Logica y Metodos Avanzados
de Razonamiento

Today: Introduction to propositional
and first-order logic

Axel Polleres
axel.polleres@urjc.es

Overview:

Why logics? An example
Propositional logics

— Syntax, Semantics

First-order Logics

— Why is propositional logics not enough??
— Syntax, Semantics

Exercises

An example for reasoning:

The “Wumpus World”

4

Environment
— Squares adjacent to wumpus are smelly (stench) ;
— Squares adjacent to pit are breezy

We want to move around in this world, without
being eaten by the Wumpus or falling into pits! ‘

Sensors: Stench, Breeze

S SSS S
Sktench >

\

))
o
(ﬁ
o

\\

\\>

b

(%
o
\\

S SSSS
Stench >

\Q
k’ ,

\\

i

START

\

\
L
¥
o
\

1

Exploring a wumpus world

OK

OK OK

From: no stench and no breeze at [1,1] you can infer that [1,2] and [2,1] are both safe...

Exploring a wumpus world

Exploring a wumpus world

P?
\\
B OK P?
i

So, the only save place is to go back to [1,2]...
... but there's an awful stench...

Exploring a wumpus world

—+-a | W

Since there's no breeze at [1,2] however, and there was no stench at [2,1]
you can infer that [2,2] is ok!

Exploring a wumpus world

Exploring a wumpus world

P? OK

B OK \)i OK
il

i|OK S |OK

- | W

No breeze no stench... thus [3,2] and [2,3] both safe!

Probably you all did similar "inferences" already playing some
computer games, can you program an agent playing "Minesweeper'®?

What about more tasks? E.g. a crawler exploring webpages
following links according to certain rules...

Logic in general

Logics are formal languages for representing information such
that conclusions can be drawn

Syntax defines the sentences in the language

Semantics define the "meaning” of sentences;
— i.e., define truth of a sentence in a world

E.g., the language of arithmetic
— Xx+2 2y is a sentence; x2+y > {} is not a sentence
— Xx+2 2y is true iff the number x+2 is no less than the numbery
— x+2 2yistrue in aworld wherex=7,y =1
— x+2 2y s false in a world where x =0,y =6

Entallment

« Entallment means that one thing follows from

another: "entails”
K;B\@o

« Knowledge base KB entails sentence a if and only if
a is true in all worlds where KB is true

— E.g., the KB containing “It is sunny” and “It is warm” entails
“Itis sunny or it is warm”

— E.g., Xty = 4 (plus basic mathematical knowledge!) entails 4 = Xty

— Entailment is a relationship between sentences (i.e., syntax)
that is based on semantics

Models

Logicians typically think in terms of models, which are formally
structured worlds with respect to which truth can be evaluated

We say m is a model of a sentence a if a is true in m

M(a) is the set of all models of a

Then KB F a iff M(KB) C M(a)
_ E.g.KB=itis sunny and Itis warm M(Q)
— a =itis sunny

Entailment in the wumpus
world

Situation after detecting nothing
in [1,1], moving right, breeze
in[2,1]
. . 29
Consider possible models for KB = "
assuming only pits alw| ?

3 Boolean choices = 8 possible
models (interpretations)

Wumpus models
e

z

2

e

Wumpus models

z 2

KB = wumpus-world rules + observations

Wumpus models

C
; =
C
0OC
| AE
-] :
~@

KB = wumpus-world rules + c;bservations
. a, ="[1,2] is safe", KB E a,, can be proven logically!

KB = wumpus-world rules + observations
* o, ="[2,2] Is safe", KB a,

Inference

"proves”

KB @a/= sentence a can be derived from KB by procedure i

Soundness: i is sound if whenever KB | q, it is also true that
KB Fa

Completeness: i is complete if whenever KB E q, it is also true
that KB | a

That is, the procedure will answer any question whose answer
follows from what is known by the KB correctly.

Propositional logic: Syntax

Propositional logic is the simplest logic — illustrates basic ideas;
its syntax is easily definable recursively as follows:

A propositional alphabeth ‘A consists of a set of proposition symbols,
e.g. P,, P,etc.

Formulas are defined recursively:

— The proposition symbols in A etc are sentences (aka formulae)

— If Sis a sentence, =S is a sentence (negation)

— If S, and S, are sentences, S, A S, is a sentence (conjunction)

— If S, and S, are sentences, S, v S, is a sentence (disjunction)

— If S; and S, are sentences, S, — S, is a sentence (implication)

— If S, and S, are sentences, S, <+ S, is a sentence (double-implication)

Propositional logic: Semantics

Each model specifies true/false for each proposition symbol
E.g. P, P, Pj,
false true false

With these symbols, 8 possible models (interpretations)for three propositions, can be
enumerated automatically.

Rules for evaluating truth with respect to an interpretation m:

-S is true iff S is false

S;AS, istrue iff S, istrue and S, is true

S;vS, istrue iff S,istrue or S, is true

S, — S, istrue Iiff S, is false or S, is true

ie., is false iff S, is true and S, is false

S, S, istrue ff S;— S,istrue and S, — S, is true

Simple recursive process evaluates an arbitrary sentence wrt. an interpretation, e.g.,

=Py, n (Py,v Py y) =true A (true v false) = true a true = true

Truth tables for connectives

P Q -P |[PANQ|PVQ|P — Q|P < Q
false| false| true | false | false | true true
false| true | true | false | true true false
true | false | false| false | true | false false
true | true | false| true | true true true

Wumpus world sentences

Let P,; be true if there is a pit in [i, j].
Let B;; be true if there is a breeze in [i, j].

* QObservations:
“Piyn =Bign =Py a By,
* Rules: "Pits cause breezes in adjacent squares”

(Bi1< (PiovPyy)) AByy «(PyyvPyyvPsay))

Truth tables for inference

Remember: we want to prove: a, =
KB = Observations A Rules
a, =-Py,

"[1,2] is safe”, i.e.,

Bll

P

Py 4

Py

fal:se
false

false

false
false

false

false
false

false

false
false

false

false
false
false
false

true

false
false
false
false

true

false
false
false

true

true

false
true
true

false

true

KB F

a,

Extremely naive Inference by enumeration

» Depth-first enumeration of all models is sound and complete

function TT-ENTAILS? (KB, a) returns true or false

symbols < a list of the proposition symbols in KB and «
return T'T-CHECK-ALL(KB, o, symbols, [|)

function TT-CuHECK-ALL(KB, a, symbols, model) returns true or false
if EMpTY?(symbols) then
if PL-TRUE?(KB, model) then return PL-TRUE?(a, model)
else return true

else do
P « F1RST(symbols); rest < REST(symbols)
return T'T-CHECK-ALL(KB, a, rest, EXTEND(P, true, model) and
TT-CHECK-ALL(KB, a, rest, EXTEND(P, false, model)

— PL-TRUE evaluates a sentence recursively wrt. to an interpretation, see
slide 25.

— EXTEND(s,v,m) extends the partial model m by assigning value v to
symbol s.

* For n symbols, time complexity is O(2"), space complexity is O(n)

Logical equivalence

« Two sentences are logically equivalent iff they are
true in same models: a =R iffa ERand B Ea

(aNfB) = (BN a) commutativity of A
(aV pB) = (BVa) commutativity of V
(aAB)AN7y) = (N (B A7y)) associativity of A
((aVvVB)Vy) = (aV(BVy)) associativity of V
—(—a) = a double-negation elimination
(¢ =) = (= — —a) contraposition
(¢ = fB) = (-~ V [3) implication elimination
(@ & fB) = ((« = B)AN(B — «)) biconditional elimination
(A f) = (maV—8) de Morgan
“(aV fB) = (maA—fF) de Morgan
(@A (BVY) = ((aANB)V (aAy)) distributivity of A over V
(@V(BAY) = ((aVB)A(aVy)) distributivity of V over A

Validity and satisfiability

A sentence is valid if it is true in all models,
e.g., True, Av-A, A—-A (ArA(A—>B)—B

Validity is connected to Entailment via the Deduction Theorem:
KB E a if and only if (KB — a) is valid, often written F (KB — a)

A sentence is satisfiable if it is true in some model
e.g.,AvB,C

A sentence is unsatisfiable if it is true in no models
e.g.,, Ar-A
Satisfiability is connected to Entailment as follows:

KB E a if and only if (KB A—a) is unsatisfiable

Proof methods

We already learned a naive proof method for propositional logic!

In the course of this lecture we will learn more different logics and different
proof methods!

Proof methods (for propositional logics) divide into (roughly) two kinds:

— Application of inference rules

» Legitimate (sound) generation of new sentences from old
* Proof = a sequence of inference rule applications

Can use inference rules as operators in a standard search algorithm
» Often require transformation of sentences into a normal form

— Model checking
« Truth table enumeration (always exponential in n)

« Other methods, improved backtracking, e.g., Davis-Putnam-Logemann-Loveland
(DPLL)

* heuristic search in model space (sound but incomplete)
e.g., min-conflicts-like hill-climbing algorithms

What we learned so far?

* How to write down knowledge as a
propositional logical theory (Syntax)

* What does a logical theory mean
(Semantics)

 How can we proof entailment naively

From propositional logic to first-order logic:

* Propositional logic has very limited expressive power
— (unlike natural language)
— E.g., cannot say "pits cause breezes in adjacent squares”
« except by writing one sentence for each square
 Whereas propositional logic assumes the world contains facts
(=propositional symbols),
 first-order logic (like natural language) assumes the world
contains

— Objects (constant symbols): people, houses, numbers, colors,
baseball games, wars, ...

— Relations (predicate symbols): red, round, prime, brother of, bigger
than, part of, comes between, ...

— Functions (function symbols): father of, best friend, one more than,
plus, ...

Syntax of FOL: Basic elements

Constants KingJohn, 2, NUS,...
Predicate symbols Brother, >,...
Function symbols Sqgrt, LeftLegOf,...
Variables x,vy, a, b,...

Connectives -, =, A, V, &

Equality =

Quantifiers v, 3

Atomic sentences

Atomic sentences: predicate (term,,....term)
or term, rm,

) Remark:
Terms: function (term,,...,term) equality is a

or constant or variable ;pec?a' |
redicate with a

fixed
semantics!

« E.g., Brother(KingJohn,RichardTheLionheart) >
(Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn)))

Complex sentences

« Again, as in propositional logics, complex sentences
are made from atomic sentences using connectives

E.qg. Sibling(KingJohn,Richard) —
Sibling(Richard,KingJohn)
>(1,2) v <(1,2)
>(1,2) A = >(1,2)

Truth in first-order logic

Sentences are true with respect to a model and an interpretation

Model contains objects (domain elements) and relations among
them

Interpretation specifies referents for

constant symbols = objects
predicate symbols = relations
function symbols = functions

An atomic sentence predicate(term,,...,term,) is true
iff the objects referred to by term,,...,term_
are in the relation referred to by predicate

Models for FOL: Example

person
erson

ing

left leg

N

left leg

N

Truth in the example

Consider the interpretation in which
Richard = Richard the Lionheart
John = the evil King John
Brother = the brotherhood relation

Under this interpretation, Brother(Richard, John) is true
just in case Richard the Lionheart and the evil King John
are in the brotherhood relation in the model

Models in FOL

Entailment in propositional logic can be computed by enumerating models
We can enumerate the FOL models for a given KB vocabulary:

For each number of domain elements 1 from 1 to ~
For each /-ary predicate /7 in the vocabulary
For each possible /-ary relation on 7 objects
For each constant symbol (' in the vocabulary
For each choice of referent for ' from 7 objects . ..

Computing entailment by enumerating FOL models is not easy!

... probably not a good idea to try to enumerate models.
... you should have heard (in some previous lectures) that
FOL nonentailment is even undecidable, i.e. cannot be computed ®!

Universal quantification

 VY<variables> <sentence>

"Everyone at URJC is smart":
Vx At(x,URJC) - Smart(x)

 Vx Pis true in a model m iff P is true with x being each possible
object in the model

* Roughly speaking, equivalent to the conjunction of instantiations
of P

At(Kingdohn, URJC) — Smart(KingJohn)
A At(Richard, URJC) — Smart(Richard)
A AY(URJC, URJC) — Smart(URJC)

A common mistake to avoid

Typically, — is the main connective with V
Common mistake: using A as the main connective with V:

Vx At(x,UIBK) A Smart(x)
means “Everyone is at UIBK and everyone is smart”

Correct: Vx At(x,UIBK) — Smart(x)

Existential quantification

d<variables> <sentence>

"Someone at URJC is smart":
dx At(x,URJC) A Smart(x)

dx P is true in a model m iff P is true with x being some possible
object in the model

Roughly speaking, equivalent to the disjunction of instantiations of

At(Kingdohn,URJC) A Smart(KingJohn)
v At(Richard,URJC) A Smart(Richard)
v At(UIBK,URJC) A Smart(UIBK)

V..

Another common mistake to avoid

« Typically, A is the main connective with 3

« Common mistake: using — as the main connective
with 3:

dx At(x,URJC) - Smart(x)
is true if there is anyone who is not at URJC!

Usually used in Queries:
"Is there someone in URJC who is smart?"
Correct: dx At(x,UIBK) A Smart(x)

Properties of quantifiers

Vx Vy is the same as Vy Vx
dx 3y is the same as dy dx

dx Vy is not the same as Vy dx
dx Vy Loves(x,y)

— “There is a person who loves everyone in the world”
Vy dx Loves(x,y)

— “Everyone in the world is loved by at least one person”

Quantifier duality: each can be expressed using the other
Vx Likes(x,IlceCream) -3dx -Likes(x,IlceCream)
dx Likes(x,Broccoli) - Vx -Likes(x,Broccoli)

Equality

« ferm, = term, Is true under a given
interpretation if and only if term, and term,
refer to the same object

« E.g., definition of Sibling in terms of Parent.

Vx,y Sibling(x,y) <+ [-(X=y) A dmM,f-=(m=1) A
Parent(m,x) A Parent(f,x) A Parent(m,y) a
Parent(f,y)]

Using FOL

The family domain:

Attention! motherOf
is a function
symbol here,
whereas Fmale
and Parent are

« One's mother is-one's female parent e

« Brothers are siblings
Vx,y Brother(x,y) — Sibling(x,

symbols!!!
c) = m < (Female(m) A Parent(m,c))
« “Sibling” is symmetric
Vx,y Sibling(x,y) < Sibling(y,x)

Now to the formal part!

* So far we only treated FOL quite
informally...

* ... Now let us introduce syntax and
semantics formally!

First Order Logic - Syntax

First-Order Language - Signature:

L constants sometimes are
denoted 0-ary function symbols

« A set of constants, €.g. axel, logica

a set of function symbols , each with a fixed arity > 0 e.g.
1, g date, motherOf

fx), g(x,y), date(24,3,1974)

« aset of predicate symbols, each with a fixed arity > 0 e.g.
p,ok,holdsLecture, female

p(x.f(v)), ok, holdsLecture(axel, logica,date(18,10,2006))

« aset of variables, e.g.

X,V Z,...
e connectives: AV &+ = &=
« quantifiers: vV 4

* punctuation symbols: (),

First Order Language - Syntax: Terms

« Terms consist of constants, function symbols and variables:
— avariable is a term
— each constant (0-ary function symbol) is a term
— if f is an n-ary function symbol with n>0 and
t;,..., t,are terms then f(¢,...,t) is a term.

First Order Language - Syntax: Formulas

« Formulae consist of predicates, punctuation symbols, quantifiers
connectives:

— if pis an n-ary predicate symbol with n>0 and ¢, ...,z, are terms then
p(t,t,) is a formula (atomic formula, or atoms)

— if F,G are formulae, so are
(—=F),(FVG),(FANG),(FG), (F—G),F +G)

— if Fis a formula and x is a variable then
dxF andVx F
are formulae as well

— atoms and there negations are also called "literals”.

Precedence of connectives:

-, V, 3 negation, for all, exists
V or

A and

—, = left/right implication,
> equivalence

Following these precedence rules, parentheses may be skipped.

Some examples... *

V X f(x,x) N g no

3y p(x.1(x,y)) = a(9(y)) yes
3 x p(x.1(x.y)) = a(f(y)) no

V xV y (anc(x,y) N\ father(y,z) — anc(x,z)) yes
Vx3ypxy) yes
3y V xpxy) yes
V xV y (anc(x,y) N\ (father(y,z) Vv mother(y,z)) — anc(x,z)) yes
V xV y (add(succ(x),y,succ(z)) + add(x,y,z)) yes
3x = p(x.f(x,y)) vV a(g(y)) yes
p(f(a(x).y).1(f(x,x),x)) yes
— p((9(x).y).p(f(x,x),x)) no

v x (person(x) A\ — sleeping(x) — awake(x)) yes

* Here f,g,h, ... denote function symbols, p,q,r,s,... denote predicate symbols

Bounded variables, scope and closed formulae:

 For aformula
VxF or dxF

the scope of x is F. Each occurrence of x in F'is bound.
Occurrences of variables out of the scope of a quantifier are
called free.

 Examples:

VX (Fxq(/() V p(x) ANr(x)
3y peef.y) = q(8()

« A formula without free variable occurrences is called closed,
 (Closed formulas are also called sentences

« Shortcut:
V(F) (or d(F),resp.)

denotes the universal (or existential, resp.) closure of a formula, i.e. the formula
obtained by universally/existentially quantifying all free variables in F.

Interpretations and variable assignments:

Interpratations give some meaning to function symbols
and predicate symbols...

* An interpretation 7 consists of:
— a domain D over which the variables can range
— for each n-ary function symbol fa mapping f' from D" — D
(particularly each constant is assigned an element of D)

— for each n-ary predicate symbol an n-ary relation over the
domain D, i.e. a mapping from D" to {true,false}

- A variable assignment V'wrt. an interpretation 7 is
an assignment of an element of D to each variable.

Truth Value of a Formula wrt. an Interpretation 7 and a
variable assignment V'

« Let 7 be an interpretation and V'a variable assignment.Then each

formula W is given a truth value € {true false}, written Val>V(W) as follows:
(a) If W is an atomic formula p(t1,...,tn) then

i A I,V I7V J—
VaZY (p(ty,. ..) = true iff p (tl o ty) = true
false otherwise

(b) If W is of the form
G then VTV (W) = true iff ValI_’V(G) = false

false otherwise

true iff ValZY(F) = true and VallV(GQ) = true

false otherwise

true iff ValZY(F) = true or ValY(G) = true

false otherwise

true iff ValZY(F) = false or Valt:V(G) = true

false otherwise

22 F then VaIV(W) = true iff therfe exists a d € D with ValZV(@/d) = trye
false otherwise

true iff for all d € D VallV(@/d) = trye
false otherwise

FAG then VatV(w) =
FVGthen ValV(Ww) =

F — G then VallY(W) =

VzF then VallV(W) =

where V(x/d) is V except that d is assigned to z

« Remark: The truth value of a closed formula does not depend on V. So, we
speak of truth values wrt. an interpretation 7, i.e.Val?).

Models for closed formulae:

« An interpretation ‘M of a closed Formula F is called a
model iff Val™(F) = true

« Analogously to propositional logic, a closed formula
Fis called:

— satisfiable ... if it has a model

— valid ... if any interpretation is a model
— unsatisfiable ... if it doesn't have a model

— nonvalid ... if there exists an interpretation

which is not a model

» Logical consequence as in propositional logic: FFF G
Read: "every model of F is also a model of G"

More examples

(1YY x Yy (anc(x,y) N father(y,z) — anc(x,z))
(2)V xVy (anc(x,y) N (father(y,z) N mother(y,z)) — anc(x,z))

(1) is satisfiable but non-valid:
D = {franz, sepp, maria, karl, uwe, anna}
anc ... ancestor relation
father(x,y) ... X is father of y
mother(x,y) ... X is mother of y

Analogously, (2) is satisfiable but non-valid
(2) — (1) is valid!

(3) father(sepp, hans) A father(hans, karl) A
VaVy(Vz grandpa(x,y) <« father(x,z) A father(z,y))A
Vx—grandpa(sepp, x)

is unsatisfiable!
(For the moment you have to believe this, but we'll find out how to prove this in FOL)!

Remark:

* The notion of interpretations, models,
satifiability and validity can be
expanded to sets of (closed) formulae
(i.e. to sets of clauses)
straightforwardly:

* A set of closed formulae S ={F,, ..., F}
is then simply viewed as the conjunction

F,A...NF,

Some books:

* Michael R A Huth and Mark D Ryan:

Logic in Computer Science, Cambridge University
Press, 2001.

« Uwe Schoning: Logic for Computer Scientists,
Birkhauser Verlag, 1999.

+ J.W.Lloyd: Foundations of Logic Programming,
Second edition. Springer, 1987.

Exercises:

