Lógica y Metodos Avanzados de Razonamiento

Today: Introduction to propositional and first-order logic

Axel Polleres
axel.polleres@urjc.es

Overview:

- Why logics? An example
- Propositional logics
- Syntax, Semantics
- First-order Logics
- Why is propositional logics not enough?
- Syntax, Semantics
- Exercises

An example for reasoning: The "Wumpus World"

- Environment
- Squares adjacent to wumpus are smelly (stench) ${ }_{3}$
- Squares adjacent to pit are breezy

We want to move around in this world, without being eaten by the Wumpus or falling into pits!

- Sensors: Stench, Breeze

Exploring a wumpus world

From: no stench and no breeze at [1,1] you can infer that [1,2] and [2,1] are both safe...

Exploring a wumpus world

Exploring a wumpus world

So, the only save place is to go back to $[1,2] \ldots$
... but there's an awful stench...

Exploring a wumpus world

Since there's no breeze at [1,2] however, and there was no stench at [2,1] you can infer that [2,2] is ok!

Exploring a wumpus world

Exploring a wumpus world

No breeze no stench... thus [3,2] and $[2,3]$ both safe!
Probably you all did similar "inferences" already playing some computer games, can you program an agent playing "Minesweeper"®?

What about more tasks? E.g. a crawler exploring webpages following links according to certain rules...

Logic in general

- Logics are formal languages for representing information such that conclusions can be drawn
- Syntax defines the sentences in the language
- Semantics define the "meaning" of sentences;
- i.e., define truth of a sentence in a world
- E.g., the language of arithmetic
$-x+2 \geq y$ is a sentence; $x 2+y>\{ \}$ is not a sentence
- $x+2 \geq y$ is true iff the number $x+2$ is no less than the number y
$-x+2 \geq y$ is true in a world where $x=7, y=1$
$-x+2 \geq y$ is false in a world where $x=0, y=6$

Entailment

- Entailment means that one thing follows from another:
"entails"
$K B \in a$
- Knowledge base $K B$ entails sentence α if and only if α is true in all worlds where $K B$ is true
- E.g., the KB containing "It is sunny" and "It is warm" entails "It is sunny or it is warm"
- E.g., $x+y=4$ (plus basic mathematical knowledge!) entails $4=x+y$
- Entailment is a relationship between sentences (i.e., syntax) that is based on semantics

Models

- Logicians typically think in terms of models, which are formally structured worlds with respect to which truth can be evaluated
- We say m is a model of a sentence α if α is true in m
- $M(\alpha)$ is the set of all models of α
- Then KB $F \alpha$ iff $M(K B) \subseteq M(\alpha)$
- E.g. $K B=$ it is sunny and It is warm
$-\alpha=$ it is sunny

Entailment in the wumpus world

Situation after detecting nothing in $[1,1]$, moving right, breeze in $[2,1]$

Consider possible models for $K B$ assuming only pits

3 Boolean choices $\Rightarrow 8$ possible models (interpretations)

Wumpus models

Wumpus models

- $K B=$ wumpus-world rules + observations

Wumpus models

- $K B=$ wumpus-world rules + observations
- $\alpha_{1}=$ "[1,2] is safe", $K B \quad F \alpha_{1}$, can be proven logically!

- $K B=$ wumpus-world rules + observations
- $\alpha_{2}=$ " $[2,2]$ is safe", $K B \not \forall \alpha_{2}$

Inference

"proves"

- $K B\left(\mathrm{H}_{i} \alpha=\right.$ sentence α can be derived from $K B$ by procedure i
- Soundness: i is sound if whenever $K B \vdash_{i} a$, it is also true that $K B \vDash \alpha$
- Completeness: i is complete if whenever $K B \vDash \alpha$, it is also true that $K B \vdash_{i} \alpha$
- That is, the procedure will answer any question whose answer follows from what is known by the $K B$ correctly.

Propositional logic: Syntax

- Propositional logic is the simplest logic - illustrates basic ideas; its syntax is easily definable recursively as follows:
- A propositional alphabeth \mathcal{A} consists of a set of proposition symbols, e.g. P_{1}, P_{2} etc.
- Formulas are defined recursively:
- The proposition symbols in \mathcal{A} etc are sentences (aka formulae)
- If S is a sentence, $\neg S$ is a sentence (negation)
- If S_{1} and S_{2} are sentences, $S_{1} \wedge S_{2}$ is a sentence (conjunction)
- If S_{1} and S_{2} are sentences, $S_{1} \vee S_{2}$ is a sentence (disjunction)
- If S_{1} and S_{2} are sentences, $S_{1} \rightarrow S_{2}$ is a sentence (implication)
- If S_{1} and S_{2} are sentences, $S_{1} \leftrightarrow S_{2}$ is a sentence (double-implication)

Propositional logic: Semantics

Each model specifies true/false for each proposition symbol
E.g.
$\mathrm{P}_{1,2}$
false
$\mathrm{P}_{2,2}$
$\mathrm{P}_{3,1}$
false

With these symbols, 8 possible models (interpretations)for three propositions, can be enumerated automatically.

Rules for evaluating truth with respect to an interpretation m :

$\neg S$	is true	iff	S is false
$S_{1} \wedge S_{2}$	is true	iff	S_{1} is true and S_{2} is true
$S_{1} \vee S_{2}$	is true	iff	S_{1} is true or S_{2} is true
$S_{1} \rightarrow S_{2}$	is true	iff	S_{1} is false or S_{2} is true
i.e.,	is false	iff	S_{1} is true and S_{2} is false
$S_{1} \leftrightarrow S_{2}$	is true	iff	$S_{1} \rightarrow S_{2}$ is true and $S_{2} \rightarrow S_{1}$ is true

Simple recursive process evaluates an arbitrary sentence wrt. an interpretation, e.g.,

$$
\neg \mathrm{P}_{1,2} \wedge\left(\mathrm{P}_{2,2} \vee \mathrm{P}_{3,1}\right)=\text { true } \wedge(\text { true } \vee \text { false })=\text { true } \wedge \text { true }=\text { true }
$$

Truth tables for connectives

P	Q	$\neg P$	$P \wedge Q$	$P \vee Q$	$P \rightarrow Q$	$P \leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

Wumpus world sentences

Let $P_{i, j}$ be true if there is a pit in $[i, j]$.
Let $B_{i, j}$ be true if there is a breeze in $[i, j]$.

- Observations:

$$
\neg P_{1,1} \wedge \neg B_{1,1} \wedge \neg P_{2,1} \wedge B_{2,1}
$$

- Rules: "Pits cause breezes in adjacent squares"

$$
\left(B_{1,1} \leftrightarrow\left(P_{1,2} \vee P_{2,1}\right)\right) \wedge\left(B_{2,1} \leftrightarrow\left(P_{1,1} \vee P_{2,2} \vee P_{3,1}\right)\right)
$$

Truth tables for inference

Remember: we want to prove: $\alpha_{1}=$ " $[1,2]$ is safe", i.e., $\mathrm{KB}=$ Observations \wedge Rules

$$
\alpha_{1}=\neg P_{1,2}
$$

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	KB	α_{1}
false	true							
false	false	false	false	false	false	true	false	true
\vdots								
false	true	false	false	false	false	false	false	true
false	true	false	false	false	false	true	true	$\underline{\text { true }}$
false	true	false	false	false	true	false	true	true
false	true	false	false	false	true	true	true	true
false	true	false	false	true	false	false	false	true
\vdots								
true	false	false						

$K B F \alpha_{1}$

Extremely naïve Inference by enumeration

- Depth-first enumeration of all models is sound and complete
function TT-Entails? $(K B, \alpha)$ returns true or false
symbols \leftarrow a list of the proposition symbols in $K B$ and α return TT-Check-AlL($K B, \alpha$, symbols, [])
function TT-Check-All(KB, α, symbols, model) returns true or false if Empty? (symbols) then
if PL-True? (KB, model) then return PL-True?(α, model) else return true
else do
$P \leftarrow \operatorname{FiRST}($ symbols); rest $\leftarrow \operatorname{REST}($ symbols $)$
return TT-Check-All($K B, \alpha$, rest, $\operatorname{Extend}(P$, true, model $)$ and TT-Check-All ($K B, \alpha$, rest, Extend $(P$, false, model)
- PL-TRUE evaluates a sentence recursively wrt. to an interpretation, see slide 25.
- EXTEND(s,v,m) extends the partial model m by assigning value v to symbol s.
- For n symbols, time complexity is $O\left(2^{n}\right)$, space complexity is $O(n)$

Logical equivalence

- Two sentences are logically equivalent iff they are true in same models: $\alpha \equiv \beta$ iff $\alpha \vDash \beta$ and $\beta \vDash \alpha$

```
    (\alpha\wedge\beta) \equiv(\beta\wedge\alpha) commutativity of ^
    (\alpha\vee\beta) \equiv(\beta\vee\alpha) commutativity of \vee
((\alpha\wedge\beta)\wedge\gamma) \equiv(\alpha\wedge(\beta\wedge\gamma)) associativity of ^
((\alpha\vee\beta)\vee\gamma) \equiv(\alpha\vee (\beta\vee\gamma)) associativity of \vee
            \neg(\neg\alpha)\equiv\alpha double-negation elimination
    (\alpha->\beta) \equiv(\neg\beta->\neg\alpha) contraposition
    (\alpha->\beta) \equiv(\neg\alpha\vee\beta) implication elimination
```



```
    \neg(\alpha\wedge\beta) \equiv(\neg\alpha\vee\neg\beta) de Morgan
    \neg(\alpha\vee\beta) \equiv(\neg\alpha\wedge\neg\beta) de Morgan
(\alpha\wedge(\beta\vee\gamma)) \equiv((\alpha\wedge\beta)\vee (\alpha\wedge\gamma)) distributivity of ^ over \vee
(\alpha\vee \beta}^人\gamma)) \equiv((\alpha\vee\beta)\wedge(\alpha\vee\gamma)) distributivity of \vee over ^
```


Validity and satisfiability

A sentence is valid if it is true in all models, e.g., True, $\quad A \vee \neg A, \quad A \rightarrow A, \quad(A \wedge(A \rightarrow B)) \rightarrow B$

Validity is connected to Entailment via the Deduction Theorem: $K B \vDash \alpha$ if and only if $(K B \rightarrow \alpha)$ is valid, often written $\quad \vDash(K B \rightarrow \alpha)$

A sentence is satisfiable if it is true in some model e.g., Av B, C

A sentence is unsatisfiable if it is true in no models e.g., $A \wedge \neg A$

Satisfiability is connected to Entailment as follows:

$$
K B \vDash \alpha \text { if and only if }(K B \wedge \neg \alpha) \text { is unsatisfiable }
$$

Proof methods

- We already learned a naïve proof method for propositional logic!
- In the course of this lecture we will learn more different logics and different proof methods!
- Proof methods (for propositional logics) divide into (roughly) two kinds:
- Application of inference rules
- Legitimate (sound) generation of new sentences from old
- $\operatorname{Proof}=$ a sequence of inference rule applications

Can use inference rules as operators in a standard search algorithm

- Often require transformation of sentences into a normal form
- Model checking
- Truth table enumeration (always exponential in n)
- Other methods, improved backtracking, e.g., Davis-Putnam-Logemann-Loveland (DPLL)
- heuristic search in model space (sound but incomplete)
e.g., min-conflicts-like hill-climbing algorithms

What we learned so far?

- How to write down knowledge as a propositional logical theory (Syntax)
- What does a logical theory mean (Semantics)
- How can we proof entailment naively

From propositional logic to first-order logic:

- Propositional logic has very limited expressive power
- (unlike natural language)
- E.g., cannot say "pits cause breezes in adjacent squares"
- except by writing one sentence for each square
- Whereas propositional logic assumes the world contains facts (=propositional symbols),
- first-order logic (like natural language) assumes the world contains
- Objects (constant symbols): people, houses, numbers, colors, baseball games, wars, ...
- Relations (predicate symbols): red, round, prime, brother of, bigger than, part of, comes between, ...
- Functions (function symbols): father of, best friend, one more than, plus, ...

Syntax of FOL: Basic elements

- Constants
- Predicate symbols
- Function symbols Sqrt, LeftLegOf,...
- Variables $\mathrm{x}, \mathrm{y}, \mathrm{a}, \mathrm{b}, \ldots$
- Connectives $\neg, \rightarrow, \wedge, \vee, \leftrightarrow$
- Equality
- Quantifiers
=
\forall, \exists
Brother, >,...

KingJohn, 2, NUS,...

Atomic sentences

Atomic sentences

> predicate $\left(\right.$ term $_{1}, \ldots$, term $\left._{n}\right)$
> or term $\left(=\right.$ term $_{2}$

Terms:
function (term ${ }_{1}, \ldots$, term $\left._{n}\right)$
or constant or variable

- E.g., Brother(KingJohn,RichardTheLionheart) > (Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn)))

Complex sentences

- Again, as in propositional logics, complex sentences are made from atomic sentences using connectives

$$
\neg S, S_{1} \wedge S_{2}, S_{1} \vee S_{2}, S_{1} \rightarrow S_{2}, S_{1} \leftrightarrow S_{2},
$$

E.g. Sibling(KingJohn,Richard) \rightarrow

Sibling(Richard,KingJohn)

$$
\begin{aligned}
& >(1,2) \vee \leq(1,2) \\
& >(1,2) \wedge \neg>(1,2)
\end{aligned}
$$

Truth in first-order logic

- Sentences are true with respect to a model and an interpretation
- Model contains objects (domain elements) and relations among them
- Interpretation specifies referents for

constant symbols	\Rightarrow	objects
predicate symbols	\Rightarrow	relations
function symbols	\Rightarrow	functions

- An atomic sentence predicate $\left(\right.$ term $_{1}, \ldots$, term $\left._{n}\right)$ is true iff the objects referred to by term ${ }_{1}, \ldots$, term $_{n}$ are in the relation referred to by predicate

Truth in the example

Consider the interpretation in which
Richard \Rightarrow Richard the Lionheart
John \Rightarrow the evil King John
Brother \Rightarrow the brotherhood relation
Under this interpretation, Brother (Richard, John) is true just in case Richard the Lionheart and the evil King John are in the brotherhood relation in the model

Models in FOL

Entailment in propositional logic can be computed by enumerating models
We can enumerate the FOL models for a given KB vocabulary:
For each number of domain elements n from 1 to ∞
For each k-ary predicate P_{k} in the vocabulary
For each possible k-ary relation on n objects
For each constant symbol C in the vocabulary
For each choice of referent for C from n objects ...
Computing entailment by enumerating FOL models is not easy!
... probably not a good idea to try to enumerate models.
... you should have heard (in some previous lectures) that FOL nonentailment is even undecidable, i.e. cannot be computed θ !

Universal quantification

- \forall <variables> <sentence>
"Everyone at URJC is smart":
$\forall x$ At(x,URJC) \rightarrow Smart(x)
- $\forall x P$ is true in a model m iff P is true with x being each possible object in the model
- Roughly speaking, equivalent to the conjunction of instantiations of P

$$
\begin{aligned}
& \text { At(KingJohn, URJC) } \rightarrow \text { Smart(KingJohn) } \\
\wedge & \text { At(Richard, URJC) } \rightarrow \text { Smart(Richard) } \\
\wedge & \text { At(URJC, URJC) } \rightarrow \text { Smart(URJC) } \\
\wedge & \ldots
\end{aligned}
$$

A common mistake to avoid

- Typically, \rightarrow is the main connective with \forall
- Common mistake: using \wedge as the main connective with \forall :
$\forall x$ At(x,UIBK) ^ Smart(x)
means "Everyone is at UIBK and everyone is smart"
- Correct: $\forall x \operatorname{At}(x$, UIBK $) \rightarrow \operatorname{Smart}(x)$

Existential quantification

- ヨ<variables> <sentence>
- "Someone at URJC is smart":
- $\exists x \operatorname{At}(x, U R J C) \wedge \operatorname{Smart}(x)$
- $\exists x P$ is true in a model m iff P is true with x being some possible object in the model
- Roughly speaking, equivalent to the disjunction of instantiations of P

At(KingJohn,URJC) ^ Smart(KingJohn)
v At(Richard,URJC) ^ Smart(Richard)
v At(UIBK,URJC) ^ Smart(UIBK)
v ...

Another common mistake to avoid

- Typically, \wedge is the main connective with \exists
- Common mistake: using \rightarrow as the main connective with \exists :

$$
\exists x \text { At(x,URJC) } \rightarrow \text { Smart(x) }
$$

is true if there is anyone who is not at URJC!

Usually used in Queries:
"Is there someone in URJC who is smart?"
Correct: ヨx At(x,UIBK) ^ Smart(x)

Properties of quantifiers

- $\forall x \forall y$ is the same as $\forall y \forall x$
- $\exists x \exists y$ is the same as $\exists y \exists x$
- $\exists x \forall y$ is not the same as $\forall y \exists x$
- $\exists x \forall y \operatorname{Loves}(x, y)$
- "There is a person who loves everyone in the world"
- $\forall y \exists x$ Loves (x, y)
- "Everyone in the world is loved by at least one person"
- Quantifier duality: each can be expressed using the other
- $\forall x$ Likes(x,IceCream) $\neg \exists x \neg$ Likes(x,IceCream)
- $\exists x$ Likes(x,Broccoli) $\neg \forall x \neg$ Likes(x,Broccoli)

Equality

- term $_{1}=$ term $_{2}$ is true under a given interpretation if and only if term and $_{1}$ term 2 refer to the same object
- E.g., definition of Sibling in terms of Parent:
$\forall x, y \operatorname{Sibling}(x, y) \leftrightarrow[\neg(x=y) \wedge \exists m, f \neg(m=f) \wedge$ Parent $(m, x) \wedge \operatorname{Parent}(f, x) \wedge \operatorname{Parent}(m, y) \wedge$ Parent (f, y)]

Using FOL

The family domain:

- Brothers are siblings $\forall x, y \operatorname{Brother}(x, y) \rightarrow \operatorname{Sibling}(x, y)$
- One's mother is one's female parent

Attention! motherOf
is a function symbol here, whereas Fmale and Parent are
predicate symbols!!!
$\forall \mathrm{m}, \mathrm{c}$ motherOf $(c)=\mathrm{m} \leftrightarrow($ Female $(m) \wedge \operatorname{Parent}(m, c))$

- "Sibling" is symmetric
$\forall x, y$ Sibling $(x, y) \leftrightarrow \operatorname{Sibling}(y, x)$

Now to the formal part!

- So far we only treated FOL quite informally...
- ... Now let us introduce syntax and semantics formally!

First Order Logic - Syntax

First-Order Language - Signature:

- A set of constants, e.g. axel,logica, 1,2,3,4, ...
- a set of function symbols, each with a fixed arity ≥ 0 e.g.
f, g, date, mother $O f$
$f(x), g(x, y)$, date(24,3,1974)
- a set of predicate symbols, each with a fixed arity ≥ 0 e.g. p,ok,holdsLecture, female
$p(x, f(y))$, ok, holdsLecture(axel, logica,date(18,10,2006))
- a set of variables, e.g.
$x, y z, \ldots$
- connectives: $\quad \wedge \vee \leftarrow \rightarrow \leftrightarrow \neg$
- quantifiers: $\quad \forall \exists$
- punctuation symbols: (),

First Order Language - Syntax: Terms

- Terms consist of constants, function symbols and variables:
- a variable is a term
- each constant (0-ary function symbol) is a term
- if f is an n -ary function symbol with $\mathrm{n}>0$ and t_{l}, \ldots, t_{n} are terms then $f\left(t_{l}, \ldots, t_{n}\right)$ is a term.

First Order Language - Syntax: Formulas

- Formulae consist of predicates, punctuation symbols, quantifiers connectives:
- if p is an n -ary predicate symbol with $\mathrm{n} \geq 0$ and t_{p}, \ldots, t_{n} are terms then $p\left(t_{l}, \ldots, t_{n}\right)$ is a formula (atomic formula, or atoms)
- if F, G are formulae, so are

$$
(\neg F),(F \vee G),(F \wedge G),(F \leftarrow G),(F \rightarrow G), F \leftrightarrow G)
$$

- if F is a formula and x is a variable then

```
\existsxF and }\forallx
```

are formulae as well

- atoms and there negations are also called "literals".

Precedence of connectives:

\neg, \forall, \exists	negation, for all, exists
\vee	or
\wedge	and
\leftarrow, \rightarrow	left/right implication,
\leftrightarrow	equivalence

Following these precedence rules, parentheses may be skipped.

Some examples...

$$
\begin{array}{ll}
\forall x f(x, x) \wedge g & \text { no } \\
\exists y p(x, f(x, y)) \rightarrow q(g(y)) & \text { yes } \\
\exists x p(x, f(x, y)) \rightarrow q(f(y)) & \text { no } \\
\forall x \forall y(a n c(x, y) \wedge \text { father }(y, z) \rightarrow \operatorname{anc}(x, z)) & \text { yes } \\
\forall x \exists y p(x, y) & \text { yes } \\
\exists y \forall x p(x, y) & \text { yes } \\
\forall x \forall y(\operatorname{anc}(x, y) \wedge(f a t h e r(y, z) \vee \operatorname{mother}(y, z)) \rightarrow \operatorname{anc}(x, z)) & \text { yes } \\
\forall x \forall y(\operatorname{add}(\operatorname{succ}(x), y, \operatorname{succ}(z)) \leftarrow \operatorname{add}(x, y, z)) & \text { yes } \\
\exists x \neg p(x, f(x, y)) \vee q(g(y)) & \text { yes } \\
p(f(f(x), y), f(f(x, x), x)) & \text { yes } \\
\neg p(f(g(x), y), p(f(x, x), x)) & \text { no } \\
\forall x(\text { person }(x) \wedge \neg \operatorname{sleeping}(x) \rightarrow \text { awake }(x)) & \text { yes }
\end{array}
$$

* Here f, g, h, \ldots denote function symbols, p, q, r, s, \ldots denote predicate symbols

Bounded variables, scope and closed formulae:

- For a formula

$$
\forall x F \text { or } \exists x F
$$

the scope of x is F. Each occurrence of x in F is bound. Occurrences of variables out of the scope of a quantifier are called free.

- Examples:

$$
\begin{aligned}
& \forall x((\exists x q(y, f(x))) \vee p(x)) \wedge r(x) \\
& \exists y p(x, f(x, y)) \rightarrow q(g(y))
\end{aligned}
$$

- A formula without free variable occurrences is called closed,
- Closed formulas are also called sentences
- Shortcut:

$$
\forall(F)(\text { or } \exists(F) \text {,resp. })
$$ obtained by universally/existentially quantifying all free variables in F.

Interpretations and variable assignments:

Interpratations give some meaning to function symbols and predicate symbols...

- An interpretation \mathcal{I} consists of:
- a domain D over which the variables can range
- for each n-ary function symbol f a mapping f^{\prime} from $D^{n} \rightarrow D$ (particularly each constant is assigned an element of D)
- for each n-ary predicate symbol an n-ary relation over the domain D, i.e. a mapping from D^{n} to \{true,false\}
- A variable assignment \mathcal{V} wrt. an interpretation \mathcal{I} is an assignment of an element of D to each variable.

Truth Value of a Formula wrt. an Interpretation I and a variable assignment \mathcal{V}

- Let \mathcal{I} be an interpretation and \mathcal{V} a variable assignment. Then each formula W is given a truth value $\in\{$ true,false $\}$, written $\operatorname{Val}^{1, v}(W)$ as follows:
(a) If W is an atomic formula $p\left(t_{1}, \ldots, t_{n}\right)$ then

$$
\operatorname{Val}^{\mathcal{I}, \mathcal{V}}\left(p\left(t_{1}, \ldots, t_{n}\right)\right)= \begin{cases}\text { true } & \text { iff } p^{\mathcal{I}}\left(t_{1}^{\mathcal{I}, \mathcal{V}}, \ldots, t_{n}^{\mathcal{I}, \mathcal{V}}\right)=\text { true } \\ \text { false } & \text { otherwise }\end{cases}
$$

(b) If W is of the form
where $\mathcal{V}(x / d)$ is \mathcal{V} except that d is assigned to x

- Remark: The truth value of a closed formula does not depend on V. So, we speak of truth values wrt. an interpretation I, i.e.Val²).

Models for closed formulae:

- An interpretation \mathcal{M} of a closed Formula F is called a model iff $\operatorname{Val}^{2 M}(F)=$ true
- Analogously to propositional logic, a closed formula F is called:
- satisfiable ... if it has a model
- valid ... if any interpretation is a model
- unsatisfiable ... if it doesn't have a model
- nonvalid ... if there exists an interpretation which is not a model
- Logical consequence as in propositional logic: $F \vDash G$ Read: "every model of F is also a model of G "

More examples

(1) $\forall x \forall y(\operatorname{anc}(x, y) \wedge$ father $(y, z) \rightarrow \operatorname{anc}(x, z))$
(2) $\forall x \forall y(\operatorname{anc}(x, y) \wedge($ father $(y, z) \vee$ mother $(y, z)) \rightarrow \operatorname{anc}(x, z))$
(1) is satisfiable but non-valid:
$D=\{f r a n z$, sepp, maria, karl, uwe, anna $\}$
anc ... ancestor relation
father $(x, y) \ldots x$ is father of y
mother $(x, y) \ldots x$ is mother of y
Analogously, (2) is satisfiable but non-valid
$(2) \rightarrow(1)$ is valid!
(3)

```
father(sepp,hans)^ father(hans,karl)^
    \forall}\forally(\forallz grandpa (x,y)\leftarrowfather (x,z)\wedge father (z,y))
    \forallx\neggrandpa (sepp,x)
```

is unsatisfiable!
(For the moment you have to believe this, but we'll find out how to prove this in FOL)!

Remark:

- The notion of interpretations, models, satifiability and validity can be expanded to sets of (closed) formulae (i.e. to sets of clauses) straightforwardly:
- A set of closed formulae $S=\left\{F_{1}, \ldots, F_{n}\right\}$ is then simply viewed as the conjunction $F_{1} \wedge \ldots \wedge F_{n}$

Some books:

- Michael R A Huth and Mark D Ryan: Logic in Computer Science, Cambridge University Press, 2001.
- Uwe Schöning: Logic for Computer Scientists, Birkhäuser Verlag, 1999.
- J.W.Lloyd: Foundations of Logic Programming, Second edition. Springer, 1987.

Exercises:

