
Lógica y Metodos Avanzados

de Razonamiento

Today: Introduction to propositional

and first-order logic

Axel Polleres

axel.polleres@urjc.es

Overview:

• Why logics? An example

• Propositional logics

– Syntax, Semantics

• First-order Logics

– Why is propositional logics not enough?

– Syntax, Semantics

• Exercises

An example for reasoning:

 The “Wumpus World”

• Environment

– Squares adjacent to wumpus are smelly (stench)

– Squares adjacent to pit are breezy

We want to move around in this world, without

being eaten by the Wumpus or falling into pits!

• Sensors: Stench, Breeze

Exploring a wumpus world

From: no stench and no breeze at [1,1] you can infer that [1,2] and [2,1] are both safe…

Exploring a wumpus world

Exploring a wumpus world

So, the only save place is to go back to [1,2]…

… but there's an awful stench…

Exploring a wumpus world

Since there's no breeze at [1,2] however, and there was no stench at [2,1]

you can infer that [2,2] is ok!

Exploring a wumpus world

Exploring a wumpus world

No breeze no stench… thus [3,2] and [2,3] both safe!

Probably you all did similar "inferences" already playing some

computer games, can you program an agent playing "Minesweeper"®?

What about more tasks? E.g. a crawler exploring webpages

following links according to certain rules…

Logic in general

• Logics are formal languages for representing information such
that conclusions can be drawn

• Syntax defines the sentences in the language

• Semantics define the "meaning" of sentences;

– i.e., define truth of a sentence in a world

• E.g., the language of arithmetic

– x+2 ! y is a sentence; x2+y > {} is not a sentence

– x+2 ! y is true iff the number x+2 is no less than the number y

– x+2 ! y is true in a world where x = 7, y = 1

– x+2 ! y is false in a world where x = 0, y = 6

Entailment

• Entailment means that one thing follows from
another:

KB ! "
• Knowledge base KB entails sentence " if and only if
" is true in all worlds where KB is true

– E.g., the KB containing “It is sunny” and “It is warm” entails
“It is sunny or it is warm”

– E.g., x+y = 4 (plus basic mathematical knowledge!) entails 4 = x+y

– Entailment is a relationship between sentences (i.e., syntax)
that is based on semantics

"entails"

Models

• Logicians typically think in terms of models, which are formally
structured worlds with respect to which truth can be evaluated

• We say m is a model of a sentence " if " is true in m

• M(!) is the set of all models of "

• Then KB ╞ " iff M(KB) ! M(")
– E.g. KB = it is sunny and It is warm

– " = it is sunny

M(")

Entailment in the wumpus

world
Situation after detecting nothing

in [1,1], moving right, breeze

in [2,1]

Consider possible models for KB

assuming only pits

3 Boolean choices " 8 possible

models (interpretations)

Wumpus models

• KB = wumpus-world rules + observations

Wumpus models

Wumpus models

• KB = wumpus-world rules + observations

• "1 = "[1,2] is safe", KB ╞ "1, can be proven logically!

Wumpus models

• KB = wumpus-world rules + observations

• "2 = "[2,2] is safe", KB ! "2

Inference

• KB #i " = sentence " can be derived from KB by procedure i

• Soundness: i is sound if whenever KB #i ", it is also true that
KB╞ "

• Completeness: i is complete if whenever KB╞ ", it is also true
that KB #i "

• That is, the procedure will answer any question whose answer
follows from what is known by the KB correctly.

"proves"

Propositional logic: Syntax

• Propositional logic is the simplest logic – illustrates basic ideas;

its syntax is easily definable recursively as follows:

• A propositional alphabeth A consists of a set of proposition symbols,
e.g. P1, P2 etc.

• Formulas are defined recursively:

– The proposition symbols in A etc are sentences (aka formulae)

– If S is a sentence, ¬S is a sentence (negation)

– If S1 and S2 are sentences, S1 # S2 is a sentence (conjunction)

– If S1 and S2 are sentences, S1 $ S2 is a sentence (disjunction)

– If S1 and S2 are sentences, S1 ! S2 is a sentence (implication)

– If S1 and S2 are sentences, S1 " S2 is a sentence (double-implication)

Propositional logic: Semantics
Each model specifies true/false for each proposition symbol

E.g. P1,2 P2,2 P3,1

 false true false

With these symbols, 8 possible models (interpretations)for three propositions, can be

enumerated automatically.

Rules for evaluating truth with respect to an interpretation m:

¬S is true iff S is false

S1 # S2 is true iff S1 is true and S2 is true

S1 $ S2 is true iff S1 is true or S2 is true

S1 ! S2 is true iff S1 is false or S2 is true

 i.e., is false iff S1 is true and S2 is false

S1 " S2 is true iff S1 ! S2 is true and S2 ! S1 is true

Simple recursive process evaluates an arbitrary sentence wrt. an interpretation, e.g.,

¬P1,2 # (P2,2 $ P3,1) = true # (true $ false) = true # true = true

Truth tables for connectives

"!

Wumpus world sentences
Let Pi,j be true if there is a pit in [i, j].

Let Bi,j be true if there is a breeze in [i, j].

• Observations:

 ¬P1,1 # ¬B1,1 # ¬P2,1 # B2,1

• Rules: "Pits cause breezes in adjacent squares"

(B1,1 % (P1,2 $ P2,1)) # (B2,1 % (P1,1 $ P2,2 $ P3,1))""

Truth tables for inference
Remember: we want to prove: "1 = "[1,2] is safe”, i.e.,

KB = Observations # Rules

"1 = ¬P1,2

KB╞ "1

Extremely naïve Inference by enumeration

• Depth-first enumeration of all models is sound and complete

– PL-TRUE evaluates a sentence recursively wrt. to an interpretation, see
slide 25.

– EXTEND(s,v,m) extends the partial model m by assigning value v to
symbol s.

• For n symbols, time complexity is O(2n), space complexity is O(n)

Logical equivalence
• Two sentences are logically equivalent iff they are

true in same models: " $ ß iff "╞ % and %╞ "

!

! !"

!

!

Validity and satisfiability

A sentence is valid if it is true in all models,
e.g., True, A $¬A, A ! A, (A # (A ! B)) ! B

Validity is connected to Entailment via the Deduction Theorem:
KB ! " if and only if (KB ! ") is valid, often written ! (KB ! ")

A sentence is satisfiable if it is true in some model
e.g., A$ B, C

A sentence is unsatisfiable if it is true in no models
e.g., A #¬A

Satisfiability is connected to Entailment as follows:

KB ! " if and only if (KB #¬") is unsatisfiable

Proof methods
• We already learned a naïve proof method for propositional logic!

• In the course of this lecture we will learn more different logics and different
proof methods!

• Proof methods (for propositional logics) divide into (roughly) two kinds:

– Application of inference rules

• Legitimate (sound) generation of new sentences from old

• Proof = a sequence of inference rule applications
Can use inference rules as operators in a standard search algorithm

• Often require transformation of sentences into a normal form

– Model checking

• Truth table enumeration (always exponential in n)

• Other methods, improved backtracking, e.g., Davis-Putnam-Logemann-Loveland
(DPLL)

• heuristic search in model space (sound but incomplete)

e.g., min-conflicts-like hill-climbing algorithms

What we learned so far?

• How to write down knowledge as a

propositional logical theory (Syntax)

• What does a logical theory mean

(Semantics)

• How can we proof entailment naively

From propositional logic to first-order logic:

• Propositional logic has very limited expressive power

– (unlike natural language)

– E.g., cannot say "pits cause breezes in adjacent squares“

• except by writing one sentence for each square

• Whereas propositional logic assumes the world contains facts
(=propositional symbols),

• first-order logic (like natural language) assumes the world
contains

– Objects (constant symbols): people, houses, numbers, colors,
baseball games, wars, …

– Relations (predicate symbols): red, round, prime, brother of, bigger
than, part of, comes between, …

– Functions (function symbols): father of, best friend, one more than,
plus, …

Syntax of FOL: Basic elements

• Constants KingJohn, 2, NUS,...

• Predicate symbols Brother, >,...

• Function symbolsSqrt, LeftLegOf,...

• Variables x, y, a, b,...

• Connectives ¬, !, #, $, "

• Equality =

• Quantifiers &, '

Atomic sentences
Atomic sentences: predicate (term1,...,termn)

 or term1 = term2

Terms: function (term1,...,termn)

or constant or variable

• E.g., Brother(KingJohn,RichardTheLionheart) >

(Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn)))

Remark:

equality is a

special

Predicate with a

fixed

semantics!

Complex sentences

• Again, as in propositional logics, complex sentences

are made from atomic sentences using connectives

¬S, S1 # S2, S1 $ S2, S1 ! S2, S1 " S2,

E.g. Sibling(KingJohn,Richard) !

Sibling(Richard,KingJohn)

 >(1,2) $ & (1,2)

 >(1,2) # ¬ >(1,2)

Truth in first-order logic

• Sentences are true with respect to a model and an interpretation

• Model contains objects (domain elements) and relations among
them

• Interpretation specifies referents for
constant symbols " objects

predicate symbols " relations

function symbols " functions

• An atomic sentence predicate(term1,...,termn) is true

iff the objects referred to by term1,...,termn

are in the relation referred to by predicate

Models for FOL: Example

Truth in the example

"

"

"

Models in FOL

… probably not a good idea to try to enumerate models.

… you should have heard (in some previous lectures) that

 FOL nonentailment is even undecidable, i.e. cannot be computed !!

Universal quantification
• &<variables> <sentence>

"Everyone at URJC is smart":

&x At(x,URJC) ! Smart(x)

• &x P is true in a model m iff P is true with x being each possible
object in the model

• Roughly speaking, equivalent to the conjunction of instantiations
of P

At(KingJohn, URJC) ! Smart(KingJohn)

At(Richard, URJC) ! Smart(Richard)

At(URJC, URJC) ! Smart(URJC)

...

A common mistake to avoid
• Typically, ! is the main connective with &

• Common mistake: using # as the main connective with &:

&x At(x,UIBK) # Smart(x)

means “Everyone is at UIBK and everyone is smart”

• Correct: &x At(x,UIBK) ! Smart(x)

Existential quantification

• '<variables> <sentence>

• "Someone at URJC is smart":
• 'x At(x,URJC) # Smart(x)

• 'x P is true in a model m iff P is true with x being some possible
object in the model

• Roughly speaking, equivalent to the disjunction of instantiations of
P

At(KingJohn,URJC) # Smart(KingJohn)

$ At(Richard,URJC) # Smart(Richard)

$ At(UIBK,URJC) # Smart(UIBK)

$...

Another common mistake to avoid

• Typically, # is the main connective with '

• Common mistake: using ! as the main connective
with ':

'x At(x,URJC) ! Smart(x)

is true if there is anyone who is not at URJC!

Usually used in Queries:

"Is there someone in URJC who is smart?"

Correct: 'x At(x,UIBK) # Smart(x)

Properties of quantifiers

• &x &y is the same as &y &x

• 'x 'y is the same as 'y 'x

• 'x &y is not the same as &y 'x

• 'x &y Loves(x,y)
– “There is a person who loves everyone in the world”

• &y 'x Loves(x,y)
– “Everyone in the world is loved by at least one person”

• Quantifier duality: each can be expressed using the other

• &x Likes(x,IceCream) ¬'x ¬Likes(x,IceCream)

• 'x Likes(x,Broccoli) ¬&x ¬Likes(x,Broccoli)

Equality

• term1 = term2 is true under a given

interpretation if and only if term1 and term2

refer to the same object

• E.g., definition of Sibling in terms of Parent:

&x,y Sibling(x,y) " [¬(x = y) # 'm,f ¬ (m = f) #

Parent(m,x) # Parent(f,x) # Parent(m,y) #

Parent(f,y)]

Using FOL

The family domain:

• Brothers are siblings

&x,y Brother(x,y) ! Sibling(x,y)

• One's mother is one's female parent

&m,c motherOf(c) = m " (Female(m) # Parent(m,c))

• “Sibling” is symmetric

&x,y Sibling(x,y) " Sibling(y,x)

Attention! motherOf

is a function

symbol here,

whereas Fmale

and Parent are

predicate

symbols!!!

Now to the formal part!

• So far we only treated FOL quite

informally…

• … Now let us introduce syntax and

semantics formally!

First Order Logic - Syntax

First-Order Language - Signature:

• A set of constants, e.g. axel,logíca, 1,2,3,4, …

• a set of function symbols , each with a fixed arity # 0 e.g.

f, g, date, motherOf

f(x), g(x,y), date(24,3,1974)

• a set of predicate symbols, each with a fixed arity # 0 e.g.

p,ok,holdsLecture, female

p(x,f(y)), ok, holdsLecture(axel, logíca,date(18,10,2006))

• a set of variables, e.g.

x,y z,...

• connectives: $ % & ! " ¬

• quantifiers: ' (

• punctuation symbols: () ,

constants sometimes are

denoted 0-ary function symbols

First Order Language - Syntax: Terms

• Terms consist of constants, function symbols and variables:

– a variable is a term

– each constant (0-ary function symbol) is a term

– if f is an n-ary function symbol with n>0 and

t1,…, tn are terms then f(t1,…,tn) is a term.

First Order Language - Syntax: Formulas

• Formulae consist of predicates, punctuation symbols, quantifiers
connectives:
– if p is an n-ary predicate symbol with n#0 and t1,…,tn are terms then

p(t1,…,tn) is a formula (atomic formula, or atoms)

– if F,G are formulae, so are

(¬ F), (F ! G), (F " G), (F# G), (F $ G), F % G)

– if F is a formula and x is a variable then

(x F and ' x F

are formulae as well

– atoms and there negations are also called "literals".

Precedence of connectives:
 ¬, ', (negation, for all, exists

 % or

 $ and

 &, ! left/right implication,

 " equivalence

Following these precedence rules, parentheses may be skipped.

Some examples… *
' x f(x,x) " g no

(y p(x,f(x,y)) $ q(g(y)) yes

(x p(x,f(x,y)) $ q(f(y)) no

' x ' y (anc(x,y) $ father(y,z) ! anc(x,z)) yes

' x (y p(x,y) yes

(y ' x p(x,y) yes

' x ' y (anc(x,y) $ (father(y,z) % mother(y,z)) ! anc(x,z)) yes

' x ' y (add(succ(x),y,succ(z)) # add(x,y,z)) yes

(x ¬ p(x,f(x,y)) % q(g(y)) yes

p(f(g(x),y),f(f(x,x),x)) yes

¬ p(f(g(x),y),p(f(x,x),x)) no

& x (person(x) $ ¬ sleeping(x) ! awake(x)) yes

* Here f,g,h,… denote function symbols, p,q,r,s,… denote predicate symbols

Bounded variables, scope and closed formulae:

• For a formula

' x F or (x F

the scope of x is F. Each occurrence of x in F is bound.
Occurrences of variables out of the scope of a quantifier are
called free.

• Examples:

 ' x ((' x q(y,f(x))) % p(x)) $ r(x)

 (y p(x,f(x,y)) $ q(g(y))

• A formula without free variable occurrences is called closed,

• Closed formulas are also called sentences

• Shortcut:

'(F) (or ((F),resp.)

denotes the universal (or existential, resp.) closure of a formula, i.e. the formula
obtained by universally/existentially quantifying all free variables in F.

Interpretations and variable assignments:

Interpratations give some meaning to function symbols

and predicate symbols…

• An interpretation ! consists of:

– a domain D over which the variables can range

– for each n-ary function symbol f a mapping f' from Dn ! D

(particularly each constant is assigned an element of D)

– for each n-ary predicate symbol an n-ary relation over the
domain D, i.e. a mapping from Dn to {true,false}

• A variable assignment " wrt. an interpretation ! is
an assignment of an element of D to each variable.

Truth Value of a Formula wrt. an Interpretation ! and a

variable assignment "

• Let ! be an interpretation and " a variable assignment.Then each
formula W is given a truth value) {true,false}, written Val!,"(W) as follows:

• Remark: The truth value of a closed formula does not depend on !. So, we
speak of truth values wrt. an interpretation ", i.e.Val").

Models for closed formulae:
• An interpretation # of a closed Formula F is called a

model iff Val#(F) = true

• Analogously to propositional logic, a closed formula
F is called:
– satisfiable … if it has a model

– valid … if any interpretation is a model

– unsatisfiable … if it doesn't have a model

– nonvalid … if there exists an interpretation

 which is not a model

• Logical consequence as in propositional logic: F ! G

Read: "every model of F is also a model of G"

More examples
(1) ' x ' y (anc(x,y) $ father(y,z) ! anc(x,z))

(2) ' x ' y (anc(x,y) $ (father(y,z) % mother(y,z)) ! anc(x,z))

(1) is satisfiable but non-valid:

D = {franz, sepp, maria, karl, uwe, anna}

anc … ancestor relation

father(x,y) … x is father of y

mother(x,y) … x is mother of y

Analogously, (2) is satisfiable but non-valid

(2) ! (1) is valid!

(3)

is unsatisfiable!

(For the moment you have to believe this, but we'll find out how to prove this in FOL)!

Remark:

• The notion of interpretations, models,
satifiability and validity can be
expanded to sets of (closed) formulae
(i.e. to sets of clauses)
straightforwardly:

• A set of closed formulae S = {F1, …, Fn}
is then simply viewed as the conjunction

 F1 $ … $ Fn

Some books:

• Michael R A Huth and Mark D Ryan:

Logic in Computer Science, Cambridge University
Press, 2001.

• Uwe Schöning: Logic for Computer Scientists,
Birkhäuser Verlag, 1999.

• J.W.Lloyd: Foundations of Logic Programming,
Second edition. Springer, 1987.

Exercises:

