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Social Dinner Scenario (cont'd)

• Instead of a native, simple ontology inside the program, an

external ontology should be used

• An ontology is available, formulated in OWL, which contains

information about available wine bottles, as instances of a

concept Wine.
• It has further concepts SweetWine, DryWine, RedWine and

WhiteWine for di�erent types of wine.

• How to use this ontology from the logic program ?

• How to ascribe a semantics for this usage?
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Nonmonotonic Description Logic Programs

• An extension of answer set programs with queries to DL knowledge bases

(through dl-atoms)

• Formal semantics for emerging programs (nonmonotonic dl-programs),
fostering the interfacing view
⇒ Clean technical separation of DL engine and ASP solver

• New generalized de�nitions of answer sets of a general dl-program

Important: bidirectional �ow of information

⇒ The logic program also may provide input to DL knowledge base

Prototype implementation, examples

http://www.kr.tuwien.ac.at/staff/roman/semweblp/
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dl-Atoms

Approach to enable a call to a DL engine in ASP:

• Pose a query, Q, to a DL knowledge base, L

• Allow to modify the extensional part (ABox) of KB
• Query evaluates to true, i� Q is provable in modi�ed L.

Examples: wine ontology

• DL[Wine](“ChiantiClassico”)

• DL[Wine](X)

• DL[DryWine ]my_dry ;Wine](W )

add all assertions DryWine(c) to the ABox (extensional part) of L, such
that my_dry(c) holds.
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dl-Atoms /2

A dl-atom has the form

DL[S1op1p1, . . . , Smopm pm;Q](t) , m≥ 0,

where

• each Si is either a concept or a role

• opi ∈{], −∪},
• pi is a unary resp. binary predicate (input predicate),

• Q(t) is a DL query.

Intuitively:

opi =] increases Si by pi.

opi = −∪ increases ¬Si by pi.
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DL Queries

A DL query Q(t) is one of

(a) a concept inclusion axiom C vD, or its negation

¬(C vD),
(b) C(t) or ¬C(t), for a concept C and term t, or

(c) R(t1, t2) or ¬R(t1, t2), for a role R and terms t1, t2.

Remarks:

• Further queries are conceivable (e.g., conjunctive queries)

• The queries above are standard queries.
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dl-Programs

A dl-rule r is of form

a← b1, . . . , bk,not bk+1, . . . ,not bm , m≥ k≥ 0,

where

• a is a classical �rst-order literal

• b1, . . . , bm are classical �rst-order literals or dl-atoms (no

function symbols).

De�nition

A nonmonotonic description logic (dl-) program KB = (L,P )
consists of

• a knowledge base L in a description logic (
⋃

*Box),

• a �nite set of dl-rules P .
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Social Dinner IX

Task

Modify wineCover09a.dlp by fetching the wines now from the ontology.

For instance:

wineBottle(X) :- DL["Wine"](X).

Fetches all the known instances of Wine.

Think at how the �isA� predicate could be rede�ned in terms of dl-atoms

isA(X,�SweetWine�) :- ?

isA(X,�DessertWine�) :- ?

isA(X,�ItalianWine�) :- ?

Solution at

wineCover9b.dlp
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Social Dinner X

• Suppose now that we learn that there is a bottle, �SelaksIceWine� , which
is a white wine and not dry.

• We may add this information to the logic program by facts1:

white(�SelaksIceWine�). not_dry(�SelaksIceWine�).

• In our program, we may pass this information to the ontology by adding
in the dl-atoms the modi�cation

WhiteWine ] white,DryWine−∪not_dry .

E.g., DL[Wine](X) is changed to

DL[WhiteWine += white, DryWine -= not_dry; Wine](X).

1
See wineCover09c.dlp
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Semantics of KB = (L, P )

• HBΦ
P : Set of all ground (classical) literals with predicate symbol

in P and constants from �nite relational alphabet Φ.

• Constants: those in P and (all) individuals in the ABox of L.

• Herbrand interpretation: consistent subset I ⊆ HBΦ
P

• I |=L ` for classical ground literal `, i� ` ∈ I;

• I |=L DL[S1op1 p1 . . . , Smopm pm;Q](c) if and only if

L∪A1(I) ∪ · · · ∪Am(I) |=Q(c),

where
• Ai(I)= {Si(e) | pi(e)∈ I}, for opi =];
• Ai(I)= {¬Si(e) | pi(e)∈ I}, for opi = −∪.

• The models of KB = (L, P ) are the joint models of all rules in P
(de�ned as usual)
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Examples

• Suppose L |= Wine(“TaylorPort”), and I contains
wineBottle(“TaylorPort”)

Then I |=L DL[“Wine”](“TaylorPort”) and

I |=L wineBottle(“TaylorPort”) :- DL[“Wine”](“TaylorPort”)

• Suppose I = {white(“siw”), not_dry(“siw”)}.
Then I |=L

DL[“WhiteWine” ] white, “DryWine”−∪not_dry ; “Wine”](“siw”)

T. Eiter Unit 5 � An ASP Extension: Nonmon. dl-Programs



Introduction
dl-Programs

Answer Set Semantics
Applications and Properties

Further Aspects

De�nitions
Examples
Answer Sets
Properties

Examples

• Suppose L |= Wine(“TaylorPort”), and I contains
wineBottle(“TaylorPort”)

Then I |=L DL[“Wine”](“TaylorPort”) and

I |=L wineBottle(“TaylorPort”) :- DL[“Wine”](“TaylorPort”)

• Suppose I = {white(“siw”), not_dry(“siw”)}.
Then I |=L

DL[“WhiteWine” ] white, “DryWine”−∪not_dry ; “Wine”](“siw”)

T. Eiter Unit 5 � An ASP Extension: Nonmon. dl-Programs



Introduction
dl-Programs

Answer Set Semantics
Applications and Properties

Further Aspects

De�nitions
Examples
Answer Sets
Properties

Examples /2

• Suppose L 6|= DL[“Wine”](“Milk”). Then for every I,

I |=L compliant(joe, “Milk”) :- DL[“Wine”](“Milk”)

I |=L not DL[“Wine”](“Milk”).

• Note that I |=L not DL[“Wine”](“Milk”) is di�erent from
I |=L DL[¬“Wine”](“Milk”).

• Inconsistency of L is revealed with unsatis�able DL queries:

inconsistent :- DL[“Wine” v ¬“Wine”]

Shorthand: DL[⊥]

• Consistency can be checked by

consistent :- not DL[“Wine” v ¬“Wine”]

T. Eiter Unit 5 � An ASP Extension: Nonmon. dl-Programs
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Answer Sets

Answer Sets of positive KB =(L,P ) (no not in P ):
• KB = (L,P ) has the least model lm(KB) (if satis�able)
• The single answer set of KB is lm(KB)

Answer Sets of general KB = (L,P ):
• Use a reduct KBI akin to the Gelfond-Lifschitz (GL) reduct:

KBI = (L,P I)

where P I is the GL-reduct of P wrt. I (treat dl-atoms like
regular atoms)

• I is an answer set of KB i� I = lm(KBI).

T. Eiter Unit 5 � An ASP Extension: Nonmon. dl-Programs
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Some Semantical Properties

• Existence: Positive dl-programs without �¬� and constraints

always have an answer set

• Uniqueness: Layered use of “not ” (strati�ed dl-program) ⇒
single answer set

• Conservative extension: For dl-program KB = (L,P ) without

dl-atoms, the answer sets are the answer sets of P .

• Minimality: answer sets of KB are models, and moreover

minimal models.

• Fixpoint Semantics: Positive and strati�ed dl-programs with

monotone dl-atoms possess �xpoint characterizations of the

answer set.
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Some Reasoning Applications

• dl-atoms allow to query description knowledge base repeatedly

• We might use dl-programs as rule-based �glue� for inferences

on a DL base.

• In this way, inferences can be combined

• Here, we show some applications where non-monotonic and

minimization features of dl-programs can be exploited
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Closed World Assumption (CWA)

Reiter's Closed World Assumption (CWA)

For ground atom p(c), infer ¬p(c) if KB 6|= p(c)

• Express CWA for concepts C1, . . . , Ck wrt. individuals in L:

¬c1(X) ← not DL[C1](X)
· · ·

¬ck(X) ← not DL[Ck](X)

• CWA for roles R: easy extension

T. Eiter Unit 5 � An ASP Extension: Nonmon. dl-Programs
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Query Answering under CWA

Example: L = { SparklingWine(“VeuveCliquot”),
(Sparklingwine u ¬WhiteWine)(“Lambrusco”) }.

Query: WhiteWine(“VeuveCliquot”) (Y/N)?
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Query Answering under CWA

Example: L = { SparklingWine(“VeuveCliquot”),
(Sparklingwine u ¬WhiteWine)(“Lambrusco”) }.

Query: WhiteWine(“VeuveCliquot”) (Y/N)?

Add CWA-literals to L:

sp(X) ← not DL[SparklingWine](X)
ww(X) ← not DL[WhiteWine](X)
ww(X) ← DL[SparklingWine−∪sp,

WhiteWine−∪ww ; WhiteWine](X)

Ask whether KB |= ww(“VeuveCliquot”) or

KB |= ww(“VeuveCliquot”)
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Extended CWA

• CWA can be inconsistent (disjunctive knowledge)

• Example:

Knowledge base

L = { Artist(“Jody”),Artist ≡ Painter t Singer }

• CWA for Painter ,Singer adds

¬Painter(“Jody”),¬Singer(“Jody”).

• This implies ¬Artist(“Jody”)
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Minimal Models

• ECWA singles out �minimal� models of L wrt Painter and

Singer (UNA in L on ABox):

p(X) ← not p(X)

s(X) ← not s(X)

p(X) ← DL[Painter−∪p,Singer−∪s;Painter ](X)

s(X) ← DL[Painter−∪p,Singer−∪s;Singer ](X)

Answer sets:

M1 = {p(“Jody”), s(“Jody”)},
M2 = {s(“Jody”), p(“Jody”)}

• Extendible to keep concepts ��xed�

; ECWA(φ;P ;Q;Z)

T. Eiter Unit 5 � An ASP Extension: Nonmon. dl-Programs
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Default Reasoning

Add simple default rules a la Poole (1988) on top of ontologies

Example: wine ontology

L = { SparklingWine(“VeuveCliquot”),
(“SparklingWine” u ¬“WhiteWine”)(“Lambrusco”) },

Use default rule: Sparkling wines are white by default

r1 : white(W ) ← DL[SparklingWine](W ),not ¬white(W )

r2 : ¬white(W ) ← DL[WhiteWine ] white;¬WhiteWine](W )

r3 : f ← not f, DL[⊥] /* kill model if L is inconsistent */

• In answer set semantics, r2 e�ects maximal application of r1.
• Answer Set: M = {white(“VeuveCliquot”), ¬white(“Lambrusco”)}
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Further Aspects of dl-programs

• Strati�ed dl-programs: intuitively, composed of hierarchic layers of
positive dl-programs linked via default negation.

This generalization of the classic notion of strati�cation embodies a
fragment of the language having single answer sets.

• Non-monotonic dl-atoms: Operator −∩

DL[WhiteWine−∩my_WhiteWine](X)

Constrain WhiteWine to my_WhiteWine

• Weak answer-set semantics (Here: Strong answer sets)

Treat also positive dl-atoms like not -literals in the reduct

• Well-founded semantics

Generalization of the traditional well-founded semantics for normal
logic programs.

T. Eiter Unit 5 � An ASP Extension: Nonmon. dl-Programs
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Computational Complexity

Deciding strong answer set existence for dl-programs
(completeness results)

KB = (L, P ) L in SHIF(D) L in SHOIN (D)

positive EXP NEXP
strati�ed EXP PNEXP

general NEXP NPNEXP

Recall: Satis�ability problem in

• SHIF(D) /SHOIN (D) is EXP-/NEXP-complete (unary numbers).

• ASP is EXP-complete for positive/strati�ed programs P , and
NEXP-complete for arbitrary P

• Key observation: The number of ground dl-atoms is polynomial

• NPNEXP = PNEXP is less powerful than disjunctive ASP (≡ NEXPNP)

• Similar results for query answering
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NLP-DL Prototype

• Fully operational prototype: NLP-DL

http://www.kr.tuwien.ac.at/staff/roman/semweblp/.

• Accepts ontologies formulated in OWL-DL (as processed by
RACER) and a set of dl-rules, where ←, ], and −∪, are written as
":-", "+=", and "-=", respectively.

• Model computation: compute

• the answer sets
• the well-founded model

Preliminary computation of the well-founded model may be
exploited for optimization.

• Reasoning: both brave and cautious reasoning; well-founded
inferences

T. Eiter Unit 5 � An ASP Extension: Nonmon. dl-Programs
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Example: Review Assignment

It is given an ontology about scienti�c publications

• Concept Author stores authors

• Concept Senior (senior author)

• Concept Club100 (authors with more than 100 paper)

• . . .

• Goal: Assign submitted papers to reviewers

• Note: Precise de�nitions are not so important (encapsulation)
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Review Assignment /2

Facts:

paper(subm1). author(subm1,"jdbr"). author(subm1,"htom").

paper(subm2). author(subm2,"teit"). author(subm2,"gian").

author(subm2,"rsch"). author(subm2,"apol").

The program committee:

pc("vlif"). pc("mgel"). pc("dfen"). pc("fley"). pc("smil").

pc("mkif"). pc("ptra"). pc("ggot"). pc("ihor").

All PC members are in the �Club100� with more than 100 papers:

Consider all senior researchers as candidate reviewers adding the club100 information

to the OWL knowledge base:

cand(X,P) :- paper(P), DL["club100" += pc;"senior"](X).

T. Eiter Unit 5 � An ASP Extension: Nonmon. dl-Programs
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Review Assignment /3

Guess a reviewer assignment:

assign(X,P) :- not -assign(X,P), cand(X,P).

-assign(X,P) :- not assign(X,P), cand(X,P).

Check that each paper is assigned to at most one person:

:- assign(X,P), assign(X1,P), X1 != X.

A reviewer can't review a paper by him/herself:

:- assign(A,P), author(P,A).

Check whether all papers are correctly assigned (by projection)

a(P) :- assign(X,P).

error(P) :- paper(P), not a(P).

:∼ error(P).

Note: error(P) detects unassignable papers rather than a simple constraint.

T. Eiter Unit 5 � An ASP Extension: Nonmon. dl-Programs
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Task

Try out the complete reviewer example!

Run reviewer.dlp !
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