
Stable Models Idea
• The construction of perfect models can be done

without stratifying the program. Simply guess the
model, process it into P and see if its least model
coincides with the guess.

• If the program is stratified, the results coincide:
– A correct guess must coincide on the 1st strata;
– and on the 2nd (given the 1st), and on the 3rd …

• But this can be applied to non-stratified programs…



Stable Models Idea (cont)
• “Guessing a model” corresponds to “assuming

default negations not”. This type of reasoning is
usual in NMR
– Assume some default literals
– Check in P the consequences of such assumptions
– If the consequences completely corroborate the

assumptions, they form a stable model

• The stable models semantics is defined as the
intersection of all the stable models (i.e. what
follows, no matter what stable assumptions)



SMs: preliminary example
a ← not b c ← a  p ← not q
b ← not a c ← b  q ← not r r

Assume, e.g., not r and not p as true, and all other nots as false.
By processing this into P:

a ← false c ← a  p ← false
b ← false c ← b  q ← true r

Its least model is {not a, not b, not c, not p, q, r}
So, it isn’t a stable model:

By assuming not r, r becomes true
not a is not assumed and a becomes false



SMs example (cont)
a ← not b c ← a  p ← not q
b ← not a c ← b  q ← not r r
Now assume not b and not q as true, and all other nots as false.
By processing this into P:
a ← true c ← a  p ← true
b ← false c ← b  q ← false r

Its least model is {a, not b, c, p, not q, r}
I is a stable model
The other one is {not a, b, c, p, not q, r}
According to Stable Model Semantics:

c, r and p are true and q is false.
a and b are undefined



Stable Models definition
Let I be a (2-valued) interpretation of P. The definite
program P/I is obtained from P by:

• deleting all rules whose body has not A, and A ∈ I
• deleting from the bodies all the remaining default literals

ΓP(I) = least(P/I)

M is a stable model of P  iff M = ΓP(M).
• A is true in P iff A belongs to all SMs of P
• A is false in P iff A doesn’t belongs to any SMs of P
  (i.e. not A “belongs” to all SMs of P).



Properties of SMs

Stable models are minimal models
Stable models are supported
If P is locally stratified then its single stable

model is the perfect model
Stable models semantics assign meaning to

(some) non-stratified programs
– E.g. the one in the example before



Importance of Stable Models

Stable Models were an important contribution:
– Introduced the notion of default negation (versus

negation as failure)
– Allowed important connections to NMR. Started the

area of LP&NMR
– Allowed for a better understanding of the use of LPs

in Knowledge Representation
It is considered as THE semantics of LPs by a

significant part of the community.



Default Logic

• To deal with incomplete information and
default rules, Reiter introduced the Default
Logics

• A theory Δ is a pair <T,D> where:
– T is a set of 1st. order formulae (certain

knowledge)
– D is a set of default rules



Default Logic (Syntax)
• Default rules are of the form:

φ : ψ
γ

where φ, ψ and γ are formulae
–  φ are the pre-requisites
–  ψ are the justifications
–  γ are the conclusions

• Default rules with free variables are viewed as
macros standing for their ground instatiations



Meaning of defaults

• if φ is true, and it is consistent to assume ψ,
then conclude γ

• Rules are to be maximally applied
• The semantics has also to make clear:

– “true” where?
– “consistent” with what?
– how to add the conclusion?

φ : ψ
γ



Examples of default rules

bird(X) : flies(X)
flies(X)

true : ¬connection(X,Y)
¬connection(X,Y)

friend(X,Y), friend(Y,Z) : friend(X,Z)
friend(X,Z)

holds(F,S) : holds(F,res(A,S))
holds(F,res(A,S))

adult(X) : employed(X), ¬dropout(X)
employed(X)



Default Logics (Semantics)

Let Δ = <T,D> be a theory, and E a set of literals. ΓΔ(E) is
the smallest set such that:

• it contains all logical consequences of T
• it is closed under rules φ/γ where φ:ψ/γ ∈ D and

 T U E |≠ ¬ψ

E is a default extension of Δ iff
E = ΓΔ(E).



LP and Default Theories
Let ΔP be the default theory obtained by transforming:

H ← B1,…,Bn, not C1,…, not Cm

into: 
 B1,…,Bn : ¬C1,…, ¬Cm

H

There is a one-to-one correspondence between the SMs
of P and the default extensions of ΔP



LPs as defaults

• LPs can be viewed as sets of default rules
• Default literals are the justification:

– can be assumed if it is consistent to do so
– are withdrawn if inconsistent

• In this reading of LPs, ← is not viewed as
implication. Instead, LP rules are viewed as
inference rules.



Auto Epistemic Logic

• Adds a modal operator _ to denote
knowledge
– Allows expressing knowledge about the agent’s

own knowledge
• Eg.

– _A ∧ B ∧ ¬_C → D means “if I know A is true, B is
true, and I don’t know whether C is true, then D is true”.



AEL and incomplete knowledge

• Allows (non-monotonic) completion of the
knowledge:
– concert → _concert

“if there was a concert, I would know”. If I don’t have
evidence for concert (i.e. I don’t know concert), then
concert is false.

– bird(X) ∧ ¬flies(X) → _¬flies(X)
“I know all birds that do not fly”. Thus, if there is some
bird, for which I have no evidence of non-flying, I
conclude it doesn’t fly.



AEL (Moore’s Semantics)

• I know everything I can conclude from my
theory.

• I don’t know everything that I cannot
conclude from my theory (i.e. that doesn’t
belong to all models of the theory)

A consistent theory T* is an expansion of the AEL theory
T iff:

T* = T U {_F: T* |= F} U {¬_F: T* |≠ F}



LP and Auto-Epistemic Logic

Let ΤP be the AEL theory obtained by transforming:
H ← B1,…,Bn, not C1,…, not Cm

into:
B1 ∧ … ∧ Bn ∧ ¬ _C1 ∧ … ∧ ¬ _Cm → H

There is a one-to-one correspondence between the SMs
of P and the (Moore) expansions of ΤP



LPs as AEL theories

• LPs can be viewed as theories that refer to
their own knowledge

• Default negation not A is interpreted as “A
is not known”

• The LP rule symbol is here viewed as
material implication



Extended LPs
• In Normal LPs all the negative information is implicit. Though

that’s desired in some cases (e.g. the database with flight
connections), sometimes an explicit form of negation is needed
for Knowledge Representation

• “Penguins don’t fly” could be: noFly(X) ← penguin(X)
• This does not relate fly(X) and noFly(X) in:

fly(X) ← bird(X)
noFly(X) ← penguin(X)

For establishing such relations, and representing negative
information a new form of negation is needed in LP:

Explicit negation - ~



Extended LP: motivation
• ~ is also needed in bodies:

“Someone is guilty if is not innocent”
– cannot be represented by: guilty(X) ← not innocent(X)
– This would imply guilty in the absence of information

about innocent
– Instead, guilty(X) ← ~innocent(X) only implies guilty(X) if

X is proven not to be innocent
• The difference between not p and ~p  is essential

whenever the information about p cannot be assumed
to be complete



ELP motivation (cont)
• ~ allows for greater expressivity:

“If you’re not sure that someone is not innocent, then further
investigation is needed”

– Can be represented by:
investigate(X) ← not ~innocent(X)

• ~ extends the relation of LP to other NMR formalisms.
E.g
– it can represent default rules with negative conclusions and

pre-requisites, and positive justifications
– it can represent normal default rules



ELP Language
• An Extended Logic Program P is a set of rules:

L0 ← L1, …, Lm, not Lm+1, … not Ln   (n,m ≥ 0)

where the Li are objective literals
• An objective literal is an atoms A or its explicit

negation ~A
• Literals not Lj are called default literals
•  The Extended Herbrand base HP is the set of all

instantiated objective literals from program P
• We will consider programs as possibly infinite sets of

instantiated rules.



ELP Interpretations
• An interpretation I of P is a set

I = T U not F
where T and F are disjoint subsets of HP and

~L ∈ T  ⇒ L ∈ F   (Coherence Principle)
i.e. if L is explicitly false, it must be assumed false by
default

• I is total iff HP = T U F
• I is consistent iff ¬∃ L: {L, ~L} ⊆ T

– In total consistent interpretations the Coherence Principle is
trivially satisfied



Answer sets
• It was the 1st semantics for ELPs [Gelfond&Lifschitz90]
• Generalizes stable models to ELPs

Let M- be a stable models of the normal P- obtained by replacing in
the ELP P every ~A by a new atom A-. An answer-set M of P is
obtained by replacing A- by ~A in M-

A is true in an answer set M iff A ∈ M
A is false iff ~A ∈ M
Otherwise, A is unknown

Some programs have no consistent answer sets:
e.g. P = {a ←, ~a ← }



Answer sets and Defaults
Let ΔP be the default theory obtained by transforming:

L0 ← L1,…,Lm, not Lm+1,…, not Ln

into:     L1,…,Lm : ¬Lm+1,…, ¬Ln

L0

where ¬ ~A is (always) replaced by A

There is a one-to-one correspondence between the
answer-sets of P and the default extensions of ΔP



Answer-sets and AEL

Let ΤP be the AEL theory obtained by transforming:
L0 ← L1,…,Lm, not Lm+1,…, not Ln

into:
L1 ∧ _L1 ∧… ∧ Lm ∧ _Lm ∧

∧ ¬ _Lm+1 ∧ … ∧ ¬ _Lm ⇒ (L0 ∧ _L0)

There is a one-to-one correspondence between the
answer-sets of P and the expansions of ΤP



WFS motivation
• Answer-sets (and stable models) are a good tool for

representing knowledge. However:
– its computation is NP-complete
– it doesn’t comply with various structural properties, desirable

for goal-driven implementations
– in various application domains, it is important to have efficient

implementations for answering queries (that need not compute
the whole model)

• The Well Founded Semantics is a weaker semantics
– sound wrt stable models
– with polynomial time complexity
– amenable to goal-driven implementations



Cumulativity

A semantics Sem is cumulative iff for every P:
if A ∈ Sem(P) and B ∈ Sem(P) then B ∈ Sem(P U {A})

(i.e. all derived atoms can be added as facts, without changing the
program’s meaning)

This property is important for implementation:
without cumulativity, tabling methods cannot be used



Relevance
A directly depends on B if B occur in the body of some rule with head A. A
depends on B if A directly depends on B or there is a C such that A  directly
depends on C and C depends on B.

A semantics Sem is relevant iff for every P:
A ∈ Sem(P) iff A ∈ Sem(RelA(P))

where RelA(P) contains all rules of P whose head is A or
some B on which A depends on.

Only this property allows for the usual top-down execution
of logic programs.



The logic of here-and-there

• As a basis for studying the language of
answer sets and ist extensions, we look at
the logic of two worlds: here and there



At each world w a set of atoms i(w) is
verified

{H}
{T}

h

t

i(h) = H
i(t) = T



Minimal models

• We define a partial
ordering on models by

• Given a theory T, a
model <H,T> of T is
said to be minimal if
it is minimal among
models of T under the
ordering ≤〈H,T〉 ≤ 〈H’,T’〉 ⇔

T=T’ & H ⊆ H’



Equilibrium logic

• A model <H,T> of a theory T is said to be
an equilibrium model of T if it is a minimal
model of T and H=T.

• Equilibrium logic is determined by the class
of all equilibrium models of a theory, ie. a
formula a is an equil. consequence of T iff
a is true in all equil. models of T.



Some examples

• ¬¬a has no e. model
• ¬a –> b has a single e.

model
• ¬a —> b, ¬b —> a

has 2 e. models

• consider <{},{a}>
• <{b},{b}>, for

consider <{},{a}>
• <{a},{a}>, <{b},{b}>



Why negation-by-default?

• J-consequence: p is in CnJ(T) iff for all models M
and worlds w, if M,w |= T, then M,w |= p.

• J-completions: E is a J-completion of T iff
E=CnJ(T U {¬a: a  ∉  E})

• Observation: equilibrium models correspond to J-
completions

• Corollary: to reach equilibrium consistently add
negated sentences until complete



Examples

• ¬¬p cannot be consistently completed by
negation

• ¬¬p –> p can be completed by adding
either ¬p or ¬¬p. In this case one of the
corresponding e. models is “bigger” than
the other.



“Minimal” equilibrium logic

• taking J-completions by negated atoms
corresponds to selecting minimal
equilibrium models (ie minimal in their
verified atoms)



“Minimal” equilibrium logic

• defining J-completions using only the
negation of atoms corresponds to choosing
equilibrium models that are minimal (ie
minimal in the set of verified atoms)



Equilibrium logic with strong negation
• based on here-and-there with strong negation(studied by

Kracht, 1998). A 5-valued logic.
• equilibrium construction is the same, but at each world sets

of literals(atoms and strongly negated atoms) are verified.
• Again, minimise true literals wrt (weakly) false literals. e.

models are those whose literals are either true or weakly
false.



Examples

• Let T = ~ b; c –> b;
¬ c –> d; ¬ d –> c.

• Let T = ~ a; a –> c;
b –> a; ¬ b –> b.

• Let T = ~ b; ¬ a –> b

• Equilibrium model of
T is <{~b,d},{~b,d}>

• T is inconsistent (no
model)

• T has no e-model, by
<{~b},{~b,a}>



Equilibrium logic with strong negation
• Based on here-and-there with strong negation(studied by

Kracht, 1998). A 5-valued logic.
• Equilibrium construction is the same, but at each world

sets of literals(atoms and strongly negated atoms) are
verified.

• Again, minimise true literals wrt (weakly) false literals. e.
models are those whose literals are either true or weakly
false.



Syntactic Method : completion
logics

• The idea: consider an intermediate logic L and a
theory T in L. In palce of the L-consequences of
T, form extensions E of T (called completions)
that are complete in the sense that α∉E ⇒ ¬α∈E.
the logic L* is determined by the formulas true in
all completions of T.



Syntactic Method : completion
logics

• If L is an intermediate logic, T a theory in L. E is
an L-completion of T iff

• E=CnL(T U {¬a: a ∉ E}).
• Define a logic L* (in general nonmonotonic) such

that α∈CL*(T) if α∈E for each L-completion E of
T.



Examples in J*

• ¬¬p cannot be completed consistently
adding negated sentences

• ¬¬p –> p can be completed adding either
¬p or ¬¬p. Each determines a completion.



Observations

• The logic J* coincides con with the logic of
equilibrium

• N5* coincides with N5-equilibrium
• Define J*min as J* with completions E such that

E=CnL(T U {¬a: a ∉ E}) for an atom a.
• then J*min is the logic of equilibrium models that

are minimal in the works ‘there’.



Stable model and answer set semantics

• Stable models first defined for normal logic
programs(1988); ie for sets of formulas

a1 & ..& an & ¬b1 &...& ¬bm –> c, where a,b,c ´s
are atoms.

• Answer sets generalise (1990) to disjunctive and
extended programs, ie formulas

  a1 & ..& an & ¬b1 &...& ¬bm–>c1 v..v ck,
 where a,b,c ´s are literals.



Some observations

• On normal, disjunctive and extended logic
programs, stable models (resp. answer sets)
correspond (exactly) to equilibrium models.

• The logic J of here-and-there is a maximal
deductive basis for answer set inference, ie max
monotonic sublogic in which equivalent theories
have the same answer sets.



Further observations

• Stable models of a program P correspond to the J-
completions of P. But this can be extended:

• (1) it suffices to complete by negated atoms;
• (2) J can be replaced by intuitionistic logic H.
• (3) for extended programs replace H by N



Correspondences

• Each intermediate logic I has modal companions S
under the Gödel (1933) translation t.

• In t(p) each subformula a of p is replaced by La.



Inter-
mediate
logics I

Modal
companions
S

H S4

Gödel transation t

|-I p    ⇔    |-s t(p)

Correspondences



• Do these embeddings lift to the nonmonotonic
case? Consider

vs

Correspondences

E = CnJ(P ∪ {¬a  : a ∉ E})

E = CnS(P ∪ {¬La  : a ∉ E})



• If P is a logic program, then Gödel embedding
extends, since completion is by negated atoms. So
eg. stable models correspond to S4 expansions.

Correspondences



Programs with nested expressions Lifschitz,
Tang, Turner, 1998

• Motivation: in addition to usual program rules,
allow rules such as

p <– ¬ (q, ¬r)     or   p <– (q –> r; s) or even
p; ¬q <– ¬~r

• Provide an adequate semantics that extends
answer sets to such cases



Nested expressions

• Step 1: consider formulas of form F –> G, where
F,G are any boolean combinations of atoms and
strongly negated atoms (literals).

• Step 2: extend the concept of program reduct
inductively to all boolean combinations of literals,
and then to implications (F –> G).

• Step 3: define answer set S in usual way, ie as
minimal model of P reduced by S.



Some facts

• Any program is (answer set) equivalent to a
program with formulas of form

a1 & ..& an & ¬b1 &...& ¬bm–>c1 v..v ck v ¬d1 v..v ¬ dl

generalised answer sets correspond to
equilibrium models



Some (LP-relevant) behaviour

• Representing conditional antecedents (bodies):-
• Can one re-write
• (F –> G) –> H  by  ¬ (F& ¬ G) –> H ?
• Yes. If P is any program, then P U (a –> b) –> c

and P U ¬ (a & ¬ b) –> c  have the same
equilibrium models.

• But note that replacing (F –> G) by (¬F v G)
produces a different result.



Conservative extensions

• Introduce into a program P a new predicate by
definition. Eg consider the program P’ =
P U {F –> r} where F is a formula in language of
P, and r is a new predicate (atom).

• The extended program P’ is a conservative
extension of P. For any formula G in language of
P, P |~  G  iff  P’  |~  G  .(Where |~ is equiibrium.
consequence).



Stable vs partial stable inference

• Note that stable
inference is supra-
classical,

• but classical logic is
not a basis for stable
inference...

• ¬ a –> b and ¬b –> a
are class. equivalent

• Likewise WF-
inference (or inference
on P-stable models) is
supra-intuitionistic

• but H is not a basis for
WF-inference ....

• in H, ¬ a –> a derives
¬ a –> b.



P- stable models

• P-stable models can be represented as J-models,
• but do not appear to be characterisable (as

minimal models) in the logic of here-and-there.
• Suggestion: change to (extensions of) minimal

logic.



further observations

• Stable models of a program P correspond to the J-
completions of P. But this can be extended:

• (1) it suffices to complete by negated atoms;
• (2) J can be replaced by intuitionistic logic H.
• (3) for extended programs replace H by N



Stable Models (corollary 1)

• Let P be a logic program (normal or
disjunctive)

• M is a stable model of P iff
• Th(M) = CnH(P U {¬a: a ∉ Th(M)})

(for atoms a), or
• Th(M) = CnJ(P U {¬a: a ∉ Th(M)})


