisions up until the First of
January 2023.

Moreover, a general analysis of the gathered and transformed data is in
order, also adding potentially interesting statistics to the ecosystem, before
moving on to the main analysis.

For the main analysis, network analysis techniques in combination with
community detection techniques are used in order to get to two networks.
Specifically, one network maps the domain similarity of users, and one maps
the vocabulary similarity of users. Note that each of the networks is operated
in a “community-first” way, where domain similarity and vocabulary simi-
larity are heuristically defined by comparing the users’ contributions and the
then applied community detection algorithm clusters the communities, also
using the defined similarity measure.

Other ways to do this like classifying the domains first and then applying
a community detection algorithm would also be a viable option. However,
developing such a way to classify them in a “community-last” manner would
be much harder to do and the “community first” approach o↵ers potential
additional interesting (sub-)domains that could emerge. These then poten-
tially give clues to further points of analysis on user behaviour in Wikidata.
Specifically, looking at the emerging clusters from a logical reasoning stand-
point might uncover additional measurements to include for the similarity
measure definition (e.g. add additional information to some vocabulary like
the mentioned object in the case of P31 property, see Figure 3).

1.3 Structure of the Thesis and Contributions

In chapter 2, we describe the preliminaries on Wikidata and the current re-
search on Wikidata in multiple directions with a focus on the use case.

In chapter 3, we describe the steps taken in order to get to the data
needed for the analysis:

1. Eliciting which data we need

2. Parsing of the Wikidata dump

3. Creating the framework

16



The corresponding data processing framework and the data it creates are
among the main contributions of this thesis, as both may be used for other
use cases or more thorough analyses of the same use case.

In chapter 4, we analyse said dataset from various angles in order to get
some additional interesting information, which adds to the big picture.

In chapter 5, we conduct the network analysis and explain the used
methods including background-knowledge to add information regarding the
choices we took and conclude the analysis.

2 Preliminaries

2.1 Wikidata

This chapter provides additional information on Wikidata even exceeding the
base definitions in the Introduction, in order to clearly define them.

Since its creation around 7 years ago, Wikidata has grown in importance
to many applications in many fields. Being a community-driven project to
put data in a resourceful web interface, we expect many more applications
to emerge as time progresses. The recent spike of Artificial Intelligence (AI)
projects, now enabling also non-expert users to use them, also gives new
light on the e↵orts taken at Wikidata. Specifically, the data and information
stored in Wikidata might be used to automatically fact-check the outputs of
Large Language Models like ChatGPT, leading to a generally more fact-based
output. An early example of this would be [Mountantonakis and Tzitzikas,
2023], showing a way of fact-checking ChatGPTs answers in an automated
setting.

In general, Wikidata can provide huge amounts of data and knowledge,
being verified and up-to-date by community experts watching over the pub-
lished information. Wikidata itself states on the 11th of May 2023, 1.893.680.660
edits have been made and that there are currently 24.253 active users4.

One particular reason for the usefulness of Wikidata is that it is pos-
sible to extract huge amounts of data in a semantic way, by querying the
underlying knowledge graph. This is also the main distinction compared to
Wikipedia, namely that the knowledge is stored semantically. Since many

4
https://www.wikidata.org/wiki/Wikidata:Statistics retrieved on the 11

th
of May 2023
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KGs are focusing on di↵erent types of information or di↵erent types of contri-
butions to the KG, the semantic web community defined multiple standards.
These were set in order to e.g. ensure interoperability and drive forward to
the overall goal of a semantic web. The main standards contributing to this
direction are:

• RDF - the Resource Description Framework

• SPARQL - SPARQL Protocol And RDF Query Language (SPARQL)

• RDFS - RDF Schema and the corresponding Web Ontology Language
(OWL)

Each of the following paragraphs will quickly sum up the main points of
each of these standards and the implications for Wikidata.

RDF - the Resource Description Framework
The RDF standard has been published in 2014 by a working group of the
W3C. At its base, it is a framework for expressing information about re-
sources, whereas resources can be anything from people to abstract concepts
and physical objects. The framework’s main goal is to ensure interoperability
of resources between di↵erent sources, such as knowledge graphs like Wiki-
data, DBPedia, or YAGO. Wikidata implements the RDF standard using
di↵erent so-called RDF namespaces, in order to represent di↵erent aspects
of the same property. In Figure 5, you can see the basic way Wikidata incor-
porated the RDF namespaces in the concrete example of a statement. The
prefix wd is used to identify Wikidata concepts and the prefix wdt is used
to directly relate properties to relationships. The illustration is incomplete
from an RDF standpoint but includes everything needed for the use case.

Again, the so-called triple-structure is very visible, meaning that a state-
ment and therefore relation between entities is established by using three
parts - subject, property, and object. This semantic triple, or also synony-
mous RDF-triple, lies at the heart of the RDF data model. The namespaces
are then on the one hand used as a resource identifier as well as to give addi-
tional information to the resources. However, for the use case of the thesis,
it is only necessary to understand the basic concept of the triples, as we will
only focus on the basic statement/triple edits.

SPARQL - SPARQL Protocol And RDF Query Language (SPARQL)
Even though KGs in general can be considered No-SQL databases, practical

18



Figure 5: The Wikidata meta-model regarding statements in the RDF con-
text

languages like SPARQL provide a way to query them [Hogan et al., 2021].
Wikidata also provides an API for queries using SPARQL5. SPARQL queries
run on Wikidata also include the aforementioned RDF namespaces. Moving
on with the running example on prices/cost from the introduction, Figure 6
shows the two queries and highlights the problem even more.

5
e.g. via Web-API: https://query.wikidata.org/
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On the top of Figure 6, you can see the results for property cost (P2130)
and on the bottom for price (P2284). The query is designed for buildings
in Austria (Q40) exclusively, to make the queried amount of data smaller
and to illustrate this more easily. The results di↵er, whereas the “correct”
vocabulary to use would be the cost (P2130), which returns the “Wiener
Börse”, meaning the Vienna Stock Exchange. The cost listed there is historic
in a not Wikidata-recommended value structure (at the point in time of
querying, the 21st of June 2023.). The second property price (P2284) returns
only one building, to be exact, a museum in Austria. The price is listed as
1.5. This refers to the entry-ticket price of the museum. One might think
about if this can be considered “correct” usage, however, at the time of
writing there is no quick way to determine whether this is considered correct
by community guidelines and accepted into practice. Because of this, it is
arguably a very good example of the problem.

When switching the country Austria (Q40) to the United States of Amer-
ica (Q30), the results get a bit longer than just one building. For example, at
the time of querying, the Manhattan Center6 lists a price property (P2284)
of 3 million USD. This may or may not be considered “wrong”. The Grand
Palace Hotel then lists a cost property (P2130) of 10 million dollars. Note
that all prices listed have an additional annotation of a point in time in order
to annotate this additional important information. There is also one partic-
ularly interesting case in the results, the Hotel Manger, which is labeled as a
former Hotel in Boston7. The same hotel has both of the named properties,
each stating di↵erent amounts of USD. This may or may not have a reason,
but it illustrates the problem very well.

Now knowing more about the problem of diverse properties in use to de-
scribe the same things, we will quickly go into RDFS and OWL, which are
essentially trying to standardize this problem.

RDFS and OWL
RDFS and OWL are both data modeling languages for describing RDF
data. In exact terms, OWL builds on RDFS and provides more expressivity.
Both are ontology languages building up on RDF, being used to model and
standardize the RDF structures. The W3C characterizes the RDF Schema
(RDFS) as: “RDFS is a vocabulary, in RDF, that explains how nodes of

6
Retrieved on the 21

st
of June 2023 from https://www.wikidata.org/wiki/Q3844593

7
Retrieved on the 21

st
of June 2023 from https://www.wikidata.org/wiki/

Q30644484

21

https://www.wikidata.org/wiki/Q3844593
https://www.wikidata.org/wiki/Q30644484
https://www.wikidata.org/wiki/Q30644484


a graph relate”8. This relates to the content provided in section 1, as we
defined the terms schema and vocabulary ourselves, meaning Wikidata does
not use a standardized schema like RDFS or OWL. However, it is important
to note, that there are already defined standards, but Wikidata does not use
them.

2.1.1 Wikidata Data Model

In order to be able to understand the contents of Wikidata and its data
model, the help page https://www.wikidata.org/wiki/Help:Wikidata_
datamodel o↵ers information on the exact data Wikidata stores and how
it relates. In Figure 7, the main data model image as of the 3rd of July is
displayed.

The red marks relate to the focus of the thesis, as the claims (also called:
statements) are the part of Wikidata we look at. The model begins with an
entity, pictured in the left top corner, which then has labels, aliases, descrip-
tions, claims, and sitelinks. The only relevant part here is the claims, one
of which can have an id, rank, type, a mainsnak, qualifiers-order, qualifiers,
and references. We here again only focus on the mainsnak, which contains
the snak and therefore the data that forms the triple statement. Note that
there are some edge cases we will explain, i.e. explain what we decided to do
with them in the course of the analysis and preprocessing.

As said, the snak is the most interesting part, because it stores the prop-
erty and the object (or value). In the picture, the snaktype is illustrated to
either be a value / somevalue or novalue type. However, the data is depicted
by the datavalue, which is illustrated in Figure 8, just as another part of the
above image.

In this image, it is depicted, that only one of the possible datavalue
types is a Wikidata entity. The rest relates to other values, like for example
coordinates. The important part here is to notice that even though the rest
has di↵erent types, we can view the available datatypes as Wikidata entity
reference or just basically text-values, as a coordinate, or also just images can
be viewed and di↵erentiated as simple text. This is a simplification of great
potential influence on Data Processing because handling all the datatypes
would take time and resources.

Summed up, the interesting parts to take away from this are: there are
claims that always have a property and the object may have di↵erent values
or may reference to another Wikidata entity. This is the basic information
that one needs in order to understand the use case and the steps taken to

8
Found here in the W3C wiki: https://www.w3.org/wiki/RDFS
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Figure 7: Wikidata Datamodel (Retrieved on 3rd July 2023 from https:
//www.wikidata.org/wiki/Help:Wikidata_datamodel)

gather the data. In the next section, further relevant information on edge
cases is depicted.

2.1.2 Relevant Further Information

Concluding the relevant information on Wikidata for the use case, two edge
cases are still untouched, which need to be defined beforehand. The claims
from Figure 7 list a rank, which in full is called a statement rank. Every
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Figure 8: Wikidata Datavalue (Retrieved on 3rd July 2023 from https:
//www.wikidata.org/wiki/Help:Wikidata_datamodel)

statement has a rank and this is explained in the following paragraph. More-
over, not every entity might be able to be edited directly, which refers to
another problem of duplicate entities, which Wikidata solved through Redi-
rect Items. Redirect Items and their implications are explained in the second
paragraph below.

Statement Ranks Wikidata features 3 statement ranks in general. nor-
mal statements are exactly that, normal statements. All statements can be
voted by any user, in order to a) identify the most actual and correct state-
ment in case of dispute in a crowd-driven manner and b) in order to deprecate
old statements that are no longer true, but not lose the information in com-
parison to a mere deletion of the statement. Users therefore decide, whether
they think a statement is “good” or “bad” in the sense that it is truthful
and useful or not, and leave a vote. Wikidata then determines if the votes
make the statement a preferred statement (a lot of upvotes), or a deprecated
statement (a lot of downvotes).

Figure 9 shows the three di↵erent types of statement ranks in the user
interface of Wikidata, where the first statement is a preferred statement, the
second one is a normal statement and the third one is a deprecated statement.
Note that each property may hold multiple statements, regardless of the type.
More on this can be found on the help-page of Wikidata concerning Ranking9.
In addition, to show the meaning of this a little bit more concretely, Figure 10
shows an example of such statement ranks in action.

9https://www.wikidata.org/wiki/Help:Ranking retrieved on the 15
th

of May, 2023
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Figure 9: Wikidata Statement Ranks (Retrieved on 18th July 2023 from
https://www.wikidata.org/wiki/Help:Ranking)

Figure 10: Wikidata net worth statements Donald Trump (Retrieved on 3rd

July 2023 from https://www.wikidata.org/wiki/Q22686)

The picture shows the Wikidata entity page of Donald Trump, the for-
mer president of the United States of America. His net worth has been an
example of great public dispute, with lots of information going around and
high public interest (for example, see https://www.nytimes.com/2022/08/
02/nyregion/trump-letitia-james-deposition-lawsuit.html). As the
picture shows, there are 3 statements, one being a preferred statement and
two being normal statements. The most recent information is marked as a
preferred statement, which makes sense since this is probably what is most
important. The other two are past values from given references. Hypotheti-
cally, if one of the net worths would have been corrected by whatever publicly
available source, one of the normal statements could also be turned into a
deprecated statement, as there is newer information and the old statement be-
comes incorrect, although being thought of as correct for a long time. This
gives Wikidata and its contributors the opportunity, to still depict what hap-
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pened in reality. Note that a net worth without source or any justification
would not be seen as a deprecated statement, but should just be deleted in
general, as it has no real value or basis of expected truth.

Anticipating the upcoming Data Processing framework explanation and the
following decision on how to handle the statement ranks:
The statement ranks hold value of their own, and the XML dumps as well
contain this information. However, it is an edge case, and the processing
can take care of this in multiple ways. We decided to count deprecated state-
ments as deletions, therefore not really valuable for the use case. Normal
statements and preferred statements on the other hand are seen as the same,
as the fact that the statement is preferred does not add much value to the
analysis. However, since every statement is added as a normal statement at
the time of creation, the statement rank is neglectable. The only implication
is that a statement turning to a deprecated statement is viewed as a deletion
(which we do not look at in the analysis).

Redirect Items Redirect items handle a main problem of such large-scale
knowledge graphs: Duplicates. If we detect that two or more entities describe
the same real-world subject, this is problematic from various angles. In order
to solve the duplicate issue, keeping all the information that we have on it
is the first key. This can be achieved by merging the duplicate items into
one. But another problem is that there is a need to decide on one entity that
stays and there is a need to handle the statements that now reference to a
possibly deleted entity.

Wikidata’s solution for this is to make one of the entities that are merged
a Redirect Item, which merely redirects to the correct item. This ensures
that identifiers are stable and otherwise broken references stay intact. More
information on this can be found on the Wikidata help page concerning
Redirect Items10. When a user visits a Redirect Item, it is just directly
relayed to the now merged item, the same happens with SPARQL queries
accessing Redirect Items.

Take for example the two items Q18511155 and Q9404406 from the cur-
rent Wikidata Redirects Help page11. Both refer to a category “1911 in
Morocco”, so they can be considered direct duplicates. As indicated by the
identifiers, they probably were created at very di↵erent points in time. Both

10https://www.wikidata.org/wiki/Help:Redirects retrieved on the 15
th

of May,

2023
11https://www.wikidata.org/wiki/Help:Redirects
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Figure 11: Redirect Item “1911 in Morocco” (Retrieved on 3rd July 2023
from https://www.wikidata.org/wiki/Q18511155

entities probably had multiple other links to other entities. Instead of taking
the contents of one entity and deleting the other one, Wikidata merges the
items’ contents and makes one item a “Redirect Item”, which then is only
used as a pointer to the “real” item. You can see that an item is a redirect
item as highlighted in the following screenshot in Figure 11.

To again put it in concrete terms, a user visiting the redirect item Q18511155
through URL https://www.wikidata.org/wiki/Q18511155 gets redirected
to the page with URL https://www.wikidata.org/wiki/Q9404406. A user
visiting the URL for the non-redirect-item Q9404406 would not see that
Q18511155 is a redirect item to this entity, but will see the contents that
were merged to the item at the time.

In our use case, redirect items are not really focus of the work, but they
are an edge case. Redirect items are present in the XML dumps, and are
indicated. User “Laddo” merged the two mentioned items on November 11th

in 2014. So we have a file on the merged item containing its individual
contributions until 2014 and a file on the merge target item, where on the
same date user “Laddo” added the now merged information.

Anticipating the upcoming Data Processing framework explanation and
the following decision on how to handle the redirect items:
It would be an option to handle redirect items directly, however, this raises
a lot of questions. Therefore, we decided to cut redirect items out of the
analysis process. In the way that the dumps are structured, this means that
the information that is merged from one item to another is lost/ignored.
Entity Q9404406 does not appear to have the information that was merged
from the redirect item.

It is also worth mentioning that the entity in the picture is not a classic
entity describing a real-world entity, but a Category. This has no real e↵ect
on the use case, as it can be logically identified as an abstract entity in the
sense that it still has vocabulary and schema relating it to other entities.

27

https://www.wikidata.org/wiki/Q18511155
https://www.wikidata.org/wiki/Q18511155
https://www.wikidata.org/wiki/Q9404406


2.2 Relevant Work

Before going into the main sections of determining what is needed in terms of
data and what analysis components we designed, giving a little introduction
to the previous research done in more relevant directions is in order. Note
that section 9 in the end then summarizes some of the other maybe less
focused literature.

Data Processing

As already mentioned, one key aspect of the paper is the creation and pub-
lication of the tools to create edit history data in a more general setting,
and the data we created for our use case. Therefore, we looked at literature
describing such frameworks or solutions.

Pellissier Tanon et al. worked on a more sophisticated solution to handle
the data. They developed a SPARQL Endpoint and leveraged the “pages-
meta-history” dump file to a) provide a way to query Wikidata’s di↵erent
revisions and b) query the edit history [Pellissier Tanon and Suchanek, 2019].
The previously publicly available SPARQL endpoint including GUI has been
down for a while, still being down at the time of writing. The lead author
did not respond to an ask for updates via e-mail. (And e↵orts taken in order
to host such an endpoint proved rather unsuccessful)

Schmelzeisen et al. published a paper at the ISWC conference outlining
“Wikidated 1.0” - “a dataset of Wikidata’s full revision history, which en-
codes changes between Wikidata revisions as sets of deletions and additions
of RDF triples” [Schmelzeisen et al., 2021]. They also argue that this is
the (at the time in 2021) first published large dataset of an evolving knowl-
edge graph, which is argued to be a recently very popular research subject
in the Semantic Web research space. Besides providing limited statistics,
they also published their work in a GitHub repository, mentioning that it is
open source and working, however, the GitHub repository shows no signs of
this as it is labeled “currently refactoring” and there are no recent changes.
Also, we were unable to find the created datasets. Therefore, we argue that
the e↵orts taken are well worth the time of examination, but not worthwhile
to proceed in this direction. The lead author is also non-responsive via e-mail.

Under the title “Representing Evolving Knowledge Graphs through In-
cremental Embeddings”, a Master Thesis by Lafraie dealt with a completely
di↵erent topic but developed a script that extracts edit triples from the Wiki-
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data pages-meta-history dumps [Lafraie, 2020]. While not extracting all the
information that we needed for our use case, the general approach and code
structure were quite appealing. We have been inspired by this work for
drafting the early components of the “./preprocessor” folder of our GitHub
repository. This is to date the only resource that influenced the engineering
work directly.

Analyses

Sarasua et al. looked at a similar dataset as we do, specifically going into
quantitative analysis mainly focused on comparing editing behavior over time
[Sarasua et al., 2019]. They look at the volume of edits, the lifespan of edi-
tors, at trends in editing behavior and moved on to predicting both of those
variables. They conclude with other interesting findings, focusing on a Wiki-
data dump that covers 4 years of edits (end-date 01.07.2016). In light of (to
the best of our knowledge) no more recent studies like this at the time, it
might also be interesting to give an update to the descriptive statistics in
there.

Piscopo et al. pursued multiple streams of research in Wikidatas con-
tents, one of them being “What Makes a Good Collaborative Knowledge
Graph: Group Composition and Quality in Wikidata” [Piscopo et al., 2017].
They looked at a sample of 5.000 Wikidata Items, going into quality, e↵ects
of tenure, and interest diversity, focusing partly on human users. They con-
cluded that “the interaction between human and algorithmic users is neces-
sary to create high quality items” and that “Contributions from anonymous
users are instead detrimental for quality”. Additionally, they found that
tenure and interest diversity have a positive correlation with quality. A good
mix of people from di↵erent backgrounds and experience in Wikidata-edits
is found to be likely beneficial. In comparison, our approach focuses on using
a near full-size sample.

Note that both Analysis Papers here have been used to detail and craft
the approach in [Baroncini et al., 2022], which again is the main resource of
inspiration for the use case presented.

2.3 Summary

In light of the complex details of the technologies, this chapter tries to re-
capture the most important and streamlined things necessary to understand
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the further elaborations.
Wikidata is a Knowledge Graph (KG), containing vast information on

di↵erent things, illustrated by using so-called claims or statements. Each
statement uses a property to reference either a value or an entity again.
The triples or also RDF-triples are the core of the Resource Description
Framework (RDF), which mainly fixes the Syntax of data interchange in
order to standardize. SPARQL is a query language designed to query knw in
RDF-structure. Wikidata has no fixed ontology, and is not applying ontology
schemas like RDFS or OWL. The two presented edge cases statement ranks
and redirect items add additional detail to the way the data is stored and
there is a need to handle these directly from a data perspective when trying
to analyse the statements. Previous Data Processing or Data Gathering
research focused on obtaining the Wikidata edit history was found to be
unfit for the use case, however, [Lafraie, 2020] and the according GitHub
repository12 was used as an inspiration for the early stages of parsing the
data.

The next section will go into detail on the Data Processing steps taken
and will also focus on explaining the requirements of data for the use case.

3 Data Processing

3.1 Requirements

Referencing subsection 1.1 Research Questions and Motivation, there is an
inherent need for data. In exact terms, data that lists the edits that users
have performed. This section will list the requirements that have been put up
in order to get to the framework along two central questions: “Who should be
included?” in terms of which users and “What should be included?” in terms
of which edits are interesting. These two questions are very important for the
analysis since we want to look at users that contribute from the mentioned
perspective. Therefore, it is essential to know what and who is included, and
vice-versa.

Who should be included?
The question on who should be included is a fairly undefined question. It re-
lates to the fact, that almost anyone can contribute to Wikidata, in general,
called users. Users can come in four flavours: registered (human) users, reg-
istered (bot) users, anonymous (human) users, and anonymous (bot) users.

12
Found here: https://github.com/rlafraie/WikidataEvolve
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It is important to mention, that bots in general, meaning programs auto-
matically contributing to Wikidata, play a huge role in the way Wikidata
is built. According to [Steiner, 2014], 88% of all edits they looked at stem
from “robotic users” or bots. There are many use cases in which bots are ac-
tively contributing valuable information to Wikidata or maintaining existing
information. Especially in the areas where one wants to import data from
external sources, or one wants to enforce certain community guidelines, bots
are a valuable part of the Wikidata economy.

Reflecting on the use case, it is relatively easy to rule out anonymous edits
as a whole, because there is no way to identify the human or bot behind it
and therefore it cannot add to the bigger picture.

For the registered bots, however, it is not that easy. They add valuable in-
formation to Wikidata or might enforce certain rules, possibly also switching
“wrongful” properties for “right” ones. This, however, is based on prede-
fined rules, not human behaviour. Therefore, we decided to also not look at
bots, as they might add noise and hinder us from really understanding the
human-made schema.

In order to be able to detect bot users, one can look into the Wikidata
guidelines on bots13. In theory, all bot users should be flagged as bots by
having a “bot” string in their username. However, in “Bot Detection in
Wikidata Using Behavioral and Other Informal Cues”, there is an evaluation
about whether or not all bot users comply with the Wikidata bot rules and
the accompanying registration and flagging. They found that at the time
of the study in 2018, 3% of edits not flagged as bot edits were bot-made
and therefore wrongly flagged when using an existing Wikidata account to
make the edits, and 2% of anonymous contributions were bot-made. The
accompanying published model scores well in identifying bot user edits and
could be used to find the additional percentages of wrongfully flagged bot
user edits. However, the paper also states that the possible skewing of the
following analysis should be minimal to non-existent, depending on the use
case [Hall et al., 2018]. Overall, the paper also states that current methods
for bot-detection are either getting the Wikidata-approved table of all current
and former bots actively contributing, or using the signaling phrase “bot” in
the name, which all bots should, in theory, have.

That is the theory on bot detection as of now and because of the heavy
data work involved, we decided to just go for the naive approach and identify
bots by the signaling “bot” phrase in the username (for now).

13
See: https://www.wikidata.org/wiki/Wikidata:Bots
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What should be included?
The triple statements with subject, property, and object. Additionally, all
information on the user (username) and the timestamp of the edit should
su�ce from a conceptual perspective, to be able to identify and use the
information provided. All of this data can be found in the Wikidata edit
history, as mentioned earlier.

However, there are some programmatical edge cases like the mentioned
statement ranks or redirect items. The handling of these will be detailed
when going deeper into the corresponding parts of the framework.

In general, a user can either edit, add or delete statements. Since we are
interested in the schema and an edit does in general not edit the property and
therefore the overall schema, we decided to neglect the changes. Additions
are the main part of interest since these establish a property and therefore
a vocabulary added to the schema. Deletions are important, but di�cult to
handle in terms of their meaning, as one statement might be deleted and
another one added as a substitute. Therefore, these are also not important
for the use case. In sum, the established requirements can be brought down
to the following list:

• All edits performed that added a statement (performed by a human,
registered user)

• Including information on the user, the statement added, and (for future
purposes) the timestamp

The corresponding data file minus the timestamp has been coined as
store_UVEC.csv, where UVEC stands for: User Vocabulary Entity and
Count. Vocabulary references to the definition proposed in the introduction,
where the vocabulary is aggregated by the property and potentially also the
object (see Figure 3. The entity in this case references to the subject, where
the statement was added. store_UVEC.csv is the final delivery object of the
Data Processing framework. It is then transformed into more streamlined
files for the planned analysis subtasks. section 4 analyses the proposed file
store_UVEC.csv in basic terms.

3.2 Implementation aspects and computation resources

The Wikidata Statistics page14 lists that Wikidata holds 102.886.792 items,
which have been created and updated by 1.886.991.152 edits (not mentioning

14
Checked on 02.05.2023, https://www.wikidata.org/wiki/Wikidata:Statistics
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whether this is triple-related or general edit session related). The sheer vol-
ume makes Data Processing a crucial part of applied computations of scale,
leading to increased complexity. Instead of, like some research on Wikidata
does, limiting the time-frame of Wikidata to study or just drawing a random
sample, this thesis handles the full time-frame and contents because provid-
ing such elaborate datasets is crucial for future research, which might then
again limit the time-frame if needed.

In exact terms, the Wikidata dump of choice is the dump storing the in-
formation up until the 1st of January 2023. It was obtained via the Wikidata
dump page https://dumps.wikimedia.org/wikidatawiki/. The dump is
now not available anymore, but the same files are available in a more re-
cent dump. Specifically, all the files have a file name like the following:
“wikidatawiki-20230401-pages-meta-history1.xml-p1p154.bz2”. They are .bz2
compressed, which we chose instead of the standard .7z compression format,
because of better performance. The full dump has a size of approximately
1.6 terabytes and took several days to download. The storage in use is an
SSD because of better access times.

Multiple scripts were developed to handle this task, dividing one big step
into small ones to reduce complexity and ensure adaptability. The com-
putations were run on a virtual machine running a Ubuntu Server version,
featuring 48 CPU cores and 128GB of RAM, and a 3TB SSD. The main
script language used is Python, with the main handler in bash script. Using
several methods and packages in order to leverage the 48 CPUs in a multi-
processing setting was key since Python is natively developed as a single-core
script language. This leads to an additional layer of complexity regarding
RAM management and creates the threat of out-of-memory errors. We tried
to minimize this risk by naively applying batch-handling settings and writ-
ing to bu↵er files in order to free RAM in most cases. The resulting scripts
are for sure not optimal in terms of performance, resource utilization, and
compatibility with smaller machines having fewer resources. However, they
are e�ciently developed in order to create the data that is needed for this
study. For production use, refactoring the scripts and even more optimiza-
tions in order to avoid out-of-memory errors would have to be thought about.
Therefore, we released the scripts in an open-source license setting, maybe
leading to open-source-style improvements in the future. We invite everyone
to contribute or build better versions based on this. All the scripts are to be
found on Github under https://github.com/N-Krenn/WIKIEVO. The cor-
responding data files, which eliminate the need to compute, are to be found
under https://github.com/N-Krenn/WIKIEVO.
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3.3 The Framework

Before going into the details of the parsing, filtering, and structuring of the
data, the general framework is explained.

The scripts are put into three self-contained parts, namely being:

1. preprocessor

2. extractor

3. network preparation

Note that the parts require the input from the previous part in order to
work in the way that they are intended to work. The base input starting from
the top is the mentioned “pages-meta-history” dump (it does not matter if
complete or not).

The following paragraphs will go into some detail on the functions and
main deliverables each of the parts bring, without going into too much im-
plementation details.

preprocessor The preprocessor takes the dump as input and transforms
its contents into simple comma-separated-values (CSV) and stores this into
files per entity (Q-entity). In essence, it parses the XML of the dump, taking
the parts we want to see.

extractor The result of the preprocessor is pretty big and contains un-
needed information. To streamline it for the use case, the extractor accesses
the output of the preprocessor and transforms the information further, leav-
ing out parts not necessary. The result is one file store.csv, which contains
all the relevant edits row by row, again in CSV-format.

network preparation The folder network_prep contains all the files for
transforming the result of the extractor even further, mainly aggregating it
in the way that the two created networks need it. This is the most ad-hoc
part of the scripts, as the analysis is rather preliminary and there is little
sense in re-running the same thing over and over. The results are multiple
aggregated datasets, store_UVEC.csv for example, as well as the two net-
works mentioned in the introduction.
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Each of the parts reduces the size of the data significantly, all the parts
of the data are published in an online storage. The data of the in-between-
steps and the customization options of the scripts allow for the opportunity
to conduct modified use cases using our scripts.

Framework Diagram The overall framework diagram is depicted in Fig-
ure 12. The details are to this moment not fully explained but will be in the
following section. The main point here is to illustrate again, that all of the
three main components contribute to a streamlined approach to get the data
in the fit form.

3.4 Implementation details and workflow

This section is entirely focused on the details of the workflow that happens
in order to get to the datasets used for the analysis. It can be viewed as a
report of implementation. It is structured by the main compartments, also
quoting the most important code of each of the steps. The last step is then
to explain the Main Handler in the sense that one reading it is able to make
the foreseen customizations and run the scripts.

preprocessor
As mentioned, the preprocessor takes the full dump as input, which consists
of multiple .bz2 compressed XML files. In essence, this part is responsible
for parsing it and getting all the information.

The base file structure of an XML file is depicted in the code snippet
below. It focuses on the entity Q15, which is the continent of Africa. We will
not go into detail about each of the XML-tags, but the main information is
stored in the < text > tag. Especially the claims are interesting, the rest
of the needed information is contained in either the subject header (and not
the revision itself). The example shows two revisions, that could each have
totally di↵erent outcomes, depending on what the user changed.

<page>

<title>Q15</title>

<ns>0</ns>

<id>111</id>

<revision>

<id>16</id>

<timestamp>2012-10-29T17:03:21Z</timestamp>
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<contributor>

<username>Denny</username>

<id>713</id>

</contributor>

<comment>Created page with &quot;A continent&quot;</comment>

<model>wikibase-item</model>

<format>application/json</format>

<text bytes="160" xml:space="preserve"> ... TEXT OMITTED ...

claims&quot;:[] </text>

<sha1>hmfipnvrbxi8qvtd15gu35iqprqbdnb</sha1>

</revision>

<revision>

<id>20</id>

<parentid>16</parentid>

<timestamp>2012-10-29T17:10:49Z</timestamp>

<contributor>

<username>Denny</username>

<id>713</id>

</contributor>

<comment>/* wbsetlabel-set:1|de */ Afrika</comment>

<model>wikibase-item</model>

<format>application/json</format>

<text bytes="182" xml:space="preserve"> ... TEXT OMITTED ...

claims&quot;:[] </text>

<sha1>a0f3zqelhf49i98e46wgzwoine3x7jp</sha1>

</revision>

The preprocessor with its main-file preprocessor.py utilizes the cores
that were entered as a parameter to process one XML file per core. It de-
compresses it and works through the content of the XML file line by line.
The following code snippet shows how this is achieved as an example for the
timestamp and the username, which are both contained in the < revision >
tag:

elif line.startswith(" <timestamp>"):

timestamp = line[len("

<timestamp>"):-len("<\timestamp>\n")]

elif line.startswith(" <username>"):

username = line[len("

<username>"):-len(r"<\username>\n")]
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For each revision, the then collected information is transformed by helper
functions stored in revision_handling.py. The “truthy claims list” is com-
puted, which in essence is nothing else than all the claims currently made
in the revision under study. The name itself hints to the fact, that only
“truthy claims” are taken into account, not the already mentioned deprecated
statements. This is the point, where only preferred statements and normal
statements are seen as statements listed, and the deprecated statements are
seen as deleted and not valid anymore.

The two sets of truthy claims, one containing all the previous revisions
claims and then the current revisions claims are compared. This leads to
a list of insert operations (new set - old set) and a list of delete operations
(old set - new set). The beauty of this is, that changes are viewed as a dele-
tion and an insertion. If comparing the sets of claims from the previous to
the actual revision, the statement that has been changed is not there any-
more. Therefore it is viewed as a deletion. However, when comparing it the
other way around, there now is a new statement. In this way, changes are
depicted as both, a deletion and an insertion. This simplification is highly
e↵ective, since computing the changes as real changes would lead to another
comparison and more complexity of computation.

Note that somebody wanting to adapt our code might as well just take
the output of the preprocessor and then find the “changes” there, since there
should be a deletion first and then an addition of the same property with
di↵erent object values. However, this is only possible for “normal” changes,
where the object value is modified. In general, through the web interface,
users may only edit the object value or add additional information to it, but
not change the property value of some already existing statement directly as
of now. However, changes made by first deleting the statement and then
adding a new one with a di↵erent property are inherently harder to find and
classify.

The then gathered information is stored in a CSV-formatted file, where
one line represents one addition/deletion. As an example, you can see an
excerpt of the resulting file for Q9316 below. It only shows the “earliest” 10
edits.

timestamp, type (addition/deletion), subject-ID, property-ID,

object (either ID or value), username, user-ID

2013-04-01T09:24:47Z,+,9316,373,"Sikhism",BotMultichill,123349
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2013-05-16T21:05:37Z,+,9316,508,"36397",SamoaBot,116859

2013-07-01T01:44:20Z,+,9316,279,9174,Emw,5584

2013-10-05T16:34:55Z,+,9316,910,8744743,Esquilo,70719

2013-10-16T06:55:40Z,+,9316,349,"00570974",F705i,113398

2013-12-05T23:43:20Z,+,9316,646,"/m/06yyp",Legobot,18825

2014-12-06T22:54:00Z,+,9316,31,9174,Yamaha5,62081

2015-01-20T13:03:34Z,+,9316,1151,11510351,AdamBMorgan,66207

2016-01-09T07:14:13Z,+,9316,935,"Sikhism",Jeblad (bot),2155874

2016-01-10T09:23:55Z,-,9316,935,"Sikhism",KrBot,150965

Entity Q9316 is relating to “Sikhism”, a religion. The file is named
Q9316.txt and is stored in the directory named like the dump file it was
taken out of. In this step, the redirect items are computed, but have a pre-
fixed filename “redir ”. In the next step with the extractor, this prefix of the
filename is used to identify and omit the redirect items.

runtime of preprocessor The preprocessor in general is the most resource-
heavy part of the scripts we provide. In exact terms, we only let it run two
times since the computing times are well above 7 days on our machine. The
parsing scales on both, hard-drive speed and the number of CPU-cores, but
the CPU-cores are the most determining factor.

Please note that the preprocessor is in essence related to the scripts pro-
vided under15 by Rashid Lafraie. We adapted the scripts heavily to our use
case, but were inspired by the structure and some code parts.

extractor
The output of the preprocessor holds many files, stored in folders directly
related to the dump file they have been taken out of. So the extractor
screens through all of those files and again filters and transforms them into
the needed structure. This is the essential step of eliminating unneeded
data, as deletions are discarded and timestamps are also not looked at. It
does that in a similar way to the preprocessor, also utilizing multiple cores.
The resulting file is called store.csv and is just one huge file for all the edits.

The extractor features two main parameters, that one can edit:

15https://github.com/rlafraie/WikidataEvolve
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1. cut entity: To reduce the overall volume of output data and process-
ing time, the parameter cut entity allows choosing a Wikidata entity
(starting with Q). The chosen entity’s first claim creation timestamp
is the cut-o↵ timestamp. This means, that all following entities will
not be looked at, and the preceding entities’ edits will only be looked
at until the timestamp. In concrete terms: When choosing Q500 as
the cuto↵ entity, only entities Q1 to Q500’s first claim edit will be cho-
sen, whereas Q1’s edits will only be selected if they were made before
the timestamp. This gives the user the great opportunity to limit the
time-frame and first test the extractor, without having to accept huge
runtimes.

2. list of common properties: We already motivated the fact that for
some of the most used properties, it is a good idea to also include
the object in the vocabulary definition. This is because of various
reasons and adds context to the property, which otherwise might be
quite meaningless. With this parameter, we give the opportunity to
customize the selection. In the thesis example, this list only features
P31 (instance of).

After setting these two parameters, the extractor starts its operation ac-
cording to the parameters. The result of the extractor looks like the following:

index,username,userID,vocabulary,entity

0,Whym,3820,P107,8

1,Emw,5584,P279,8

2,Incola,89578,P279,8

3,BotMultichill,123349,P373,8

4,Mattflaschen,6856,P31:331769,8

5,Mattflaschen,6856,P31:9415,8

6,SamoaBot,116859,P508,8

7,Shisma,5295,P18,8

8,BotMultichill,123349,P910,8

The object and the timestamp are not in the dataset anymore. This leads to
a great reduction of data size, as store.csv now only has 23GB. This size of
data is pretty easy to handle by di↵erent means, but not necessarily trivial.
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runtime of extractor In the final example, the extractor took around 16
hours to perform its operations. This is pretty fast, especially when looking
at the runtime of the preprocessor.

network preparation
As already mentioned, the tools used to get through the analysis consist of
separated scripts, each doing some in-between operation or the final step of
constructing the network analysed. We will not go into great detail here,
as the scripts should be pretty self-explanatory and the analysis part will
explain in detail what each of the algorithms looks at.

However, we already know that store.csv needs to be transformed in dif-
ferent directions in order to look at the use case. store_UVEC.csv, which we
already mentioned, is nothing but an aggregation of store_voc.csv, again
reducing its size. The aggregation is performed by leveraging in-memory
data wrangling library pandas16 in combination with the package modin17,
which scales pandas utilities to multiple cores.

From this, aggregations for making the networks edge-lists are performed,
however, this is explained in section 5.

Main Handler
The main handler is named main.sh and is a bash script starting each of
the scripts with the correct parameters. By default, it uses the standard
parameters used to recreate this study. However, someone trying to recreate a
similar use case might want to adapt them. They are extensively explained in
the script itself under https://github.com/N-Krenn/WIKIEVO/blob/main/
main.sh.

Final Overview of the Framework Figure 12 lists all the processing
steps and additional augmentations on what is cut at which point. It also
shows the further steps for the Network Analysis, which are not explained
yet but will be explained in section 5.

16https://pandas.pydata.org/
17https://modin.readthedocs.io/en/stable/index.html
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4 Analysis of the processed dataset

As already mentioned, the dataset store_UVEC.csv consists of U - user-
name/userID, V - vocabulary, E - entity (subject), and C - count. The
originating file store.csv as the result of the extractor features 573.822.016
rows (=edits). One interesting thing to point out here is that Wikidata states
that around 1.887.755.724 edits have been made in total18. store.csv con-
tains all additions (including the “changes” where the change is counted as an
addition). Therefore, summed up in one naive statement, probably one-third
of Wikidatas edits are a) additions and b) not performed on redirect items.
Please note that we did not check this statement, it is merely an observation
- many exclusions apply.

After eliminating the bots by deleting all edits where the username fea-
tures a non-case-sensitive “bot”, there are 306.316.135 rows left.

Note that the bot removal does not remove whole user-IDs, but single ed-
its. Therefore, if a user renames himself to something containing “bot”, the
consecutively made edits with this new username will be removed, but the ed-
its before that stay.

Then, after eliminating anonymous users, 302.986.544 edits stay. After
aggregating by all characteristics and summing for the count variable, the
set has a total length of 271.486.381 rows.

So starting from the extractor result store.csv, around 300 million rows
are deleted, with the biggest portion removed being the bot edits. From
manual inspection and a few clues, there are still some wrongly flagged bots
in the dataset, but we ignore them at this point.

Table 1 provides an overview of row counts for each step, the asterisk
illustrates that also some header rows of the aggregated datasets were re-
moved in this step.

In Table 2 some basic information on the columns is displayed. Interesting
here is that there seem to be few statements that have a very high aggregation
in “count”, therefore being executed very often, possibly with multiple values
for the object.

18
Checked on 03.05.2023, https://www.wikidata.org/wiki/Wikidata:Statistics
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number of rows di↵erence
di↵erence to
store.csv in %

store.csv 573 822 016

removing bots 306 316 135 - 267 505 881 53%
removing anonymous users* 302 986 544 - 3 329 591 53%
grouping 271 486 381 - 31 500 163 47%

store_UVEC.csv 271 486 381 47%

Table 1: Overview on row counts of data processing

userID entity count username vocabulary
count 271 486 381 271 486 381 271 486 381 271 486 381 271 486 381
mean 946 925,31 43 034 233,95 1,12
std 1 307 120,59 35 970 030,99 2,22
min 1 1 1
25% 44 949 10 620 042 1
50% 160 623 33 111 439 1
75% 1 895 734 72 215 150 1
max 6 041 217 115 955 563 5 601
unique values 142 124 75 803 343 142 112 137 099

Table 2: Overview on store UVEC.csv
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user-centric evaluation
Since the use case focuses also on the users, the following quickly provides an
overview of the user base in the dataset, mainly focusing on a) the individ-
ual users and b) the individual edit count. As mentioned in section 9, some
papers have looked at this in more detail and from di↵erent angles.

The dataset contains 142.124 unique userIDs. Note that the username
may be changed because of various reasons and is not unique, but the userID
is. It is the exact userID also used in Wikidata, which may also be queried
through the APIs provided.

By performing a grouping on the userID, one thing that previous research
has already uncovered comes to light: few users are responsible for the most
edits. Figure 13 shows this phenomenon, visualizing the distribution of user
edits by single userID. The figure features logarithmic scaling in order to
make the data more visualizable. It is safe to say that by manual inspection
and the extraordinarily high edit counts of some users, there are still some bot
users in this list, which have not labeled their username with “bot” as they
should according to the community guidelines19. This also relates to what
one paper regarding bot detection in Wikidata states [Hall et al., 2018].

vocabulary-centric evaluation
Since the vocabulary is also one distinct piece of information that is of huge
value, we will quickly look into this as well. Figure 14 shows the distribution
of vocabulary usage in general.

Comparing this to the histogram of the user edits, it paints a similar
picture. Few vocabularies are used many times and it declines. Note that
the definition for vocabulary here again is that it just lists the property used,
except for property P31 (instance of), where it annotates the linked object
as well.

Table 3 lists the top 50 properties used (ceteris paribus). Annotated in
the table is also the summed count for all P31 properties used, which makes
it the most used vocabulary in this table. There are also three further P31
properties including the object in the table, therefore individually being part
of the top 50 properties used.

This table is novel, as it only features additions and registered edits,
while not having a “bot” flag in the username, also excluding redirect items.
Wikidata publishes something similar periodically, although focusing on the
“quantity of item pages that link to them”. Table 4 shows the top 30 of the

19
Retrieved 04.05.2023 from https://www.wikidata.org/wiki/Wikidata:Bots/
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Figure 13: Logarithmic user edit count histogram

Figure 14: Logarithmic vocabulary usage count histogram
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vocabulary count . . .
P921 15.231.938 P31:7318358 2.120.169
P407 11.505.119 P570 2.047.564
P106 7.961.543 P421 1.896.053
P50 7.781.531 P7859 1.878.919
P2860 6.880.546 P214 1.864.096
P17 6.842.307 P31:4167836 1.851.811
P735 6.378.169 P1433 1.795.190
P131 6.078.806 P361 1.749.758
P21 4.940.412 P571 1.704.255
P31:5 4.083.002 P971 1.658.123
P18 4.077.653 P108 1.544.396
P569 4.044.264 P40 1.531.649
P734 3.499.680 P136 1.507.306
P27 3.453.092 P6179 1.473.000
P2093 3.341.690 P856 1.396.745
P646 3.120.430 P166 1.345.933
P625 2.795.039 P641 1.271.282
P2888 2.765.384 P495 1.173.497
P577 2.527.764 P1566 1.152.317
P1476 2.396.107 P356 1.140.560
P373 2.326.930 P3083 1.116.976
P19 2.315.381 P39 1.107.901
P10585 2.300.615 P364 1.106.015
P528 2.256.543
P2671 2.220.806 TOTAL 160.860.516
P69 2.161.122
P1412 2.141.128 P31 28.418.975

Table 3: Top 50 most used vocabularies
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property Quantity
of items
listing
the prop-
erty

. . .

cites work (P2860) 290.079.030 astronomical filter
(P1227)

33.144.982

series ordinal
(P1545)

170.920.827 DOI (P356) 31.290.077

author name string
(P2093)

136.714.053 author (P50) 29.924.037

instance of (P31) 112.249.115 catalog code
(P528)

28.862.240

stated in (P248) 93.476.057 main subject
(P921)

27.137.210

retrieved (P813) 93.038.309 catalog (P972) 23.942.753
reference URL
(P854)

71.157.358 language of work or
name (P407)

22.317.205

PubMed ID (P698) 63.859.886 object named as
(P1932)

18.832.977

title (P1476) 48.565.223 country (P17) 16.661.583
publication date
(P577)

48.180.275 located in the ad-
ministrative terri-
torial entity (P131)

12.840.015

published in
(P1433)

41.007.111 point in time
(P585)

12.834.801

page(s) (P304) 37.783.708 PMCID (P932) 11.699.344
volume (P478) 37.083.220 occupation (P106) 10.808.364
issue (P433) 34.569.417 start time (P580) 10.669.635
apparent magni-
tude (P1215)

33.145.057 coordinate location
(P625)

10.633.150

Table 4: Wikidata’s top 30 properties (Retrieved from https:
//www.wikidata.org/wiki/Wikidata:Database_reports/List_of_
properties/Top100 on the 7th of July 2023
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Figure 15: Logarithmic edits per entity histogram

total list containing the top 100 items. The di↵erences compared to Table 3
are very visible, although some properties change in importance. One of the
changes visible is that certain properties used to link information from one
source to another, for example the property “cites work” (P2860) is not the
top property anymore. Moreover, “retrieved” (P813) is completely missing
in our list. From our current standpoint, we think that these might not be
as important anymore, because they might be heavily used by bots.

entity-centric evaluation
The entities in the set are a distinct piece of information as well, just like the
vocabulary. Figure 15 shows the same distribution graph of the entity usage
in general.

Comparing this to both previous histograms, it also paints a similar pic-
ture. Few entities are used many times and it declines. The entity in this
case is only the subject, so the edited item, not the object.

Table 5 lists the top 50 entities used (ceteris paribus), just like in the
vocabulary case.

The dataset store_ UVEC. csv is available for download in a compressed for-
mat under the link provided under https: // github. com/ N-Krenn/ WIKIEVO .
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entity count . . .
Q4115189 20.852 Q17339402 2.058
Q21558717 6.368 Q87119811 2.027
Q861252 5.700 Q15397819 1.818
Q21505108 3.911 Q183 1.787
Q22676705 3.888 Q30 1.682
Q21521425 3.786 Q30279457 1.675
Q86913546 3.764 Q819425 1.630
Q21521423 3.742 Q623 1.615
Q87250860 3.728 Q21996341 1.539
Q13646 3.727 Q408 1.518
Q21481859 3.610 Q142 1.460
Q21521427 3.480 Q56754739 1.443
Q21559757 3.406 Q16943273 1.439
Q21481867 3.383 Q252 1.438
Q48653337 3.315 Q51786082 1.415
Q27349821 3.267 Q56895655 1.411
Q27335792 3.234 Q13406268 1.405
Q29037899 3.176 Q691 1.381
Q27336022 3.043 Q48589857 1.380
Q27336098 2.973 Q27347646 1.356
Q27335409 2.574 Q16553 1.353
Q27336831 2.486 Q87477462 1.328
Q21994528 2.436 Q42119679 1.322
Q27345502 2.389 Q148 1.278
Q42126267 2.317
Q84055514 2.126 TOTAL 143.439

Table 5: Top 50 most used entities
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5 Network Analysis

The following chapter as the main section of the thesis will outline the e↵orts
taken in order to answer the research question.

First we will explain some preliminaries around Network Analysis, before
moving on to explaining the approach more concisely and technically.

Then, in the subsections on Network 1 and Network 2, the detailed net-
works are analysed and described, along with each of the conclusions on the
networks.

Finally, we interpret the results of both networks and begin to outline
and motivate future work ideas.

5.1 Preliminaries

A network can be described as a set of nodes and edges, much similar to the
described knowledge graph. In fact, both of those terms are related to Graph
Theory. Graph Theory is a mathematical field of study, where graphs are
mathematical structures used to relate pairwise elements in a modeling way.
In fact, Figure 1 used to show a basic example of a knowledge graph is also
a graph.

In exact terms, one of the more mathematical and canonical definitions
by [West et al., 2001] is:

“A graph G is a triple consisting of a vertex set V (G), an edge set
E(G), and a relation that associates with each edge two vertices (not

necessarily distinct) called its endpoints.”

Thus, a network in essence can be modeled as a graph. This is important since
Graph Theory methods are used to create another more specific field of study,
called Network Analysis. It focuses mainly on the complex connectedness of
things, for example, the modern society and people’s connections. Numerous
studies focused on di↵erent aspects of this connectedness were conducted
already, leading to new insights on for example how people in social networks
are connected (e.g. [Catanese et al., 2011][Boy and Uitermark, 2016]).

Overall, the idea of network science is to model very complicated things as
simply as possible. The results mostly turn out to be somewhat complicated,
but at least tractable in some sense. One famous early example is the paper
by [Watts and Strogatz, 1998] on “Collective dynamics of small-world net-
works”. They put Network Science somewhere between either a completely
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random or completely regular topology, using algorithms and techniques to
simplify them and find the “gist” of the networks. In essence, this is also
what we try to do with the Wikidata edit history. The way users contribute
to Wikidata is assumed to be very complex, but with enough simplification,
we might be able to find some core insights.

However, the area around network analysis and knowledge graphs such
as Wikidata is pretty novel in research (to the best of our knowledge). This
might have di↵erent reasons, one of which is that the research community
focusing on knowledge graphs might not like the idea of omitting many as-
pects and data points in order to get to some simplified conclusion. In
general, knowledge graphs and in particular Wikidata are way too big to
really be able to look into the way users contribute in detail, without this
simplification. Other means include creating metrics and standardized mea-
surements and comparing them in case studies of particular smaller excerpts
of data, which is what has been done surrounding Wikidata a lot. However,
we think that simplifying the whole Wikidata dump’s data to a point where
networks and clustering algorithms can help to get insights is a particularly
interesting methodology and holds massive potential, coming from di↵erent
perspectives.

What we add on top of the network approach is the community analysis
approach. Community analysis has been a term in network analysis for quite
some time now, as early adopters like [Arenas et al., 2004] or more mature
projects like [Ferrara, 2012] illustrate. The basis of this is that the nodes in
networks can be clustered into so-called communities, where one community
consists of a set of users (or nodes in the network sense). There are di↵erent
methods for di↵erent use cases, each one being determined in its e↵ectiveness
by the clustered result (as di↵erent use cases may want to achieve di↵erent
things).

The infomap community clustering approach is one very famous exam-
ple of such a community detection algorithm, aiming to cluster the nodes
into di↵erent communities. It was developed by Martin Rosvall and Carl T.
Bergstrom and is based on probability flows of random walks on a network.
For more detailed information on the famous and well-accepted algorithm
please consult [Rosvall and Bergstrom, 2008][Rosvall et al., 2009]. This is
the main algorithm of choice used for the community detection aspect. The
algorithm bases its decisions to label one node as part of one community
based on the overall connections to other nodes, as well as an optional weight
for each of the connections.

In sum, network analysis and its accompanying community analysis ap-

51



proaches are used to elicit and analyse the overall connectedness of nodes
(in our use case: users). The methods used may be of di↵erent natures, all
having a strong quantitative or heuristic focus.

In the next subsection, we detail the approach in general terms before
going into the network creation specifics and analysis parts, revisiting the
goals and the research questions.

5.2 Detailed Approach

Note that the starting dataset the analysis is based on is store_UVEC.csv.
In order to recall the goals and streamline the analysis approach, this sub-
section gives additional information.

Looking at store_UVEC.csv, the data that is contained focuses on:

1. the user

2. the vocabulary

3. the entity that was edited (or: subject)

Naively thinking about the types of networks one could create, two of
the elements could be used, one as nodes and one as edges. When putting
the similarity aspect in focus, one could think of six networks that are more
obvious to spot:

1. nodes: users, edges and their weights: similarity of entities (or: simi-
larity of domain in the bigger picture)

2. nodes: users, edges and their weights: similarity of vocabulary used
(or: (sub-)schema similarity in the bigger picture)

3. nodes: entities, edges and their weights: similarity of vocabulary used
(or: (sub-)schema similarity in the bigger picture)

4. nodes: entities, edges and their weights: similarity of users (or: simi-
larity of domain experts)

5. nodes: vocabularies, edges and their weights: similarity of users that
use it

6. nodes: vocabularies, edges and their weights: similarity of entities it
appears in
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When looking at the list, we agree that some networks seem quite meta
and still need interpretation work. However, especially the first two examples
hold, in our opinion, large potential:

• The first would introduce a novel kind of community classification by
domain.

• The second would introduce a novel kind of community classification
by vocabulary.

These are exactly the two networks matching our originally posed research
questions. The other networks might hold a value of their own, potentially
increasing their value in combination with the other networks.

The following paragraph will quickly examine the approach of the now
named Network 1 that maps the vocabulary similarity of users. Again, the
users here would be considered the nodes and the edges depict the vocabulary
similarity.

Defining the vocabulary similarity seems pretty abstract, but in exact
terms, one might naively use the number of times two users x and y con-
tributed the same vocabulary as seen in the following extensive example:

Let there be two users, David (userID 1234) and Clemens (userID 1235).
David is the user depicted in Figure 3 (revisit this to review the statement
to vocabulary definition again).

David (userID 1234) made the following statements:

1. Earth (Q2) is instance of (P31) terrestrial planet (Q128207)

2. Earth (Q2) has a mass of (P2067) 5.972.37 ± 0.01 yottagram

3. Earth (Q2) is named after (P138) soil (Q36133)

4. Life (Q3) is studied by (P2579) life sciences (Q864928)

These edits show up in store_UVEC.csv as the following lines:

index,username,userID,vocabulary,entity

1, David, 1234, P31:128207, 2

2, David, 1234, P2067, 2

3, David, 1234, P138, 2

4, David, 1234, P2579, 3
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Note that the appearance of these statements in store_ UVEC. csv implies
that the subjects Q2 and Q3 are no redirect items and that the edits were addi-
tions (or changes, but only the addition part of the change is displayed). The
statement rank is not important, since we only look at the additions in the file.

Clemens (userID 1235) made the following hypothetical statements:

1. Mars (Q111) is instance of (P31) planet (Q634)

2. Mars (Q111) has a mass of (P2067) 641.71 ± 0.01 yottagram

3. Mars (Q111) has use (P366) colonization of Mars (Q838950)

These edits show up in store_UVEC.csv as the following lines:

index,username,userID,vocabulary,entity

5, Clemens, 1235, P31:634, 111

6, Clemens, 1235, P2067, 111

7, Clemens, 1235, P366, 111

The naively defined similarity of their vocabulary might be defined as the
sum of overlapping vocabularies, which is 1 (Index Nr. 2 and 6 feature the
same vocabulary).

Index numbers 1 and 5 have the same property, but not the same object,
as P31 is annotated with the object for additional meaning. In sum, the count
of overlapping vocabularies between David and Clemens is 1 and we naively
defined this as the weight of their vocabulary similarity. If we would have
multiple users editing di↵erent things, this weight would show the strength
of the two users’ vocabulary similarity as indicated.

However, this naive weighting is not optimal in terms of really determining
the strength of the similarity of the vocabulary of the two users. For example,
it does not account for multiple facts, like if the vocabulary used is frequently
used or just a few people use it for special occasions. It also does not account
for the fact that users with a generally high edit count might have stronger
connections to each other, even though this is not really the case.
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For this exact reason, there is a need for a weighting algorithm, that
depicts the vocabulary similarity, taking as much as possible additional in-
formation into account. For our use case, the hyperbolic weighting approach
seemed ideal as a starting point.

Before explaining the hyperbolic weighting approach, the definition of
edge-lists is in order. The basic example from above with users David and
Clemens is used to illustrate this even further, adding another person called
Theresa (userID 1236) with the edits:

index,username,userID,vocabulary,entity

8, Theresa, 1236, P366, 111

9, Theresa, 1236, P2067, 193

So, in total, we have a list of the following edits in the example of store_
UVEC.csv:

index,username,userID,vocabulary,entity

1, David, 1234, P31:128207, 2

2, David, 1234, P2067, 2

3, David, 1234, P138, 2

4, David, 1234, P2579, 3

5, Clemens, 1235, P31:634, 111

6, Clemens, 1235, P2067, 111

7, Clemens, 1235, P366, 111

8, Theresa, 1236, P366, 111

9, Theresa, 1236, P2067, 193

The connecting vocabularies are:

• P2067: used by David, Clemens, and Theresa

• P366: used by Clemens and Theresa

The rest of the vocabularies used is distinctly used, these are just used
by one user, not multiple. So if crafting a network for the purpose of the
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finding of community structures of similar vocabulary, the three nodes would
be David, Clemens, and Theresa. The existence of an edge would require at
least one instance of the same vocabulary used. Looking at the list, there
would be the edges:

• David to Clemens (one occurrence of the same vocabulary used)

• David to Theresa (one occurrence of the same vocabulary used)

• Clemens to Theresa (two occurrences of the same vocabulary used)

These edges would need to have an assigned weight, which is determined
by the weighting algorithm. The basis of the way we weigh the similarity is
by the usage of the specific vocabulary. Therefore, when looking at the way
how to produce this list of edges computationally, the most straightforward
option is to take one vocabulary and compute all the edges, then assign a
weight and sum with the rest of the individual vocabulary weights.

In pseudo instructions, this would look like the following:

for vocabulary in store_UVEC.csv:

Find all combinations of two users --> edges

Apply computed weight for vocabulary to each edge in edges

Append to edge_list for all vocabularies, if the edge

already exists sum the weights

Computationally, the first part of finding all combinations of users for
one vocabulary is the most resource-heavy part. The mathematic binomial
coe�cient can help here. The basic mathematic principle, where C(n,k) is
the number of possible combinations if drawing k items (in this case k=2)
out of n items, is:

C(n, k) =

✓
n

k

◆
=

n!

k!(n� k)!
(1)
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With this formula, one can determine the number of edges that a vocab-
ulary used by n users would produce. This number can get pretty high. For
example, the top 21 vocabularies of network 1 would lead to 5.749.636.702
edges. Each of the networks will have a section explaining the filters in order
to reduce this heavy computation to a viable runtime (as the methods di↵er).

Moving on with the running example of David, Clemens, and Theresa,
we now know that there should be 3 edges in total. The weight assigned
to these edges is determined by the sum of all edges between two users
created by looking at each vocabulary individually (see 5.2). The weight
is still undefined, however, a hyperbolic weighting approach came to use.
Revisiting the goal of this network and accompanying clustering, we want to
get to the similarity of vocabulary between users.

The weighting happens by looking at one vocabulary which has been used
by n individual users. The number of users that used the vocabulary at least
once illustrates the general popularity of the vocabulary, i.e. how commonly
it is used by di↵erent users. Taking the number of n users using a specific
vocabulary, the weight is defined by:

w(n) =
1

n� 1
(2)

In the running example, all three users used vocabulary P2067 individu-
ally at least one time. This means n would be 3, leading to a weight of 0.5
for all three edges created by it. Moving on to P366, used by Clemens and
Theresa, n would be 2. This leads to a weight of 1. Note that a high weight
here means that the similarity is high. Then, the two edge-sets for P2067
and P366 are combined. Since Clemens and Theresa already have an edge for
P2067, the 0.5 weight is added with the weight of 1, leading to a similarity
weight of 1.5 for their connection. On the other hand, both, Theresa and
Clemens have a connection to David with a weight of 0.5. Looking at the
values, this illustrates that the vocabulary similarity between Theresa and
Clemens is higher than the similarity of David with both of them.

The hyperbolic weighting approach is frequently used in both fields, net-
work analysis as well as the sub-field community detection. Newman created
one of the more canonical papers focusing on its e↵ectiveness and mechanics.
It is a well-cited resource for di↵erent kinds of analysis [Newman, 2001].
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To sum up the weighting algorithm a bit more formally instead of relying
on the two main equations, the following is the more general formula for a
weight wij, describing the weight of the connection between two users i and j.
The original algorithm (although not yet named hyperbolic weighting) looks
at physics papers’ co-authors and determines the strength of relationships
between the authors. One paper would be k, and the � is 1 if the respective
user collaborated in paper k:

wij =
X

k

�ki �
k
j

nk � 1
(3)

When looking at the formula, one thing becomes imminent: it does not
care about how many times a user used a certain vocabulary, but in general,
if he used a vocabulary at least once. (In the next section, there is a discus-
sion on this topic in more detail focused on the individual network.)

The final list of edges connecting the nodes with an accompanying weight
is called the edge-list. It is used to formalize a graph in the python package
igraph20. Then, the mentioned infomap community clustering approach is
used to compute the clustering. The algorithm is also included in the pack-
age igraph and in its basis, it works with probability flows of random walks
on a network. For more detailed information on the well-accepted and much-
used algorithm consult [Rosvall and Bergstrom, 2008][Rosvall et al., 2009].

Finally, after having created the network and computing the clustering,
the modularity is an important measure. It measures the strength of the
division of a network into modules (e.g. clusters), is computed. This measure
can be seen as a main indicator for strong clustering, ranging from 0 (very
weak clustering indication) to 1 (perfectly separated). Using the modularity
as an indication, plotting (sub-)communities, and visualizing it as well as
individual inspection led to the final results.

5.3 Network 1 - mapping similarity of vocabulary used

The network displays the strength of the similarity of vocabulary used be-
tween users. Again, the current definition of vocabulary in this analysis is the
property used, except in cases where property P31 was used, then it includes

20python.igraph.org
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the object. P31 is the property for “instance of”, which is an important part
of the general ontology.

This particular decision is made in order to:

1. provide a future-proof parameterized way to include (possibly all) prop-
erties including objects

2. give more additional meaning to P31, which is one of the most used
properties and in general very important for the ontology

3. be able to show some kind of relation to what P31 tries to express (e.g.
P31 referencing to Q5 “human”)

The necessary preprocessed data is found in store_CSV.csv and an edge-
list for the network is computed according to the approach detailed in sub-
section 5.2. Filters were applied in order to make the edge-list feasible to
compute. They are listed hereafter in subsection Filtering. The last subsec-
tion will focus on the results of the performed clustering.

5.3.1 Filtering

In the framework diagram, Figure 12, one can see that various exclusions
are applied for the use case already. The main additional exclusion to the
previously detailed exclusions is that the top 21 entities by unique users that
used it at least once are cut. Note that 21 can be any arbitrary number and
that it was actually aimed for 20, but due to a little coding inaccuracy, the
script cut the top 21 vocabularies for both edge lists.

This exclusion is very important performance-wise for this network (in
comparison to the next one) since the edge-list creation will form all possible
combinations of users using a certain vocabulary. For example, P569 has
39.580 users using it at least once. Mathematically, if one wants to find each
combination of two users (not caring about the fact in which order the users
are), one would find 783.268.410 possible combinations.

The top 21 properties, in this case, would lead to 5.749.636.702 weights
that have to be assigned, whereas moving on from the top 21 to the end, it
would only be 2.305.929.094 in total. This little simplification of computation
makes it faster, easier and the weights almost lose nothing in terms of mean-
ingfulness, since the weighting is also based on the number of unique users
using it (variable n in the formula detailed in subsection 5.2) and the weight
would be surprisingly small in comparison to other, less used vocabularies.
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5.3.2 Final Overview and preliminary conclusion

Using the full edge-list, subsets are created in order to make it computation-
ally more feasible. The infomap community clustering approach is applied
using Python and the library iGraph21.

For the edge subset 99th quantile, which features 7.1 million rows, it
returned a modularity of approx. 0.013. For the 95th quantile, which features
35 million rows, it returned a modularity of approx. 0.006. We then aborted
the calculations, since they are computationally heavy, and in general, it is
very unlikely that with more edges it will improve.

The modularity and some preliminary analysis on the graph suggest, that
there is no naive inherent clustering in the vocabulary similarity. We believe,
however, that further and better filtering, in combination with a better fil-
tering algorithm might turn this network into something very useful - and if
not, the context provided by Network 2 will probably uncover some correla-
tion (More on this in section 7).

Further concrete steps that are planned regarding this network:

1. Take the frequency of using a certain vocabulary into account.
As already mentioned, the current version of weighting does not take
the general frequency into account. This means that one usage of P500,
for example, gives the same relation to this property as a user using it
100 times. In light of the use case, this is rather sub-optimal. Further
approaches mainly use di↵erent weighting algorithms like the Jaccard
Weighting.

2. Filter low edit count users. In general, the approach does not
really care about users not frequently editing Wikidata in this use case
example here. Therefore, it might reduce noise in the data if they are
cut before weighting, or the weighting algorithm should take care of
this itself by applying lower weights for generally very low edit count
users.

3. Filter very high edit count users (= potential bots). Analogous
to the low edit count users example, very high edit count users using
a lot of di↵erent vocabularies and/or just using one vocabulary very
many times might lead to skewing and might make potential clusters
impossible to separate. Also, in this example, either the weighting
algorithm or the filters should at least account for this in some way.

21python.igraph.org
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4. Use a disparity filter, make the data smaller, and provide a
pipeline approach to make it easier to test and run. Points two
and three also reference to the point of finding the core structure of the
network by omitting data. For example, a disparity filter could solve
this problem. The pipeline approach references to the fact to make
di↵erent parameters easily testable (more on this in section 7).

5.4 Network 2 - mapping similarity of entities used

Network 2 displays the strength of the similarity of entities used between
users. As already mentioned, the node here is one user, and the edge be-
tween one user and another is the weighted strength of their entity similarity,
weighted by the weighting algorithm. subsection 5.2 is detailed for Network
1, however, Network 2 uses the same approach, just switching the vocabulary
similarity for the entity similarity. The following subsections go into detail
on the mechanics applied and will present a final overview and a preliminary
conclusion.

5.4.1 Filtering

In Figure 12, you can see that various exclusions are applied for the use case.
The main additional exclusion to the previously detailed exclusions is the fact
that the top 21 entities by unique users that used it at least once are removed.
This is in order to simplify computation. This should, however, not skew
results, since the weighting algorithm takes into account that many users
have edited the item, therefore leading to a generally low weight. Therefore,
it should not lead to di↵erences in the big picture. Compared to Network 1,
this exclusion is not as important, since the edge-list is far easier to compute
due to the fact that there are more entities than vocabulary and the average
count of users using one entity is by far lower than the count of users using
one specific vocabulary.

Further ideas for the general future work on filters would be specific to
Network 2. For example, some filters on the entities themselves might be
useful, such as removing very low edit count items, which therefore contain
very little information, or removing very high edit count items, which might
be more general and not very specific to one domain.
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5.4.2 Final Overview and preliminary conclusion

Using the full edge-list for Network 2, subsets are created in order to make
it computationally more feasible. Then, the infomap community clustering
approach is applied using Python and the library iGraph22.

For the subsets, the 50th quantile version (including 50% of the total edges
ranked by weight height), scored the highest modularity of 0.3145. The full
edge variant scored a modularity of 0.3116. Because the di↵erence is almost
non-existent, the full edge list was chosen to perform the following analysis.
This clustering features 133.361 elements and 2.796 clusters, where each ele-
ment = node = user can only be part of one cluster. This clustering can be
considered somewhat successful, therefore the following information on the
manual inspection of the clustering is very interesting.

For a quick overview of the clusters and their distribution, see Table 6.

count users in cluster
total number of clusters 2.796
mean 47,697
standard deviation 2.107,085
minimum 2
25% quantile 2
50% quantile 2
75% quantile 4
maximum 111.397

Table 6: Clustering overview for network 2

Table 6 shows that there are many clusters only containing a few users and
one really big cluster. This is the cluster with ID 1, featuring 111.397 users
(displayed as “max” in Table 6 ). From a naive perspective, this could be
considered the “core-community”, not especially focusing on a topic. This
might also have multiple other reasons, e.g. that it is led by some big user
that has a lot of diverse edits or this might be just consisting of very many
small edit count users. There will be some more discussion on this later, but
first checking the success of the clustering, starting with the top 10 clusters
by user size, is more interesting.

One of the most basic evaluation techniques is to get all the entities that
led to the clustering and look at them for evidence if the clustering did in-
deed identify some arbitrary domains. This was not a di�cult task for the

22python.igraph.org
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bigger clusters. Quickly querying the Wikidata API for the names of the top
50 most used entities by cluster results in quick insights. The second largest
cluster is cluster number 8, featuring 1.534 users. The query for the men-
tioned 50 top most used entities (by unique users) led to the following result,
indicating a strong structure focused on Computer Science. The result of
this query is visualized in Table 7.

entity ID entity label ...
Q698 Mozilla Firefox Q201904 Qt
Q14579 Linux kernel Q285741 qBittorrent
Q173136 Blender Q16639197 GitLab
Q171477 VLC media player Q41242 Opera
Q59 PHP Q41540 BIND
Q186055 Git Q82268 Eclipse
Q10135 LibreO�ce Q170855 Drupal
Q192490 PostgreSQL Q572226 Kdenlive
Q19841877 Visual Studio Code Q850 MySQL
Q483604 Mozilla Thunderbird Q16766305 Atom
Q306144 nginx Q4046338 Pale Moon
Q756100 Node.js Q3050461 Elasticsearch
Q13166 WordPress Q15206305 Docker
Q1165204 MongoDB Q17363870 KDE Plasma 5
Q48524 Chromium Q42478 Perl
Q787177 MariaDB Q286306 curl
Q8038 GIMP Q965596 Gradle
Q11393 VirtualBox Q13233410 Android Studio
Q44316 GNOME Q22906900 Brave
Q14561 Wayland Q25874683 Nextcloud
Q290284 ownCloud Q575650 Rust
Q847465 FFmpeg Q1206660 IntelliJ IDEA
Q1830735 Samba Q34236 FreeBSD
Q11354 Apache HTTP Server Q223490 LLVM
Q188558 Wine Q404293 Falkon

Table 7: Network 2 Cluster 8 entity names visualization

Upon further manual inspection of the cluster, this pattern further in-
creased, while not finding any indicators for even one entity not at least
partly belonging to the Computer Science community. The users in this
cluster used in total 136.684 entities at least once. Summing all edits they
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performed shows 338.136 edits in total. However, checking 136.684 items
manually for their topic seems rather unrealistic, the samples taken all looked
very good.

Moving on to the next smaller cluster, cluster number 2, featuring 1.219
users. Again using the same technique, this cluster seems to be focused on
Physics, specifically maybe more advanced physics, with a little focus on
seemingly CERN-related topics as well as Higgs Boson and Dark Matter.

Moving on and skipping 3 larger clusters (14, 5, and 13), cluster 32 seems
to feature one special kind of domain, having a regional focus. Before com-
puting the clustering, a feeling that some users might have a language or
country-specific focus of edits arose, which this cluster seems to give clues to.
It almost exclusively features churches, castles, museums, and other points
of interest, located in Italy. When querying some of the items for property
P17 (= country), it shows that almost all feature P17:Q38, where Q38 is the
entity Italy.

At this point, we can conclude that the clustering by only merely looking
at the similar entities edited found some meaningful and also big clusters,
potentially also uncovering a country-based clustering of interest in users.
We therefore argue, that looking into this method of clustering users by en-
tities similarly edited can lead to very distinct identified user communities
and may uncover additional classifying attributes like the country example.
Moreover, we argue that this clustering is rather sharp in identifying almost
exclusively unmixed communities, but since the one huge cluster with num-
ber 1 is featuring a very large amount of users, it is probably too sharp.

Many initial points of improvement and potential bias that the clustering
may feature arise, but the biggest two concerning this clustering are:

1. Power users might be the “center” of a cluster and the reason why the
cluster exists. Take the Italy cluster for example - if a user/bot edits
many items in one domain, this might be the reason why the cluster
exists, leading to possible bias since there are more clusters, but only
the ones featuring a power-user may be identified.

2. The biggest cluster probably features users with a lot of “noise”, e.g.
having very diverse topics and entities, as well as very small edit count
users. Moving on one could try and reduce this big cluster, as it cannot
be used to indicate a domain.
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As a first analysis point to get insights into the improvement points, we
looked at the average edit count per user and compare it along the clusters.
Table 8 shows this and some other metrics that might prove useful. It might
be also worthwhile to mention that a previously unknown to us Wikidata
Sandbox seems to be the most uniquely edited item in the biggest cluster23.
The help page lists 4 Wikidata Sandbox items in total, which can be used to
try certain edits. This might be a reason for cluster 1 being so big, as they
are probably some of the most used items in general. However, because of
the weighting algorithm, the weight would be very small if edited by many
users individually.

23
see https://www.wikidata.org/wiki/Wikidata:Sandbox
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Further elaborating on Table 8, one can see that cluster number 1, the
biggest cluster in terms of users, indeed contains a lot of “noise”, meaning a
lot of users with small edit counts. The 90th percentile is 115 edits, so it is
probably fair to say that this is the case, especially when compared to the
other clusters. One can easily spot that in cluster 1, cluster 2, and cluster
5, there is at least one user with an edit count greater than 2 million edits.
These are potentially bots or normal users using scripts for at least some
edits. Also, for all the other clusters, one can see that one very big user is
present, compared to the 90th percentile.

In light of the results above, concluding for future work, probably re-
moving more users that can be labeled as bots or bot-like activity, cutting
the bottom X % of users (since not very interested in non-regular users)
and maybe another weighting algorithm like the jaccard weighting approach
might be a good idea, possibly increasing modularity and decreasing the size
of the biggest cluster number 1.

5.5 General Interpretation of both networks

Network 1, the network mapping similarity of vocabulary used, and there-
fore the main focus of this thesis, did not reveal significant clustering first-
hand as Network 2 did. Further incomplete analysis points and more ad-
vanced filtering methods proved insignificant to this point.

Network 2, the network mapping similarity of entities used, revealed a clus-
tered nature, although having a very big cluster that should be reduced and
split into sub-components in the future. This suggests that Wikidata Edi-
tors can be classified in domains, in the current examples either by focus of
interest or possibly geographical reasons.

6 Summary and Conclusion

Wikidata and its accompanying community have matured in the last decade.
The information stored in Wikidata is now in use in many applications, from
research to other knowledge-driven applications. Since lacking a well-defined
ontology definition, it relies on its community to establish consensus on the
structure and detail of the information that is stored. Specifically, the under-
lying schema and the vocabulary used by individual users should be evaluated
more concisely in the future. This thesis contributed to this pathway towards
analysing the community-driven (sub-)schemas within Wikidata, showing a
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clear path forward. The possible future outcomes of this path range from
analyses over the current state of the knowledge stored in Wikidata and un-
covered similarities, but also towards identifying critical evolution steps that
lead to a more uniform and “correct” schema. This is essential in ensuring
that the world can make the most out of the knowledge stored in Wikidata.
As a step towards this goal, we looked at the possible topicwise modulation
of Wikidata by clustering users by their used vocabulary along the research
question: “Can we show a topicwise modularisation of Wikidata by cluster-
ing users by their used vocabulary?”.

We processed the Wikidata edit history to a full extent and published said
script framework on GitHub under https://github.com/N-Krenn/WIKIEVO.
The resulting datasets that we identified to be useful for further research are
published and linked in the same GitHub repository. The scripts and datasets
are licensed under an MIT license, so everyone wanting to adapt or contribute
anything is very welcome.

store.csv contains all user edits, specifically additions and deletions,
excluding redirect items up until the 1st of January 2023. This is, to the best
of our knowledge, the largest publicly available research-intended dataset fo-
cusing on the Wikidata edit history to this day.

store_UVEC.csv features all edits adding content to the Wikidata, given
certain limitations. It aggregates individual edits performed by users using
a certain vocabulary on an entity. The dataset is also publicly available and
more focused on the use case presented in the thesis, already aggregating
our definition of a vocabulary. We used said dataset to perform the analyses,
again transforming it in di↵erent ways.

Besides adding more recent descriptive statistics on Wikidata to the re-
search landscape, we also carried out a preliminary network analysis focused
on the goal of detecting community-driven (sub-)schemas within Wikidata.
For the network analysis, we conclude that mapping the users’ entity similar-
ity in a network leads to sharp clusters, potentially providing a way to identify
editor communities focusing on specific domains (or topics) within Wikidata.
The mapping of the users’ vocabulary similarity, however, is to this point still
very unclear. Initial methods did not show a clustered structure.

Therefore, the answer to the proposed Overarching Research Question
“Can we show a topicwise modularisation of Wikidata by clustering users by
their used vocabulary?” is partly considered answered. We outlined topic-
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wise modularisation by directly clustering the edited Wikidata entities and
showed some examples of clear focus on particular domains. The vocabulary
aspect, however, is still inconclusive to this point.

We propose a future methodological approach in order to sharpen the
networks, possibly improving the domain clustered structure or identifying
a vocabulary similarity clustering structure. The newly described approach
focuses on a weighted Jaccard similarity measure and a following disparity
filter approach, which could be applied in a pipeline-structured way. Its pre-
liminary details are outlined hereafter in section 7. After trying to improve
the networks individually, we also see an opportunity to transfer the results
of the domain clustered structure to the vocabulary similarity clustering in
a case study of hand-picked domains.

In sum, we contribute to the state of the art by providing three dis-
tinct results: the datasets, the framework and the analysis. The mentioned
datasets are the first ones of their kind, enabling future researchers to per-
form their own analyses on the data, along with the means necessary to craft
such datasets in the first place, our framework with its parameters. The pre-
liminary analysis of the datasets towards showing topicwise modularisation
of Wikidata by clustering their users by their used vocabulary shows clear
signs of users focusing on certain domains. The vocabulary similarities still
require some work and are inconclusive, to this point in time.

7 Outlook

The creation of the data needed for the analysis and the general crafting of
the networks has taken a lot of work. Now, having finished the groundwork,
we think that even further modularizing and streamlining the network clus-
tering approach is the main future goal. This “pipeline” approach gives the
opportunity to try di↵erent things with di↵erent parameters, without having
to manually change anything but the parameters.

For example, [May et al., 2019] used such a parameterized approach in
order to arrive at the results. This leads to increased productivity and more
possibility to try out di↵erent things. This would imply that the filter-
ing, weighting, and network creation should be parameterized and easily
adaptable.
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The paper also features a weighted Jaccard similarity measure, where the
new weight is defined by:

s(u, v) =

P
t2T min(tu, tv)P
t2T max(tu, tv)

(4)

Where u and v are two users and t is one element out of T elements.
Using the language of Network 2, mapping the users’ entity similarity, T is
the set of all elements, and tu and tv are then the absolute count the explicit
user used this one single entity. This way of weighting in order to get a
similarity measure is accepted practice [Chierichetti et al., 2010]. This new
similarity measure leads to two big shifts in logic compared to the previously
used hyperbolic weighting approach:

1. the frequency somebody uses an entity/vocabulary is now also taken
into account

2. whether the entity/vocabulary is used by many users or few does not
change anything in the weight (compared to the previous hyperbolic
approach).

The Jaccard Weighting approach opens new discussions and leads to new
and di↵erent improvements. For example, taking the general popularity of
the vocabulary/entity into account by e.g. simple multiplication of the new
weight with e.g. a hyperbolic weighting approach could lead to improvement.
The weights themselves could also potentially lead to new interesting insights
into the way users contribute to Wikidata, outlining a general popularity
measure of vocabularies.

After applying this new weighting, there is an opportunity to apply a
principled statistical filter to remove low-weight edges in order to improve
computational feasibility and in order to reduce noise. The user-to-user net-
works, may it be Network 1 or Network 2, are very dense, under whatever
filtering used. There are lots of low-weight edges because there are enti-
ties/vocabularies that most users edit sooner or later. We propose to drop
these edges, however, because of the complex distribution of edge weights,
a simple threshold, like the quantile approach used in the analysis, is rather
unsatisfying. Reviewing what we really want to get out of the networks, we
want to see the core structure, the backbone so to say. Serrano et al. created
a method called “disparity filter” to filter such weighted networks, extracting
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the so-called “backbone” of a network. They applied their method in a case
study to airport travel networks [Ángeles Serrano et al., 2009].

Without going into further detail on the statistical/mathematical details
of this mentioned filter, the main relation deciding if an edge is relevant is:

↵ij = 1� (k � 1)

Z pij

0

(1� x)k�2dx < ↵. (5)

Where pij is the share of a node i’s total weight with node j, and k is
the number of connections of node i. This gives each weighted edge in the
network a “statistical significance” defined locally. This to a large extent has
the potential to solve the problem that we have huge heterogeneity in the
activity of users (i.e. powerlaws). At the same time, we can define a global
filter, possibly even further increasing potential.

This is the main suggestion on the way to go forward and apply more
advanced weighting and filtering techniques, however, we also see a lot of po-
tential in improving the base data and manual inspection techniques already
mentioned in the sections on the respective network.

The main ideas regarding improvement of the base data are:

• take care of the powerlaws in the data directly (e.g. cut low edit-count
users out of the data, as they are not as interesting for the use case)

• cut non-essential items like the Wikidata Sandbox Items24

• play around with di↵erent settings for the vocabulary definition, pos-
sibly annotating more properties with the object (e.g. P17 (country),
which already showed some e↵ects regarding domain-clustering)

Furthermore, one direction to get to some clustered structure regard-
ing the vocabulary would be to refine the “domain clustering” (network 2)
and then take the findings from there and project them onto the vocabu-
lary similarity clustering (network 1). In exact terms, one could analyse a
certain “domain community” regarding their vocabulary and compare and
contrast this to other “domain communities”, showing concrete examples
of vocabulary di↵erences between domains. This even further enhances the
“community-first” approach that the overall thesis follows.

24
see https://www.wikidata.org/wiki/Wikidata:Sandbox
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In sum, since network analysis is almost always focused on trying new
things in order to get to improvement, we see many paths to be further
examined, leading to an improved overall result and possible new findings.
The future work presented along with the code details and datasets holds
enormous value in understanding Wikidatas (sub-)schema and community
structure from a very specific point of view, but also in a general way.

8 Limitations

The analyses performed all have one common weakness: the input data.

As pointed out in the di↵erent steps, we took decisions in order to ei-
ther reduce the sheer size of data because of limited computing resources
(e.g. neglecting deletions, cutting top N vocabulary, ...) and decisions that
made conceptual analysis easier (neglecting redirect items, neglecting bots,
neglecting semi-automated user edits, ...). In a “garbage in, garbage out”
fashion, this may lead to slightly skewed conclusions.

Moreover, the bot identification is at risk of producing wrongful inclu-
sions/exclusions. There is always the chance that either bot edits find their
way into the analysis set, or vice-versa non-bot edits get flagged as bot edits.
This might also lead to possible hurtful implications. However, we are very
confident that all exclusions are for the benefit of the analyses, while care-
fully weighing the possible e↵ects.

Additionally, potential interactions between the various variables in the
network analysis might lead to bias in the clustering. This is, however, based
on the nature of the heuristic approach to cluster the communities. In the
future, we would like to look into the interactions and statistics behind the
way users contribute to Wikidata in far more detail.

9 Related Work

There is quite some prior research in many of the surrounding topics to this
thesis, also some explicitly targeting the Wikidata edit history. In the fol-
lowing chapter, we will try to sum up some of the more prominent work that
is not included in subsection 2.2. The goal is to di↵erentiate the thesis from
the papers.
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The study “Wikidatians Are Born: Paths to Full Participation in a Col-
laborative Structured Knowledge Base” investigated how newcomers join the
Wikidata community, showing their path to becoming frequent editors. The
approach was mainly qualitative, featuring interviews with Wikidata com-
munity members [Piscopo et al., 2016].

Comparing to the almost identically named study “Wikidatians are Born
[...]” an older paper by Panciera et al. looked at Wikipedia from a power-
user perspective, analysing how “Wikipedians” produce most of the value of
Wikipedia [Panciera et al., 2009]. The paper gives broad insights into the
structure of the contributors to Wikipedia.

The same authors as in “Wikidatians are Born [...]” also looked at Wiki-
data from the same perspective as this thesis, although focusing on the users
contributing and not the (sub-)schema. They found that the Wikidata ontol-
ogy “has uneven breadth and depth”. Additionally, they identified two user
roles: contributors and leaders, where the leaders have a positive e↵ect on
ontology depth, as the knowledge graph evolves [Piscopo and Simperl, 2018].
All these findings contribute insights into how Wikidata Users contribute,
but are not focused on what they contribute.

However, regarding the Wikidata usage of properties, there is some in-
formative study by Haller et al. under the title “An Analysis of Links in
Wikidata”. An important sidenote of the study is that Wikidata has large
numbers of entities as well as properties that are not (yet) extensively linked.
It also suggests di↵erent directions in order to “increase the interconnected-
ness of Wikidata with other KGs” [Haller et al., 2022]. They also provide
di↵erences in labeling between the RDFS/OWL property standard and the
way Wikidata uses the properties. This thesis relates to the paper in some
sense, since the way these properties are used also very likely has a temporal
di↵erence.

In “What we talk about when we talk about Wikidata quality: a literature
survey”, the authors gathered information about how the current research
addressed quality in Wikidata. They focused on Intrinsic Dimensions (Accu-
racy, Trustworthiness, and Consistency) and Contextual Dimensions (Rele-
vancy, Completeness, and Timeliness) as well as Representation Dimensions
and Accessibility Dimensions. [Piscopo and Simperl, 2019] The paper at
hand gives relevant pointers towards important quality metrics, which may
be used in the future of the research path of the thesis to also compare the
identified communities in other aspects, such as quality.
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Cantallops et al. performed a systematic literature review on Wikidata in
2019 [Mora-Cantallops et al., 2019]. They also suggest that communities and
their grouping, which could also be called the “social network” behind Wiki-
data, is an important route to explore further. We add to this perspective
by analysing two aspects, the domain, and the vocabulary.

A User Manual of the framework

The following appendix provides the main instructive resources for the scripts
produced and described. The first subsection displays the General Instruc-
tions on how to run or modify the framework, giving additional insights. The
second subsection then displays the code of the main-handler including the
parameters o↵ered at the time. Both are part of the GitHub repository listed
under https://github.com/N-Krenn/WIKIEVO. The provided datasets are
also linked through the repository.

A.1 General Instructions
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WIKIEVOWIKIEVO

This is the project code of a research project published under link coming soon. It was originally developed as a Master Thesis by Nicola Pascal Krenn
(nicola.pascal.krenn@s.wu.ac.at) with supervisors Univ.- Prof. Dr. Axel Polleres and Assoc.- Prof. Dr. Johannes Wachs at the Vienna University of Business and
Economics.

What does it do?What does it do?

It provides utilities for analysing the edit history of Wikidata. It also contains the scripts creating the networks used in the corresponding master thesis.

It holds three essential parts:

preprocessor (parsing the Wikidata "pages-meta-history" dumps)
extractor (getting the wanted data out of the preprocessed files into memory / file
network_prep (the edge-creation and network creation / clustering performed for the paper)

What is the workflow?What is the workflow?

If you just want to use the already preprocessed and published dataset (link coming soon) as mentioned in the paper, you follow the steps in "Easy Setup with Dump
01-01-2023 If you want to use another dump, you have to process the data using the provided preprocessor and extractor. Follow the steps in "Advanced Setup and
Dump processing". Please bear in mind that the Limitations and Problems mentioned in the paper apply to all work built upon this code and it might not run on
machines weaker than the mentioned setup.

ConfigurationConfiguration

We provide three versions of main.sh for different use-cases if you either want to use our published inbetween-data-points or want to start processing your own dump.
Modify the parameters in this file in order to make changes according to your use-case. We provide explanations of the parameters in the file directly. The standard
values used in the thesis are always set in the default variant.

PackagesPackages

Please install the following packages in your preferred way before running the scripts:

pandas
modin (https://modin.readthedocs.io/en/stable/index.html) including the ray engine
iGraph (https://igraph.org/python/)

Additional packages or a specific version of them might be needed. We did not test the framework extensively on different versions or machines.

Easy Setup with Dump 01-01-2023Easy Setup with Dump 01-01-2023

We used the wikidata pages-meta-history dump of 01-01-2023 for our research. This is essentially what the main analysis works on. If you want to use this dataset,
download it here (link coming soon) and put it into ./extractor/ named store.csv (uncompress it first). Using the main.sh bash file, you should set the options
preprocess (line 12) and extract (line 13) to false, since you do not need to run these steps, because you already inputted their results.

Sub-Variant of Easy Setup with Dump 01-01-2023 rerunning the extractorSub-Variant of Easy Setup with Dump 01-01-2023 rerunning the extractor

If you want to modify parameters of the extractor, e.g. the list of vocabulary items that should include the object, you download this dataset LINK and put it into
./preprocessor/output/...subfolders... in uncompressed format. Using the main.sh bash file, you should set the options preprocess (line 12) to false, since you do not
need to run the preprocessor, because you already inputted its results.

Advanced Setup and Dump processing (Warning: It takes time and resources)Advanced Setup and Dump processing (Warning: It takes time and resources)

The preprocessor does nothing else than parsing the extensive amounts of the .bz2 compressed wikidata dump provided. It should be pretty self-explanatory.
Beforehand, you have to download one complete "pages-meta-history" dump to a folder of your choice (or preprocessor/dumps as default). This should already take
you several days because of limited download-rates. You should have all the files in the folder directly listed.

After downloading the dumps and installing the packages, you may run main.sh as the main handling bash script. Make sure to configure it to your planned setting
beforehand. Lines 12 to 22 should, however, stay as they are. Make sure to be familiar with the settings before running.

We used a machine featuring a 3TB SSD, 48 v-Cores and 128GB RAM for this project. The first step is mostly CPU-bound and does not really need much RAM, but with
46 cores in use it still took us around 40 hours of computing.

Being finished with the preprocessing, we need to extract the things that we want to look at into a simpler format for further analysis. We chose package modin, a
scalable pandas derivative, for the handling. This is essentially only possible because of the 128GB RAM. Weaker machines might have a harder time / run into OOM
errors.

The resulting datasets are saved to ./network_prep and this is where the .ipynb notebook for the analysis gets its starting data from. Voila - you have your own dump
configured. (Note that you might want to change the data that extractor extracts to your use-case or to extend the preprocessor in order to fit your analysis goals)

LicenseLicense

Hereby, I declare that I license the contents of this GitHub repository under the MIT license whereas I license all datasets that are created with the aforementioned
script under the CC BY-SA 4.0 License.



A.2 Main Handler and Parameters

Configuration/Parameter section:

###set the process steps to false if you do not want to do them right now or you already completed them
successfully!

#$getlatestdump=true future option, for now we do not have anything for this, wget loop should be enough
preprocess=true
extract=true
store UVEC and VOC=true
store entity=true
network prep 1=true
network prep 2 reduced=true

#Try this option if network prep reduced does not work because of too much RAM used. Careful, only set one of them
true or the script

#But be careful, it creates one file for every entity (which in study case is >20Mio), takes very long.
#Instead of this option we suggest adapting the code of user weights network 2.py or just running the above option

with a higher cut top N entities option set
network prep 2=false

###Detail Configuration Options###
perform cut=”n” #Options y or n, yes if you want to only extract until a certain specified items creation date and

time, restricting the time−frame (File = extractor.py)
cut entity=”Q1000” #Enter the Wikidata entity qualifier for cutting here. Note that if perform cut == ”n”, this does

not do anything. Used in file : (File = extractor.py)

cut top N vocabs=”20” #specifies the amount of top N most used properties/vocabulary you want to drop. Default is
20, since the most used will lead to hefty amounts of edges and weights to process.

#Used in file : (File = user weights reduced.py)
#cut top N=”−1” #drop nothing
cut top M vocabs=”10” #specifies the amount of top M most used properties/vocabulary of syntax P31:OBJECT you

want to drop. Default is 10, since the most used will lead to hefty amounts of edges and weights.
# Used in file : (File = user weights reduced.py)
#cut top m=”−1” #drop nothing

cut top N entities=”0” #specifies the amount of top N most used properties/vocabulary you want to drop. Default is
0, since entities do not necessarily need this reduction.

#Used in file : (File = user weights reduced.py)
#cut top N=”−1” #drop nothing
cut top M entities=”0” #specifies the amount of top M most used properties/vocabulary of syntax P31:OBJECT you

want to drop. Default is 0, since entities do not necessarily need this reduction.
# Used in file : (File = user weights reduced.py)
#cut top m=”−1” #drop nothing

quantile list =” [0.99,0.95,0.50,0.00] ” #This defines the quantile subsets (computed in exactly this order) that we
create for the edge weights which go into the graphs.

#Used in file : (File = network utils.py)

#Additional setting for ”vocabulary” definition :
#In our study example, P31 (instanceof) is not handled like the other properties . It gets a su�x e.g. P31:Q1000,

whereas normal properties are just handled like P32, with no object string attached. See code excerpt below
#excerpt from extractor.py:
#We compute the ”vocabulary” variable, which in most cases is only the property, but in some cases when we can

identify the property as being one of the most used, we will take the object into this IF the object is an entity
# list most common properties = [”31”] #31 = instanceOf
# proprty = list result [3]
# objct = list result [4]
#
# if proprty in list most common properties and objct.isdigit() :
# vocabulary = ”P” + proprty + ”:” + objct
# else :
# vocabulary = ”P” + proprty

list most common properties=”[31]” #Standard option
#list most common properties=”[]” #Disables this option
#list most common properties=”[31,17,354]” #Creates PXXX:QObjectNr for every P31, P17 and P354 if object is

numerical = entity
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Execution section:

### RUN PREPROCESSOR ###
if [ ”$preprocess” = true ]; then

cd preprocessor
if python3 preprocessor.py; then

echo ”Exit code of 0, PREPROCESSOR reported success”
else

echo ”Exit code of $?, FAILURE in PREPROCESSOR. Please study console output and adapt
parameters/files.”

exit
fi
cd ..

fi

### RUN EXTRACTOR ###
if [ ”$extract” = true ]; then

cd extractor
if python3 extractor.py $perform cut $cut entity $list most common properties; then

echo ”Exit code of 0, EXTRACTOR reported success”
else

echo ”Exit code of $?, FAILURE in EXTRACTOR. Please study console output and adapt parameters/files.”
exit

fi
cd ..

fi

### CREATE STORE UVEC AND STORE VOC (for first network and possible analysis ###
if [ ”$store UVEC and VOC” = true ]; then

cd network prep
if python3 create store voc and UVEC.py; then

echo ”Exit code of 0, CREATE STORE VOC AND UVEC reported success”
else

echo ”Exit code of $?, FAILURE in STORE VOC AND UVEC. Please study console output and adapt
parameters/files.”

exit
fi
cd ..

fi

if [ ”$store entity” = true ]; then
cd network prep
if python3 create store entity .py; then

echo ”Exit code of 0, CREATE STORE ENTITY reported success”
else

echo ”Exit code of $?, FAILURE in CREATE STORE ENTITY. Please study console output and adapt
parameters/files.”

exit
fi
cd ..

fi

#### CREATION OF FIRST NETWORK 1 network user to vocab ####
if [ ”$network prep 1” = true ]; then

folder network to build=”./1 network user to vocab/”
filename edges=”user weights.csv”
network to build=”1”

### USER WEIGHTS CREATION ###
cd network prep
if python3 user weights reduced.py $cut top N vocabs $cut top M vocabs $network to build; then

echo ”Exit code of 0, USER WEIGHTS REDUCED reported success”
else

echo ”Exit code of $?, FAILURE in USER WEIGHTS REDUCED. Please study console output and adapt
parameters/files.”

exit
fi

#Catting and Sorting Bu↵er
cd ./ file bu↵er
sort bu↵er user weights ∗ > bu↵er cat sorted
rm bu↵er cat
cd ..

### USER WEIGHTS BUFFER COMBINE###
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if python3 user weights bu↵er combine.py $network to build; then
echo ”Exit code of 0, USER WEIGHTS BUFFER COMBINE reported success”

else
echo ”Exit code of $?, FAILURE in USER WEIGHTS BUFFER COMBINE. Please study console output and

adapt parameters/files.”
exit

fi

###network utils create basic graph and infomap community clustering, print modularity###
if python3 network utils.py $filename edges $folder network to build $quantile list ; then

echo ”Exit code of 0, NETWORK UTILS reported success”
else

echo ”Exit code of $?, FAILURE in NETWORK UTILS. Please study console output and adapt
parameters/files.”

exit
fi
cd ..
echo ”Exit code 0 for creation of Network 1 network user to entities”

fi

#### CREATION OF SECOND NETWORK 2 network user to entities ####
if [ ”$network prep 2 reduced” = true ]; then

folder network to build=”./2 network user to entities/”
filename edges=”user weights.csv”
network to build=”2”

### USER WEIGHTS CREATION ###
cd network prep
if python3 user weights network 2.py $cut top N entities $cut top M entities $network to build; then

echo ”Exit code of 0, USER WEIGHTS NETWORK 2 on network 2 reported success”
else

echo ”Exit code of $?, FAILURE in USER WEIGHTS NETWORK 2. Please study console output and adapt
parameters/files.”

exit
fi

###network utils create basic graph and infomap community clustering, print modularity###
if python3 network utils.py $filename edges $folder network to build $quantile list ; then

echo ”Exit code of 0, NETWORK UTILS on network 2 reported success”
else

echo ”Exit code of $?, FAILURE in NETWORK UTILS on network 2. Please study console output and adapt
parameters/files.”

exit
fi
cd ..
echo ”Exit code 0 for creation of Network 2 network user to entities”

fi

#### CREATION OF SECOND NETWORK 2 network user to entities ALTERNATIVE METHOD! DO NOT USE
IF NOT NECESSARY!####

if [ ”$network prep 2” = true ]; then
folder network to build=”./2 network user to entities/”
filename edges=”user weights.csv”
network to build=”2”

### USER WEIGHTS CREATION ###
cd network prep
if python3 user weights reduced.py $cut top N entities $cut top M entities $network to build; then

echo ”Exit code of 0, USER WEIGHTS REDUCED on network 2 reported success”
else

echo ”Exit code of $?, FAILURE in USER WEIGHTS REDUCED on network 2. Please study console output
and adapt parameters/files.”

exit
fi

#Catting and Sorting Bu↵er
cd ./ file bu↵er 2
sort bu↵er user weights ∗ > bu↵er cat sorted
cd ..

### USER WEIGHTS BUFFER COMBINE###
if python3 user weights bu↵er combine.py $network to build; then

echo ”Exit code of 0, USER WEIGHTS BUFFER COMBINE on network 2 reported success”
else

echo ”Exit code of $?, FAILURE in USER WEIGHTS BUFFER COMBINE on network2. Please study console
output and adapt parameters/files.”

exit
fi

###network utils create basic graph and infomap community clustering, print modularity###
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if python3 network utils.py $filename edges $folder network to build $quantile list ; then
echo ”Exit code of 0, NETWORK UTILS on network 2 reported success”

else
echo ”Exit code of $?, FAILURE in NETWORK UTILS on network 2. Please study console output and adapt

parameters/files.”
exit

fi
cd ..
echo ”Exit code 0 for creation of Network 2 network user to entities”

fi

echo ”Exit code of 0, all requested functions completed successfully.”
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