## Lógica y Metodos Avanzados de Razonamiento

# Today: Introduction to propositional and first-order logic

Axel Polleres axel.polleres@urjc.es

#### Overview:

- Why logics? An example
- Propositional logics
  - Syntax, Semantics
- First-order Logics
  - Why is propositional logics not enough?
  - Syntax, Semantics
- Exercises

#### An example for reasoning: The "Wumpus World"

- Environment
  - Squares adjacent to wumpus are smelly (stench) 3
  - Squares adjacent to pit are breezy

We want to move around in this world, without being eaten by the Wumpus or falling into pits!

Sensors: Stench, Breeze





From: no stench and no breeze at [1,1] you can infer that [1,2] and [2,1] are both safe...





So, the only save place is to go back to [1,2]... ... but there's an awful stench...



Since there's no breeze at [1,2] however, and there was no stench at [2,1] you can infer that [2,2] is ok!





No breeze no stench... thus [3,2] and [2,3] both safe!

Probably you all did similar "inferences" already playing some computer games, can you program an agent playing "Minesweeper"®?

What about more tasks? E.g. a crawler exploring webpages following links according to certain rules...

# Logic in general

- Logics are formal languages for representing information such that *conclusions* can be drawn
- Syntax defines the sentences in the language
- Semantics define the "meaning" of sentences;
  - i.e., define truth of a sentence in a world
- E.g., the language of arithmetic
  - $x+2 \ge y$  is a sentence;  $x^2+y \ge \{\}$  is not a sentence
  - $x+2 \ge y$  is true iff the number x+2 is no less than the number y
  - $x+2 \ge y$  is true in a world where x = 7, y = 1
  - $x+2 \ge y$  is false in a world where x = 0, y = 6

#### Entailment

Entailment means that one thing follows from another:
 "entails"



- Knowledge base KB entails sentence α if and only if α is true in all worlds where KB is true
  - E.g., the KB containing "It is sunny" and "It is warm" entails "It is sunny or it is warm"
  - E.g., x+y = 4 (plus basic mathematical knowledge!) entails 4 = x+y
  - Entailment is a relationship between sentences (i.e., syntax) that is based on semantics

## Models

- Logicians typically think in terms of models, which are formally structured worlds with respect to which truth can be evaluated
- We say *m* is a model of a sentence  $\alpha$  if  $\alpha$  is true in *m*
- $M(\alpha)$  is the set of all models of  $\alpha$
- Then KB  $\models \alpha$  iff  $M(KB) \subseteq M(\alpha)$ 
  - E.g. *KB* = it is sunny and It is warm
  - $\alpha$  = it is sunny



# Entailment in the wumpus world

Situation after detecting nothing in [1,1], moving right, breeze in [2,1]

Consider possible models for *KB* assuming **only pits** 

3 Boolean choices  $\Rightarrow$  8 possible models (interpretations)

| ? | ? |  |
|---|---|--|

#### Wumpus models

















## Wumpus models



• *KB* = wumpus-world rules + observations

## Wumpus models



- *KB* = wumpus-world rules + observations
- $\alpha_1 = [1,2]$  is safe", *KB*  $\models \alpha_1$ , can be proven logically!



- *KB* = wumpus-world rules + observations
- $\alpha_2 = "[2,2]$  is safe",  $KB \not\models \alpha_2$

#### Inference

"proves"

- $KB(\downarrow_i \alpha = \text{sentence } \alpha \text{ can be derived from } KB \text{ by procedure } i$
- Soundness: *i* is sound if whenever  $KB \models_i \alpha$ , it is also true that  $KB \models \alpha$
- Completeness: *i* is complete if whenever  $KB \models \alpha$ , it is also true that  $KB \models_i \alpha$
- That is, the procedure will answer any question whose answer follows from what is known by the *KB* correctly.

# **Propositional logic: Syntax**

- Propositional logic is the simplest logic illustrates basic ideas; its syntax is easily definable recursively as follows:
- A propositional alphabeth  $\mathcal{A}$  consists of a set of proposition symbols, e.g. P<sub>1</sub>, P<sub>2</sub> etc.
- Formulas are defined recursively:
  - The proposition symbols in A etc are sentences (aka formulae)
  - If S is a sentence,  $\neg$ S is a sentence (negation)
  - If  $S_1$  and  $S_2$  are sentences,  $S_1 \wedge S_2$  is a sentence (conjunction)
  - If  $S_1$  and  $S_2$  are sentences,  $S_1 \vee S_2$  is a sentence (disjunction)
  - If  $S_1$  and  $S_2$  are sentences,  $S_1 \rightarrow S_2$  is a sentence (implication)
  - If  $S_1$  and  $S_2$  are sentences,  $S_1 \leftrightarrow S_2$  is a sentence (double-implication)

# **Propositional logic: Semantics**

Each model specifies true/false for each proposition symbol

E.g.  $P_{1,2}$   $P_{2,2}$   $P_{3,1}$ false true false

With these symbols, 8 possible models (interpretations) for three propositions, can be enumerated automatically.

Rules for evaluating truth with respect to an interpretation *m*:

| ¬S                               | is true  | iff | S is false                                                      |
|----------------------------------|----------|-----|-----------------------------------------------------------------|
| $S_1 \wedge S_2$                 | is true  | iff | S <sub>1</sub> is true and S <sub>2</sub> is true               |
| $S_1 v S_2$                      | is true  | iff | $S_1$ is true or $S_2$ is true                                  |
| $S_1 \rightarrow \overline{S_2}$ | is true  | iff | $S_1$ is false or $S_2$ is true                                 |
| i.e.,                            | is false | iff | S <sub>1</sub> is true and S <sub>2</sub> is false              |
| $S_1 \leftrightarrow S_2$        | is true  | iff | $S_1 \rightarrow S_2$ is true and $S_2 \rightarrow S_1$ is true |

Simple recursive process evaluates an arbitrary sentence wrt. an interpretation, e.g.,

 $\neg P_{1,2} \land (P_{2,2} \lor P_{3,1}) = true \land (true \lor false) = true \land true = true$ 

#### Truth tables for connectives

| P     | Q     | $\neg P$ | $P \wedge Q$ | $P \lor Q$ | $P \rightarrow Q$ | $P \leftrightarrow Q$ |
|-------|-------|----------|--------------|------------|-------------------|-----------------------|
| false | false | true     | false        | false      | true              | true                  |
| false | true  | true     | false        | true       | true              | false                 |
| true  | false | false    | false        | true       | false             | false                 |
| true  | true  | false    | true         | true       | true              | true                  |

#### Wumpus world sentences

Let  $P_{i,j}$  be true if there is a pit in [i, j]. Let  $B_{i,j}$  be true if there is a breeze in [i, j].

• Observations:

$$\neg P_{1,1} \land \neg B_{1,1} \land \neg P_{2,1} \land B_{2,1}$$

• Rules: "Pits cause breezes in adjacent squares"

 $(\mathsf{B}_{1,1}\leftrightarrow(\mathsf{P}_{1,2}\vee\mathsf{P}_{2,1})) \land (\mathsf{B}_{2,1} \leftrightarrow(\mathsf{P}_{1,1}\vee\mathsf{P}_{2,2}\vee\mathsf{P}_{3,1}))$ 

## Truth tables for inference

Remember: we want to prove:  $\alpha_1 = "[1,2]$  is safe", i.e., KB = Observations  $\land$  Rules  $\alpha_1 = \neg P_{1,2}$ 

| $B_{1,1}$                          | $B_{2,1}$ | $P_{1,1}$ | $P_{1,2}$ | $P_{2,1}$ | $P_{2,2}$ | $P_{3,1}$ | KB                 | $\alpha_1$  |
|------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|--------------------|-------------|
| false                              | false     | false     | false     | false     | false     | false     | false              | true        |
| false                              | false     | false     | false     | false     | false     | true      | false              | true        |
| :                                  | :         | :         | :         | :         | :         | :         | :                  | :           |
| false                              | true      | false     | false     | false     | false     | false     | false              | true        |
| false                              | true      | false     | false     | false     | false     | true      | true               | <u>true</u> |
| false                              | true      | false     | false     | false     | true      | false     | $\underline{true}$ | <u>true</u> |
| false                              | true      | false     | false     | false     | true      | true      | <u>true</u>        | true        |
| false                              | true      | false     | false     | true      | false     | false     | false              | true        |
| :                                  | :         | :         | :         | :         | :         |           | :                  | :           |
| true                               | true      | true      | true      | true      | true      | true      | false              | false       |
|                                    |           | ·         |           | ·         |           |           | y                  |             |
| <b>K</b> B <b>⊨</b> α <sub>1</sub> |           |           |           |           |           |           |                    |             |

#### Extremely naïve Inference by enumeration

• Depth-first enumeration of all models is sound and complete

```
function TT-ENTAILS?(KB, \alpha) returns true or false

symbols \leftarrow a list of the proposition symbols in KB and \alpha

return TT-CHECK-ALL(KB, \alpha, symbols, [])

function TT-CHECK-ALL(KB, \alpha, symbols, model) returns true or false

if EMPTY?(symbols) then

if PL-TRUE?(KB, model) then return PL-TRUE?(\alpha, model)

else return true

else do
```

 $P \leftarrow \text{First}(symbols); rest \leftarrow \text{Rest}(symbols)$ 

return TT-CHECK-ALL(*KB*,  $\alpha$ , rest, EXTEND(*P*, true, model) and TT-CHECK-ALL(*KB*,  $\alpha$ , rest, EXTEND(*P*, false, model)

- PL-TRUE evaluates a sentence recursively wrt. to an interpretation, see slide 25.
- EXTEND(s,v,m) extends the partial model m by assigning value v to symbol s.
- For *n* symbols, time complexity is  $O(2^n)$ , space complexity is O(n)

## Logical equivalence

 Two sentences are logically equivalent iff they are true in same models: α ≡ ß iff α ⊨ β and β ⊨ α

 $(\alpha \wedge \beta) \equiv (\beta \wedge \alpha)$  commutativity of  $\wedge$  $(\alpha \lor \beta) \equiv (\beta \lor \alpha)$  commutativity of  $\lor$  $((\alpha \land \beta) \land \gamma) \equiv (\alpha \land (\beta \land \gamma))$  associativity of  $\land$  $((\alpha \lor \beta) \lor \gamma) \equiv (\alpha \lor (\beta \lor \gamma))$  associativity of  $\lor$  $\neg(\neg \alpha) \equiv \alpha$  double-negation elimination  $(\alpha \rightarrow \beta) \equiv (\neg \beta \rightarrow \neg \alpha)$  contraposition  $(\alpha \rightarrow \beta) \equiv (\neg \alpha \lor \beta)$  implication elimination  $(\alpha \leftrightarrow \beta) \equiv ((\alpha \rightarrow \beta) \land (\beta \rightarrow \alpha))$  biconditional elimination  $\neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta)$  de Morgan  $\neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta)$  de Morgan  $(\alpha \land (\beta \lor \gamma)) \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma))$  distributivity of  $\land$  over  $\lor$  $(\alpha \lor (\beta \land \gamma)) \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma))$  distributivity of  $\lor$  over  $\land$ 

## Validity and satisfiability

A sentence is valid if it is true in all models, e.g., *True*,  $A \lor \neg A$ ,  $A \to A$ ,  $(A \land (A \to B)) \to B$ 

Validity is connected to Entailment via the Deduction Theorem:  $KB \vDash \alpha$  if and only if  $(KB \rightarrow \alpha)$  is valid, often written  $\vDash (KB \rightarrow \alpha)$ 

A sentence is satisfiable if it is true in some model e.g., Av B, C

A sentence is unsatisfiable if it is true in no models e.g., A ^¬A

Satisfiability is connected to Entailment as follows:

 $KB \models \alpha$  if and only if  $(KB \land \neg \alpha)$  is unsatisfiable

## Proof methods

- We already learned a naïve proof method for propositional logic!
- In the course of this lecture we will learn more different logics and different proof methods!
- Proof methods (for propositional logics) divide into (roughly) two kinds:
  - Application of inference rules
    - Legitimate (sound) generation of new sentences from old
    - Proof = a sequence of inference rule applications
       Can use inference rules as operators in a standard search algorithm
    - Often require transformation of sentences into a normal form
  - Model checking
    - Truth table enumeration (always exponential in *n*)
    - Other methods, improved backtracking, e.g., Davis-Putnam-Logemann-Loveland (DPLL)
    - heuristic search in model space (sound but incomplete)

e.g., min-conflicts-like hill-climbing algorithms

## What we learned so far?

- How to write down knowledge as a propositional logical theory (Syntax)
- What does a logical theory mean (Semantics)
- How can we proof entailment naively

#### From propositional logic to first-order logic:

- Propositional logic has very limited expressive power
  - (unlike natural language)
  - E.g., cannot say "pits cause breezes in adjacent squares"
    - except by writing one sentence for each square
- Whereas propositional logic assumes the world contains facts (=propositional symbols),
- first-order logic (like natural language) assumes the world contains
  - Objects (constant symbols): people, houses, numbers, colors, baseball games, wars, …
  - Relations (predicate symbols): red, round, prime, brother of, bigger than, part of, comes between, ...
  - Functions (function symbols): father of, best friend, one more than, plus, …

#### Syntax of FOL: Basic elements

- Constants KingJohn, 2, NUS,...
- Predicate symbols Brother, >,...
- Function symbols Sqrt, LeftLegOf,...
- Variables x, y, a, b,...
- Connectives  $\neg, \rightarrow, \wedge, \nu, \leftrightarrow$
- Equality =
- Quantifiers  $\forall$ ,  $\exists$

#### Atomic sentences

Atomic sentences:

predicate  $(term_1, ..., term_n)$ or  $term_1 = term_2$ 

Terms:

*function* (*term*<sub>1</sub>,...,*term*<sub>n</sub>) or *constant* or *variable*  Remark: equality is a special Predicate with a fixed semantics!

 E.g., Brother(KingJohn,RichardTheLionheart) > (Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn)))

#### **Complex sentences**

- Again, as in propositional logics, complex sentences are made from atomic sentences using connectives
   ¬S, S₁ ∧ S₂, S₁ ∨ S₂, S₁ → S₂, S₁ ↔ S₂,
- E.g. Sibling(KingJohn,Richard)  $\rightarrow$ Sibling(Richard,KingJohn) >(1,2)  $\vee \leq (1,2)$ >(1,2)  $\wedge \neg >(1,2)$

# Truth in first-order logic

- Sentences are true with respect to a model and an interpretation
- Model contains objects (domain elements) and relations among them
- Interpretation specifies referents for constant symbols ⇒ objects predicate symbols ⇒ relations function symbols ⇒ functions
- An atomic sentence predicate(term<sub>1</sub>,...,term<sub>n</sub>) is true iff the objects referred to by term<sub>1</sub>,...,term<sub>n</sub> are in the relation referred to by predicate



## Truth in the example

Consider the interpretation in which  $Richard \Rightarrow$  Richard the Lionheart  $John \Rightarrow$  the evil King John  $Brother \Rightarrow$  the brotherhood relation

Under this interpretation, Brother(Richard, John) is true just in case Richard the Lionheart and the evil King John are in the brotherhood relation in the model

## Models in FOL

Entailment in propositional logic can be computed by enumerating models

We **can** enumerate the FOL models for a given KB vocabulary:

For each number of domain elements n from 1 to  $\infty$ For each k-ary predicate  $P_k$  in the vocabulary For each possible k-ary relation on n objects For each constant symbol C in the vocabulary For each choice of referent for C from n objects ...

Computing entailment by enumerating FOL models is not easy!

... probably not a good idea to try to enumerate models.
 ... you should have heard (in some previous lectures) that
 FOL nonentailment is even **undecidable**, i.e. cannot be computed <sup>(3)</sup>

## Universal quantification

• ∀<variables> <sentence>

"Everyone at URJC is smart":  $\forall x At(x, URJC) \rightarrow Smart(x)$ 

- ∀x *P* is true in a model *m* iff *P* is true with *x* being **each** possible object in the model
- Roughly speaking, equivalent to the conjunction of instantiations of P

At(KingJohn, URJC)  $\rightarrow$  Smart(KingJohn)

- $\land \quad At(Richard, URJC) \rightarrow Smart(Richard)$
- $\land \quad At(URJC, \, URJC) \rightarrow Smart(URJC)$

۸ ...

# A common mistake to avoid

- Typically,  $\rightarrow$  is the main connective with  $\forall$
- Common mistake: using ∧ as the main connective with ∀:
   ∀x At(x,UIBK) ∧ Smart(x) means "Everyone is at UIBK and everyone is smart"

• Correct:  $\forall x At(x, UIBK) \rightarrow Smart(x)$ 

## Existential quantification

- 3<variables> <sentence>
- "Someone at URJC is smart":
- $\exists x \operatorname{At}(x, \operatorname{URJC}) \land \operatorname{Smart}(x)$
- $\exists x P$  is true in a model *m* iff *P* is true with *x* being **some** possible object in the model
- Roughly speaking, equivalent to the disjunction of instantiations of P
  - At(KingJohn,URJC) ∧ Smart(KingJohn)
  - v At(Richard,URJC) ^ Smart(Richard)
  - v At(UIBK,URJC) ^ Smart(UIBK)
  - ۷ ...

#### Another common mistake to avoid

- Typically,  $\land$  is the main connective with  $\exists$
- Common mistake: using  $\rightarrow$  as the main connective with <code>∃</code>:

 $\exists x At(x, URJC) \rightarrow Smart(x)$ 

is true if there is anyone who is not at URJC!

Usually used in **Queries**: "Is there someone in URJC who is smart?" Correct:  $\exists x \ At(x, UIBK) \land Smart(x)$ 

# **Properties of quantifiers**

- $\forall x \forall y \text{ is the same as } \forall y \forall x$
- $\exists x \exists y is the same as \exists y \exists x$
- $\exists x \forall y \text{ is not the same as } \forall y \exists x$
- $\exists x \forall y Loves(x,y)$ 
  - "There is a person who loves everyone in the world"
- $\forall y \exists x Loves(x,y)$ 
  - "Everyone in the world is loved by at least one person"
- Quantifier duality: each can be expressed using the other
- ∀x Likes(x,IceCream) ¬∃x ¬Likes(x,IceCream)
   ∃x Likes(x,Broccoli) ¬∀x ¬Likes(x,Broccoli)

# Equality

- term<sub>1</sub> = term<sub>2</sub> is true under a given interpretation if and only if term<sub>1</sub> and term<sub>2</sub> refer to the same object
- E.g., definition of Sibling in terms of Parent: ∀x,y Sibling(x,y) ↔ [¬(x = y) ∧ ∃m,f ¬ (m = f) ∧ Parent(m,x) ∧ Parent(f,x) ∧ Parent(m,y) ∧ Parent(f,y)]

# Using FOL

#### The family domain:

- Brothers are siblings  $\forall x, y \ Brother(x, y) \rightarrow Sibling(x, y)$
- One's mother is one's female parent
   ∀m,c motherOf(c) = m ↔ (Female(m) ∧ Parent(m,c))
- "Sibling" is symmetric  $\forall x, y \ Sibling(x, y) \leftrightarrow Sibling(y, x)$

Attention! motherOf is a function symbol here, whereas Fmale and Parent are predicate symbols!!!

#### Now to the formal part!

- So far we only treated FOL quite informally...
- ... Now let us introduce syntax and semantics formally!

#### First Order Logic - Syntax

#### First-Order Language - Signature:

-constants sometimes are denoted *0-ary* function symbols

- A set of *constants*, e.g. *axel*, *logica*, 1,2,3,4, ...
- a set of *function symbols*, each with a fixed *arity* ≥ 0 e.g.
   *f*, *g*, *date*, *motherOf*

f(x), g(x,y), date(24,3,1974)

 a set of *predicate symbols*, each with a fixed *arity* ≥ 0 e.g. *p,ok,holdsLecture, female*

p(x,f(y)), ok, holdsLecture(axel, logica, date(18, 10, 2006))

- a set of **variables**, e.g. *x*,*y z*,...
- connectives:  $\land \lor \leftarrow \rightarrow \leftrightarrow \neg$
- quantifiers:  $\forall \exists$
- punctuation symbols: (),

#### First Order Language - Syntax: Terms

- **Terms** consist of constants, function symbols and variables:
  - a **variable** is a term
  - each **constant** (0-ary function symbol) is a term
  - if f is an n-ary **function symbol** with n>0 and

 $t_1, \ldots, t_n$  are terms then  $f(t_1, \ldots, t_n)$  is a term.

#### First Order Language - Syntax: Formulas

- Formulae consist of predicates, punctuation symbols, quantifiers connectives:
  - if *p* is an n-ary predicate symbol with  $n \ge 0$  and  $t_1, ..., t_n$  are terms then  $p(t_1, ..., t_n)$  is a formula (atomic formula, or atoms)
  - if *F*,*G* are formulae, so are  $(\neg F)$ ,  $(F \lor G)$ ,  $(F \land G)$ ,  $(F \leftarrow G)$ ,  $(F \rightarrow G)$ ,  $F \leftrightarrow G$ )
  - if *F* is a formula and *x* is a variable then  $\exists x F \text{ and } \forall x F$ 
    - are formulae as well
  - atoms and there negations are also called "literals".

Precedence of connectives:

| ¬,∀,∃                     | negation, for all, exists |
|---------------------------|---------------------------|
| $\vee$                    | or                        |
| $\wedge$                  | and                       |
| $\leftarrow, \rightarrow$ | left/right implication,   |
| $\leftrightarrow$         | equivalence               |

Following these precedence rules, parentheses may be skipped.

#### Some examples... \*

| $\forall x f(x,x) \land g$                                                                 | no  |
|--------------------------------------------------------------------------------------------|-----|
| $\exists y p(x,f(x,y)) \rightarrow q(g(y))$                                                | yes |
| $\exists x p(x, f(x, y)) \rightarrow q(f(y))$                                              | no  |
| $\forall x \forall y (anc(x,y) \land father(y,z) \rightarrow anc(x,z))$                    | yes |
| $\forall x \exists y p(x,y)$                                                               | yes |
| $\exists y \forall x p(x,y)$                                                               | yes |
| $\forall x \forall y (anc(x,y) \land (father(y,z) \lor mother(y,z)) \rightarrow anc(x,z))$ | yes |
| $\forall x \forall y (add(succ(x), y, succ(z)) \leftarrow add(x, y, z))$                   | yes |
| $\exists x \neg p(x,f(x,y)) \lor q(g(y))$                                                  | yes |
| p(f(g(x),y),f(f(x,x),x))                                                                   | yes |
| $\neg p(f(g(x),y),p(f(x,x),x))$                                                            | no  |
| $\forall x (person(x) \land \neg sleeping(x) \rightarrow awake(x))$                        | yes |

\* Here *f*,*g*,*h*,... denote function symbols, *p*,*q*,*r*,*s*,... denote predicate symbols

Bounded variables, scope and closed formulae:

• For a formula

$$\forall x F \text{ or } \exists x F$$

the **scope** of x is F. Each occurrence of x in F is **bound**. Occurrences of variables out of the scope of a quantifier are called **free**.

• Examples:

 $\forall x ((\exists x q(y, f(x))) \lor p(x)) \land r(x)$  $\exists y p(x, f(x, y)) \to q(g(y))$ 

- A formula without free variable occurrences is called **closed**,
- Closed formulas are also called sentences
- Shortcut:

$$\forall (F) \text{ (or } \exists (F), \text{resp.)}$$

denotes the universal (or existential, resp.) closure of a formula, i.e. the formula obtained by universally/existentially quantifying all free variables in F.

#### Interpretations and variable assignments:

Interpratations give some meaning to function symbols and predicate symbols...

- An interpretation 1 consists of:
  - a domain *D* over which the variables can range
  - for each n-ary *function symbol* f a *mapping* f' from  $D^n \rightarrow D$ (particularly each constant is assigned an element of D)
  - for each n-ary *predicate symbol* an n-ary *relation* over the domain *D*, i.e. a mapping from *D<sup>n</sup>* to {*true,false*}
- A variable assignment  $\mathcal{V}$  wrt. an interpretation  $\mathcal{I}$  is an assignment of an element of D to each variable.

# Truth Value of a Formula wrt. an Interpretation ${\it 1}$ and a variable assignment ${\it V}$

• Let  $\mathcal{I}$  be an interpretation and  $\mathcal{V}$  a variable assignment. Then each formula W is given a truth value  $\in \{true, false\}$ , written  $Val^{\mathcal{I},\mathcal{V}}(W)$  as follows:

(a) If W is an atomic formula  $p(t_1, \ldots, t_n)$  then

$$Val^{\mathcal{I},\mathcal{V}}(p(t_1,\ldots,t_n)) = \begin{cases} true & \text{iff } p^{\mathcal{I}}(t_1^{\mathcal{I},\mathcal{V}},\ldots,t_n^{\mathcal{I},\mathcal{V}}) = true \\ false & \text{otherwise} \end{cases}$$

(b) If W is of the form

$$\neg G \text{ then } Val^{\mathcal{I},\mathcal{V}}(W) = \begin{cases} true & \text{iff } Val^{\mathcal{I},\mathcal{V}}(G) = false \\ false & \text{otherwise} \end{cases}$$

$$F \wedge G \text{ then } Val^{\mathcal{I},\mathcal{V}}(W) = \begin{cases} true & \text{iff } Val^{\mathcal{I},\mathcal{V}}(G) = false \\ true & \text{iff } Val^{\mathcal{I},\mathcal{V}}(F) = true \text{ and } Val^{\mathcal{I},\mathcal{V}}(G) = true \\ false & \text{otherwise} \end{cases}$$

$$F \vee G \text{ then } Val^{\mathcal{I},\mathcal{V}}(W) = \begin{cases} true & \text{iff } Val^{\mathcal{I},\mathcal{V}}(F) = true \text{ or } Val^{\mathcal{I},\mathcal{V}}(G) = true \\ false & \text{otherwise} \end{cases}$$

$$F \to G \text{ then } Val^{\mathcal{I},\mathcal{V}}(W) = \begin{cases} true & \text{iff } Val^{\mathcal{I},\mathcal{V}}(F) = false \text{ or } Val^{\mathcal{I},\mathcal{V}}(G) = true \\ false & \text{otherwise} \end{cases}$$

$$\exists xF \text{ then } Val^{\mathcal{I},\mathcal{V}}(W) = \begin{cases} true & \text{iff there exists } a \ d \in D \ with \ Val^{\mathcal{I},\mathcal{V}(x/d)} = true \\ false & \text{otherwise} \end{cases}$$

$$\forall xF \text{ then } Val^{\mathcal{I},\mathcal{V}}(W) = \begin{cases} true & \text{iff for all } d \in D \ Val^{\mathcal{I},\mathcal{V}(x/d)} = true \\ false & \text{otherwise} \end{cases}$$

where  $\mathcal{V}(x/d)$  is  $\mathcal{V}$  except that d is assigned to x

• Remark: The truth value of a <u>closed formula</u> does not depend on V. So, we speak of truth values wrt. an interpretation *I*, i.e.Val<sup>I</sup>).

# Models for closed formulae:

- An interpretation  $\mathcal{M}$  of a closed Formula F is called a model iff  $Val^{\mathcal{M}}(F) = true$
- Analogously to propositional logic, a closed formula *F* is called:
  - satisfiable ... if it has a model
  - valid ... if any interpretation is a model
  - unsatisfiable ... if it doesn't have a model
  - nonvalid ... if there exists an interpretation which is not a model
- Logical consequence as in propositional logic: F ⊨ G
   Read: "every model of F is also a model of G"

#### More examples

(1)  $\forall x \forall y (anc(x,y) \land father(y,z) \rightarrow anc(x,z))$ 

(2)  $\forall x \forall y (anc(x,y) \land (father(y,z) \lor mother(y,z)) \rightarrow anc(x,z))$ 

(1) is satisfiable but non-valid: D = {franz, sepp, maria, karl, uwe, anna} anc ... ancestor relation father(x,y) ... x is father of y mother(x,y) ... x is mother of y

Analogously, (2) is satisfiable but non-valid

 $(2) \rightarrow (1)$  is valid!

(3) 
$$father(sepp, hans) \land father(hans, karl) \land$$
  
 $\forall x \forall y (\forall z \ grandpa(x, y) \leftarrow father(x, z) \land father(z, y)) \land$   
 $\forall x \neg grandpa(sepp, x)$ 

is unsatisfiable!

(For the moment you have to believe this, but we'll find out how to prove this in FOL)!

## Remark:

- The notion of interpretations, models, satifiability and validity can be expanded to sets of (closed) formulae (i.e. to sets of clauses) straightforwardly:
- A set of closed formulae  $S = \{F_1, ..., F_n\}$ is then simply viewed as the conjunction  $F_1 \land ... \land F_n$

#### Some books:

- Michael R A Huth and Mark D Ryan: *Logic in Computer Science,* Cambridge University Press, 2001.
- Uwe Schöning: *Logic for Computer Scientists,* Birkhäuser Verlag, 1999.
- J.W.Lloyd: Foundations of Logic Programming, Second edition. Springer, 1987.

#### Exercises: